source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3788

Last change on this file since 3788 was 3788, checked in by ansari, 15 years ago

Ajout classe de soustraction d'avant plans, Reza 25/06/2010

File size: 8.8 KB
Line 
1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
11Four2DResponse::Four2DResponse(int typ, double dx, double dy)
12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
14 setLambdaRef();
15 setLambda();
16}
17
18// Return the response for the wave vecteor (kx,ky)
19double Four2DResponse::Value(double kx, double ky)
20{
21 kx *= lambda_ratio_;
22 ky *= lambda_ratio_;
23 double wk,wkx,wky;
24 switch (typ_)
25 {
26 case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
27 wk = sqrt(kx*kx+ky*ky)/dx_;
28 wk = 0.5*wk*wk;
29 return exp(-wk);
30 break;
31 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
32 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
33 return ( (wk<1.)?(1.-wk):0.);
34 break;
35 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
36 wkx = kx/2./M_PI/dx_;
37 wky = ky/2./M_PI/dy_;
38 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
39 break;
40 default:
41 return 1.;
42 }
43}
44// Return a vector representing the power spectrum (for checking)
45Histo2D Four2DResponse::GetResponse(int nx, int ny)
46{
47 double kxmx = 1.2*DeuxPI*dx_;
48 double kymx = 1.2*DeuxPI*dy_;
49 if (typ_<3) kymx=kxmx;
50 Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
51
52 for(int j=0; j<h2.NBinY(); j++)
53 for(int i=0; i<h2.NBinX(); i++)
54 h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
55 return h2;
56}
57
58//---------------------------------------------------------------
59// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
60//---------------------------------------------------------------
61Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
62 : Four2DResponse(0,d,d) , hrep_(hrep)
63{
64}
65
66double Four2DRespTable::Value(double kx, double ky)
67{
68 kx *= lambda_ratio_;
69 ky *= lambda_ratio_;
70 int_4 i,j;
71 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
72 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
73 hrep_.FindBin(kx, ky, i, j);
74 return hrep_(i, j);
75}
76
77//---------------------------------------------------------------
78// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
79//---------------------------------------------------------------
80Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b)
81 : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b)
82{
83}
84
85double Four2DRespRatio::Value(double kx, double ky)
86{
87 double ra = a_.Value(kx,ky);
88 double rb = b_.Value(kx,ky);
89 if (rb<1.e-19) rb = 1.e-19;
90 return (ra/rb);
91}
92
93//---------------------------------------------------------------
94//--- Classe simple pour le calcul de rotation
95class Rotation {
96public:
97 Rotation(double tet, double phi)
98 {
99// (Teta,Phi) = Direction de visee
100// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
101// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
102// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
103// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
104 double ct = cos(tet);
105 double st = sin(tet);
106 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
107 // double cf = cos(phi+M_PI/2);
108 // double sf = sin(phi+M_PI/2);
109 double cf = cos(phi);
110 double sf = sin(phi);
111 double cp = 1.; // cos((double)pO);
112 double sp = 0.; // sin((double)pO);
113 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
114 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
115 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
116 }
117 inline void Do(double& x, double& y)
118 {
119 double xx=x;
120 double yy=y;
121 x = RE[0][0]*xx+RE[0][1]*yy;
122 y = RE[1][0]*xx+RE[1][1]*yy;
123 }
124 double RE[3][3];
125};
126
127
128//----------------------------------------------------------------------
129// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
130//----------------------------------------------------------------------
131MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
132 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
133{
134 SetThetaPhiRange();
135 SetRespHisNBins();
136 mcnt_=0;
137}
138
139Histo2D MultiDish::GetResponse()
140{
141 cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
