1 | // Classes to compute 2D
|
---|
2 | // R. Ansari - Nov 2008, May 2010
|
---|
3 |
|
---|
4 | #include "mdish.h"
|
---|
5 |
|
---|
6 |
|
---|
7 | //--------------------------------------------------
|
---|
8 | // -- Four2DResponse class
|
---|
9 | //--------------------------------------------------
|
---|
10 | // Constructor
|
---|
11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy)
|
---|
12 | : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
|
---|
13 | {
|
---|
14 | setLambdaRef();
|
---|
15 | setLambda();
|
---|
16 | }
|
---|
17 |
|
---|
18 | // Return the response for the wave vecteor (kx,ky)
|
---|
19 | double Four2DResponse::Value(double kx, double ky)
|
---|
20 | {
|
---|
21 | kx *= lambda_ratio_;
|
---|
22 | ky *= lambda_ratio_;
|
---|
23 | double wk,wkx,wky;
|
---|
24 | switch (typ_)
|
---|
25 | {
|
---|
26 | case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
|
---|
27 | wk = sqrt(kx*kx+ky*ky)/dx_;
|
---|
28 | wk = 0.5*wk*wk;
|
---|
29 | return exp(-wk);
|
---|
30 | break;
|
---|
31 | case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
32 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
33 | return ( (wk<1.)?(1.-wk):0.);
|
---|
34 | break;
|
---|
35 | case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
36 | wkx = kx/2./M_PI/dx_;
|
---|
37 | wky = ky/2./M_PI/dy_;
|
---|
38 | return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
|
---|
39 | break;
|
---|
40 | default:
|
---|
41 | return 1.;
|
---|
42 | }
|
---|
43 | }
|
---|
44 | // Return a vector representing the power spectrum (for checking)
|
---|
45 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
|
---|
46 | {
|
---|
47 | double kxmx = 1.2*DeuxPI*dx_;
|
---|
48 | double kymx = 1.2*DeuxPI*dy_;
|
---|
49 | if (typ_<3) kymx=kxmx;
|
---|
50 | Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
|
---|
51 |
|
---|
52 | for(int j=0; j<h2.NBinY(); j++)
|
---|
53 | for(int i=0; i<h2.NBinX(); i++)
|
---|
54 | h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
|
---|
55 | return h2;
|
---|
56 | }
|
---|
57 |
|
---|
58 | //---------------------------------------------------------------
|
---|
59 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
60 | //---------------------------------------------------------------
|
---|
61 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
|
---|
62 | : Four2DResponse(0,d,d) , hrep_(hrep)
|
---|
63 | {
|
---|
64 | }
|
---|
65 |
|
---|
66 | double Four2DRespTable::Value(double kx, double ky)
|
---|
67 | {
|
---|
68 | kx *= lambda_ratio_;
|
---|
69 | ky *= lambda_ratio_;
|
---|
70 | int_4 i,j;
|
---|
71 | if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
|
---|
72 | (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
|
---|
73 | hrep_.FindBin(kx, ky, i, j);
|
---|
74 | return hrep_(i, j);
|
---|
75 | }
|
---|
76 |
|
---|
77 | //--- Classe simple pour le calcul de rotation
|
---|
78 | class Rotation {
|
---|
79 | public:
|
---|
80 | Rotation(double tet, double phi)
|
---|
81 | {
|
---|
82 | // (Teta,Phi) = Direction de visee
|
---|
83 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
|
---|
84 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
|
---|
85 | // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
|
---|
86 | // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
|
---|
87 | double ct = cos(tet);
|
---|
88 | double st = sin(tet);
|
---|
89 | // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
|
---|
90 | // double cf = cos(phi+M_PI/2);
|
---|
91 | // double sf = sin(phi+M_PI/2);
|
---|
92 | double cf = cos(phi);
|
---|
93 | double sf = sin(phi);
|
---|
94 | double cp = 1.; // cos((double)pO);
|
---|
95 | double sp = 0.; // sin((double)pO);
|
---|
96 | RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
|
---|
97 | RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
|
---|
98 | RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
|
---|
99 | }
|
---|
100 | inline void Do(double& x, double& y)
|
---|
101 | {
|
---|
102 | double xx=x;
|
---|
103 | double yy=y;
|
---|
104 | x = RE[0][0]*xx+RE[0][1]*yy;
|
---|
105 | y = RE[1][0]*xx+RE[1][1]*yy;
|
---|
106 | }
|
---|
107 | double RE[3][3];
|
---|
108 | };
|
---|
109 |
|
---|
110 |
|
---|
111 | //----------------------------------------------------------------------
|
---|
112 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
113 | //----------------------------------------------------------------------
|
---|
114 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
|
---|
115 | : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
|
---|
116 | {
|
---|
117 | SetThetaPhiRange();
|
---|
118 | SetRespHisNBins();
|
---|
119 | mcnt_=0;
|
---|
120 | }
|
---|
121 |
|
---|
122 | Histo2D MultiDish::GetResponse()
|
---|
123 | {
|
---|
124 | cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
|
---|
125 | double kmx = 1.2*DeuxPI*dmax_/lambda_;
|
---|
126 | double dkmx = kmx/(double)nx_;
|
---|
127 | double dkmy = kmx/(double)ny_;
|
---|
128 | double kmxx = ((double)nx_+0.5)*dkmx;
|
---|
129 | double kmxy = ((double)ny_+0.5)*dkmy;
|
---|
130 | h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
|
---|
131 | h2w_.SetZeroBin(0.,0.);
|
---|
132 |
|
---|
133 | double dold = dishes_[0].D/lambda_;
