source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3785

Last change on this file since 3785 was 3783, checked in by ansari, 15 years ago

Ajout des programmes calcpk.cc calcpk2.cc syncube.cc tjyk.cc (voir fichier README) Reza 15/06/2010

File size: 8.1 KB
RevLine 
[3756]1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
11Four2DResponse::Four2DResponse(int typ, double dx, double dy)
12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
14}
15
16// Return the response for the wave vecteor (kx,ky)
17double Four2DResponse::Value(double kx, double ky)
18{
19 double wk,wkx,wky;
20 switch (typ_)
21 {
22 case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
23 wk = sqrt(kx*kx+ky*ky)/dx_;
24 wk = 0.5*wk*wk;
25 return exp(-wk);
26 break;
27 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
28 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
29 return ( (wk<1.)?(1.-wk):0.);
30 break;
31 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
32 wkx = kx/2./M_PI/dx_;
33 wky = ky/2./M_PI/dy_;
34 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
35 break;
36 default:
37 return 1.;
38 }
39}
40// Return a vector representing the power spectrum (for checking)
41Histo2D Four2DResponse::GetResponse(int nx, int ny)
42{
43 double kxmx = 1.2*DeuxPI*dx_;
44 double kymx = 1.2*DeuxPI*dy_;
45 if (typ_<3) kymx=kxmx;
46 Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
47
48 for(int j=0; j<h2.NBinY(); j++)
49 for(int i=0; i<h2.NBinX(); i++)
50 h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
51 return h2;
52}
53
54//---------------------------------------------------------------
55// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
56//---------------------------------------------------------------
57Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
58 : Four2DResponse(0,d,d) , hrep_(hrep)
59{
60}
61
62double Four2DRespTable::Value(double kx, double ky)
63{
64 int_4 i,j;
65 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
66 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
67 hrep_.FindBin(kx, ky, i, j);
68 return hrep_(i, j);
69}
70
71//--- Classe simple pour le calcul de rotation
72class Rotation {
73public:
74 Rotation(double tet, double phi)
75 {
76// (Teta,Phi) = Direction de visee
77// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
78// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
79// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
80// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
81 double ct = cos(tet);
82 double st = sin(tet);
83 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
84 // double cf = cos(phi+M_PI/2);
85 // double sf = sin(phi+M_PI/2);
86 double cf = cos(phi);
87 double sf = sin(phi);
88 double cp = 1.; // cos((double)pO);
89 double sp = 0.; // sin((double)pO);
90 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
91 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
92 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
93 }
94 inline void Do(double& x, double& y)
95 {
96 double xx=x;
97 double yy=y;
98 x = RE[0][0]*xx+RE[0][1]*yy;
99 y = RE[1][0]*xx+RE[1][1]*yy;
100 }
101 double RE[3][3];
102};
103
104
105//----------------------------------------------------------------------
106// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
107//----------------------------------------------------------------------
108MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
109 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
110{
111 SetThetaPhiRange();
112 SetRespHisNBins();
113 mcnt_=0;
114}
115
116Histo2D MultiDish::GetResponse()
117{
118 cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
119 double kmx = 1.2*DeuxPI*dmax_/lambda_;
[3769]120 double dkmx = kmx/(double)nx_;
121 double dkmy = kmx/(double)ny_;
122 double kmxx = ((double)nx_+0.5)*dkmx;
123 double kmxy = ((double)ny_+0.5)*dkmy;
124 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
125 h2w_.SetZeroBin(0.,0.);
[3756]126
127 double dold = dishes_[0].D/lambda_;
128 double dolx = dishes_[0].Dx/lambda_;
129 double doly = dishes_[0].Dy/lambda_;
130
131 Four2DResponse rd(2, dold, dold);