142 double kmx = 1.2*DeuxPI*dmax_/lambda_;
143 double dkmx = kmx/(double)nx_;
144 double dkmy = kmx/(double)ny_;
145 double kmxx = ((double)nx_+0.5)*dkmx;
146 double kmxy = ((double)ny_+0.5)*dkmy;
147 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
148 h2w_.SetZeroBin(0.,0.);
149
150 double dold = dishes_[0].D/lambda_;
151 double dolx = dishes_[0].Dx/lambda_;
152 double doly = dishes_[0].Dy/lambda_;
153
154 Four2DResponse rd(2, dold, dold);
155 Four2DResponse rdr(3, dolx, doly);
156
157 if (!dishes_[0].isCircular()) rd = rdr;
158
159 double dtet = thetamax_/(double)ntet_;
160 double dphi = phimax_/(double)ntet_;
161
162 double sumw = 0.;
163 for(int kt=0; kt<ntet_; kt++)
164 for(int jp=0; jp<nphi_; jp++)
165 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
166
167 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
168 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
169 int_4 ib,jb;
170 // h2w_ /= h2cnt_;
171 Histo2D h2 = h2w_.Convert();
172 h2.FindBin(kx1, ky1, ib, jb);
173 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
174 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
175 ib=jb=0;
176 }
177 double vmax=h2.VMax();
178 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
179 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
180 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
181 double fnorm=1.;
182 if (vmax > sumw) {
183 fnorm=(double)dishes_.size()/h2.VMax();
184 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
185 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
186 << " Renormalizing x NDishes/VMax " << fnorm << endl;
187 }
188 else {
189 fnorm=(double)dishes_.size()/sumw;
190 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
191 << " Renormalizing x NDishes/sumw " << fnorm << endl;
192 }
193 h2 *= fnorm;
194 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
195 << h2(0,0) << endl;
196 return h2;
197}
198
199Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
200{
201 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
202 double dd = dmax/nx/2.;
203 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
204 for(size_t i=0; i<NbDishes(); i++) {
205 hpos.Add(dishes_[i].X, dishes_[i].Y);
206 }
207 return hpos;
208}
209
210double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
211{
212 double xxp = kx0+x;
213 double yyp = ky0+y;
214 double sumw=0.;
215 sumw += h2w_.Add(xxp, yyp, w, fgfh);
216 double xxm=kx0-x;
217 double yym=ky0-y;
218 // if (xxm>0.) {
219 sumw += h2w_.Add(xxm, yyp, w, fgfh);
220 // if (yym>0.)
221 sumw += h2w_.Add(xxm, yym, w, fgfh);
222 // }
223 // if (yym>0.)
224 sumw += h2w_.Add(xxp, yym, w, fgfh);
225 return sumw;
226}
227
228double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
229{
230 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
231
232 double dx = h2w_.WBinX()/5;
233 double dy = h2w_.WBinY()/5;
234 int nbx = DeuxPI*rd.Dx()/dx+1;
235 int nby = DeuxPI*rd.Dy()/dy+1;
236 dx = DeuxPI*rd.Dx()/(double)nbx;
237 dy = DeuxPI*rd.Dy()/(double)nby;
238 if (mcnt_==0)
239 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
240 mcnt_++;
241
242 double sumw = 0.;
243 Rotation rot(theta, phi);
244
245 for(size_t i=0; i<dishes_.size(); i++) {
246 for(size_t j=0; j<dishes_.size(); j++) {
247 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
248 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
249 rot.Do(kx0, ky0);
250 // if (kx0<0) kx0=-kx0;
251 // if (ky0<0) ky0=-ky0;
252 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
253 for(int ix=0; ix<nbx; ix++)
254 for(int jy=0; jy<nby; jy++) {
255 double x = ix*dx;
256 double y = jy*dy;
257 if ((ix>0)&&(jy>0)) {
258 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
259 }
260 else {
261 if ((ix==0)&&(jy==0))
262 sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
263 else {
264 double w = rd(x,y);
265 if (ix==0) {
266 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
267 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
268 }
269 else {
270 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
271 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
272 }
273 }
274 //
275 }
276 }
277 // if (i%10==0)
278 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
279 // << " theta=" << theta << " phi=" << phi << endl;
280 }
281 }
282 return sumw;
283}
284
Note: See TracBrowser for help on using the repository browser.