|
---|
134 | double dolx = dishes_[0].Dx/lambda_;
|
---|
135 | double doly = dishes_[0].Dy/lambda_;
|
---|
136 |
|
---|
137 | Four2DResponse rd(2, dold, dold);
|
---|
138 | Four2DResponse rdr(3, dolx, doly);
|
---|
139 |
|
---|
140 | if (!dishes_[0].isCircular()) rd = rdr;
|
---|
141 |
|
---|
142 | double dtet = thetamax_/(double)ntet_;
|
---|
143 | double dphi = phimax_/(double)ntet_;
|
---|
144 |
|
---|
145 | double sumw = 0.;
|
---|
146 | for(int kt=0; kt<ntet_; kt++)
|
---|
147 | for(int jp=0; jp<nphi_; jp++)
|
---|
148 | sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
|
---|
149 |
|
---|
150 | double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
|
---|
151 | double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
|
---|
152 | int_4 ib,jb;
|
---|
153 | // h2w_ /= h2cnt_;
|
---|
154 | Histo2D h2 = h2w_.Convert();
|
---|
155 | h2.FindBin(kx1, ky1, ib, jb);
|
---|
156 | if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
|
---|
157 | cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
|
---|
158 | ib=jb=0;
|
---|
159 | }
|
---|
160 | double vmax=h2.VMax();
|
---|
161 | cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
|
---|
162 | << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
|
---|
163 | // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
|
---|
164 | double fnorm=1.;
|
---|
165 | if (vmax > sumw) {
|
---|
166 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
167 | cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
|
---|
168 | cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
169 | << " Renormalizing x NDishes/VMax " << fnorm << endl;
|
---|
170 | }
|
---|
171 | else {
|
---|
172 | fnorm=(double)dishes_.size()/sumw;
|
---|
173 | cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
174 | << " Renormalizing x NDishes/sumw " << fnorm << endl;
|
---|
175 | }
|
---|
176 | h2 *= fnorm;
|
---|
177 | cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
|
---|
178 | << h2(0,0) << endl;
|
---|
179 | return h2;
|
---|
180 | }
|
---|
181 |
|
---|
182 | Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
|
---|
183 | {
|
---|
184 | if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
|
---|
185 | double dd = dmax/nx/2.;
|
---|
186 | Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
|
---|
187 | for(size_t i=0; i<NbDishes(); i++) {
|
---|
188 | hpos.Add(dishes_[i].X, dishes_[i].Y);
|
---|
189 | }
|
---|
190 | return hpos;
|
---|
191 | }
|
---|
192 |
|
---|
193 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
194 | {
|
---|
195 | double xxp = kx0+x;
|
---|
196 | double yyp = ky0+y;
|
---|
197 | double sumw=0.;
|
---|
198 | sumw += h2w_.Add(xxp, yyp, w, fgfh);
|
---|
199 | double xxm=kx0-x;
|
---|
200 | double yym=ky0-y;
|
---|
201 | // if (xxm>0.) {
|
---|
202 | sumw += h2w_.Add(xxm, yyp, w, fgfh);
|
---|
203 | // if (yym>0.)
|
---|
204 | sumw += h2w_.Add(xxm, yym, w, fgfh);
|
---|
205 | // }
|
---|
206 | // if (yym>0.)
|
---|
207 | sumw += h2w_.Add(xxp, yym, w, fgfh);
|
---|
208 | return sumw;
|
---|
209 | }
|
---|
210 |
|
---|
211 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
|
---|
212 | {
|
---|
213 | // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
|
---|
214 |
|
---|
215 | double dx = h2w_.WBinX()/5;
|
---|
216 | double dy = h2w_.WBinY()/5;
|
---|
217 | int nbx = DeuxPI*rd.Dx()/dx+1;
|
---|
218 | int nby = DeuxPI*rd.Dy()/dy+1;
|
---|
219 | dx = DeuxPI*rd.Dx()/(double)nbx;
|
---|
220 | dy = DeuxPI*rd.Dy()/(double)nby;
|
---|
221 | if (mcnt_==0)
|
---|
222 | cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
|
---|
223 | mcnt_++;
|
---|
224 |
|
---|
225 | double sumw = 0.;
|
---|
226 | Rotation rot(theta, phi);
|
---|
227 |
|
---|
228 | for(size_t i=0; i<dishes_.size(); i++) {
|
---|
229 | for(size_t j=0; j<dishes_.size(); j++) {
|
---|
230 | double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
|
---|
231 | double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
|
---|
232 | rot.Do(kx0, ky0);
|
---|
233 | // if (kx0<0) kx0=-kx0;
|
---|
234 | // if (ky0<0) ky0=-ky0;
|
---|
235 | bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
|
---|
236 | for(int ix=0; ix<nbx; ix++)
|
---|
237 | for(int jy=0; jy<nby; jy++) {
|
---|
238 | double x = ix*dx;
|
---|
239 | double y = jy*dy;
|
---|
240 | if ((ix>0)&&(jy>0)) {
|
---|
241 | sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
|
---|
242 | }
|
---|
243 | else {
|
---|
244 | if ((ix==0)&&(jy==0))
|
---|
245 | sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
|
---|
246 | else {
|
---|
247 | double w = rd(x,y);
|
---|
248 | if (ix==0) {
|
---|
249 | sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
|
---|
250 | sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
|
---|
251 | }
|
---|
252 | else {
|
---|
253 | sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
|
---|
254 | sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
|
---|
255 | }
|
---|
256 | }
|
---|
257 | //
|
---|
258 | }
|
---|
259 | }
|
---|
260 | // if (i%10==0)
|
---|
261 | // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
|
---|
262 | // << " theta=" << theta << " phi=" << phi << endl;
|
---|
263 | }
|
---|
264 | }
|
---|
265 | return sumw;
|
---|
266 | }
|
---|
267 |
|
---|