132 Four2DResponse rdr(3, dolx, doly);
133
134 if (!dishes_[0].isCircular()) rd = rdr;
135
136 double dtet = thetamax_/(double)ntet_;
137 double dphi = phimax_/(double)ntet_;
138
139 double sumw = 0.;
140 for(int kt=0; kt<ntet_; kt++)
141 for(int jp=0; jp<nphi_; jp++)
142 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
143
[3769]144 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
145 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
146 int_4 ib,jb;
[3756]147 // h2w_ /= h2cnt_;
148 Histo2D h2 = h2w_.Convert();
[3769]149 h2.FindBin(kx1, ky1, ib, jb);
150 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
151 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
152 ib=jb=0;
153 }
154 double vmax=h2.VMax();
155 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
156 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
[3756]157 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
158 double fnorm=1.;
[3769]159 if (vmax > sumw) {
[3756]160 fnorm=(double)dishes_.size()/h2.VMax();
[3769]161 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
162 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
163 << " Renormalizing x NDishes/VMax " << fnorm << endl;
[3756]164 }
165 else {
[3769]166 fnorm=(double)dishes_.size()/sumw;
167 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
168 << " Renormalizing x NDishes/sumw " << fnorm << endl;
[3756]169 }
170 h2 *= fnorm;
[3769]171 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
[3756]172 << h2(0,0) << endl;
173 return h2;
174}
175
[3769]176Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
[3756]177{
[3769]178 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
179 double dd = dmax/nx/2.;
180 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
181 for(size_t i=0; i<NbDishes(); i++) {
182 hpos.Add(dishes_[i].X, dishes_[i].Y);
[3756]183 }
[3769]184 return hpos;
[3756]185}
186
187double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
188{
189 double xxp = kx0+x;
190 double yyp = ky0+y;
191 double sumw=0.;
192 sumw += h2w_.Add(xxp, yyp, w, fgfh);
193 double xxm=kx0-x;
194 double yym=ky0-y;
[3769]195 // if (xxm>0.) {
196 sumw += h2w_.Add(xxm, yyp, w, fgfh);
197 // if (yym>0.)
198 sumw += h2w_.Add(xxm, yym, w, fgfh);
199 // }
200 // if (yym>0.)
201 sumw += h2w_.Add(xxp, yym, w, fgfh);
[3756]202 return sumw;
203}
204
205double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
206{
207 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
208
209 double dx = h2w_.WBinX()/5;
210 double dy = h2w_.WBinY()/5;
[3769]211 int nbx = DeuxPI*rd.Dx()/dx+1;
212 int nby = DeuxPI*rd.Dy()/dy+1;
[3756]213 dx = DeuxPI*rd.Dx()/(double)nbx;
214 dy = DeuxPI*rd.Dy()/(double)nby;
215 if (mcnt_==0)
216 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
217 mcnt_++;
218
219 double sumw = 0.;
220 Rotation rot(theta, phi);
221
222 for(size_t i=0; i<dishes_.size(); i++) {
[3769]223 for(size_t j=0; j<dishes_.size(); j++) {
224 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
225 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
[3756]226 rot.Do(kx0, ky0);
[3769]227 // if (kx0<0) kx0=-kx0;
228 // if (ky0<0) ky0=-ky0;
[3756]229 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
230 for(int ix=0; ix<nbx; ix++)
231 for(int jy=0; jy<nby; jy++) {
232 double x = ix*dx;
[3769]233 double y = jy*dy;
234 if ((ix>0)&&(jy>0)) {
235 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
236 }
237 else {
238 if ((ix==0)&&(jy==0))
239 sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
240 else {
241 double w = rd(x,y);
242 if (ix==0) {
243 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
244 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
245 }
246 else {
247 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
248 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
249 }
250 }
251 //
252 }
[3756]253 }
254 // if (i%10==0)
255 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
256 // << " theta=" << theta << " phi=" << phi << endl;
[3769]257 }
[3756]258 }
259 return sumw;
260}
261
Note: See TracBrowser for help on using the repository browser.