| 1 | //  Classes to compute 2D 
 | 
|---|
| 2 | // R. Ansari - Nov 2008, May 2010 
 | 
|---|
| 3 | 
 | 
|---|
| 4 | #include "mdish.h"
 | 
|---|
| 5 | 
 | 
|---|
| 6 | 
 | 
|---|
| 7 | //--------------------------------------------------
 | 
|---|
| 8 | // -- Four2DResponse class 
 | 
|---|
| 9 | //--------------------------------------------------
 | 
|---|
| 10 | // Constructor
 | 
|---|
| 11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy)
 | 
|---|
| 12 |   : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
 | 
|---|
| 13 | {
 | 
|---|
| 14 | }
 | 
|---|
| 15 | 
 | 
|---|
| 16 | // Return the response for the wave vecteor (kx,ky)
 | 
|---|
| 17 | double Four2DResponse::Value(double kx, double ky)
 | 
|---|
| 18 | {
 | 
|---|
| 19 |   double wk,wkx,wky;
 | 
|---|
| 20 |   switch (typ_) 
 | 
|---|
| 21 |     {
 | 
|---|
| 22 |     case 1:   // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda  k_g / D )^2 ]
 | 
|---|
| 23 |       wk = sqrt(kx*kx+ky*ky)/dx_;
 | 
|---|
| 24 |       wk = 0.5*wk*wk;
 | 
|---|
| 25 |       return exp(-wk);
 | 
|---|
| 26 |       break;
 | 
|---|
| 27 |     case 2:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda   
 | 
|---|
| 28 |       wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
 | 
|---|
| 29 |       return ( (wk<1.)?(1.-wk):0.);
 | 
|---|
| 30 |       break;
 | 
|---|
| 31 |     case 3:   // Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) 
 | 
|---|
| 32 |       wkx = kx/2./M_PI/dx_; 
 | 
|---|
| 33 |       wky = ky/2./M_PI/dy_; 
 | 
|---|
| 34 |       return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
 | 
|---|
| 35 |       break;
 | 
|---|
| 36 |     default:
 | 
|---|
| 37 |       return 1.;
 | 
|---|
| 38 |     }
 | 
|---|
| 39 | }
 | 
|---|
| 40 | // Return a vector representing the power spectrum (for checking) 
 | 
|---|
| 41 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
 | 
|---|
| 42 | {
 | 
|---|
| 43 |   double kxmx = 1.2*DeuxPI*dx_;
 | 
|---|
| 44 |   double kymx = 1.2*DeuxPI*dy_;
 | 
|---|
| 45 |   if (typ_<3) kymx=kxmx; 
 | 
|---|
| 46 |   Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
 | 
|---|
| 47 | 
 | 
|---|
| 48 |   for(int j=0; j<h2.NBinY(); j++) 
 | 
|---|
| 49 |     for(int i=0; i<h2.NBinX(); i++) 
 | 
|---|
| 50 |       h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
 | 
|---|
| 51 |   return h2;    
 | 
|---|
| 52 | }
 | 
|---|
| 53 | 
 | 
|---|
| 54 | //---------------------------------------------------------------
 | 
|---|
| 55 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) 
 | 
|---|
| 56 | //---------------------------------------------------------------
 | 
|---|
| 57 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
 | 
|---|
| 58 |   : Four2DResponse(0,d,d) , hrep_(hrep)
 | 
|---|
| 59 | {
 | 
|---|
| 60 | }
 | 
|---|
| 61 | 
 | 
|---|
| 62 | double Four2DRespTable::Value(double kx, double ky)
 | 
|---|
| 63 | {
 | 
|---|
| 64 |   int_4 i,j;
 | 
|---|
| 65 |   if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) || 
 | 
|---|
| 66 |        (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) )  return 0.;
 | 
|---|
| 67 |   hrep_.FindBin(kx, ky, i, j);
 | 
|---|
| 68 |   return hrep_(i, j);
 | 
|---|
| 69 | }
 | 
|---|
| 70 | 
 | 
|---|
| 71 | //--- Classe simple pour le calcul de rotation 
 | 
|---|
| 72 | class Rotation {
 | 
|---|
| 73 | public:
 | 
|---|
| 74 |   Rotation(double tet, double phi)
 | 
|---|
| 75 |   {
 | 
|---|
| 76 | // (Teta,Phi) = Direction de visee 
 | 
|---|
| 77 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
 | 
|---|
| 78 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
 | 
|---|
| 79 | //  Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
 | 
|---|
| 80 | //  Autour du nouvel axe Z (x3) d'angle Psi  (Psi=0 -> cp=1, sp=0.;
 | 
|---|
| 81 |   double ct = cos(tet);
 | 
|---|
| 82 |   double st = sin(tet);
 | 
|---|
| 83 |   // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
 | 
|---|
| 84 |   //  double cf = cos(phi+M_PI/2);
 | 
|---|
| 85 |   //  double sf = sin(phi+M_PI/2);
 | 
|---|
| 86 |   double cf = cos(phi);
 | 
|---|
| 87 |   double sf = sin(phi);
 | 
|---|
| 88 |   double cp = 1.; // cos((double)pO);
 | 
|---|
| 89 |   double sp = 0.; // sin((double)pO);
 | 
|---|
| 90 |   RE[0][0] = cf*cp-sf*ct*sp;     RE[0][1] = sf*cp+cf*ct*sp;      RE[0][2] = st*sp;
 | 
|---|
| 91 |   RE[1][0] = -cf*sp-sf*ct*cp;    RE[1][1] = -sf*sp+cf*ct*cp;     RE[1][2] = st*cp;
 | 
|---|
| 92 |   RE[2][0] = sf*st;              RE[2][1] = -cf*st;              RE[2][2] = ct;
 | 
|---|
| 93 |   }
 | 
|---|
| 94 |   inline void Do(double& x, double& y)
 | 
|---|
| 95 |   {
 | 
|---|
| 96 |     double xx=x; 
 | 
|---|
| 97 |     double yy=y;
 | 
|---|
| 98 |     x = RE[0][0]*xx+RE[0][1]*yy;
 | 
|---|
| 99 |     y = RE[1][0]*xx+RE[1][1]*yy;
 | 
|---|
| 100 |   }
 | 
|---|
| 101 |   double RE[3][3];
 | 
|---|
| 102 | };
 | 
|---|
| 103 | 
 | 
|---|
| 104 | // -----------------------------------
 | 
|---|
| 105 | // -- Classe ressemblant a un histo 2D 
 | 
|---|
| 106 | // -----------------------------------
 | 
|---|
| 107 | QHis2D::QHis2D()
 | 
|---|
| 108 |   : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
 | 
|---|
| 109 | {
 | 
|---|
| 110 |   ixb0 = jyb0 = 0;
 | 
|---|
| 111 | }
 | 
|---|
| 112 | QHis2D::QHis2D(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
 | 
|---|
| 113 |   : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
 | 
|---|
| 114 | {
 | 
|---|
| 115 |   Define(xMin, xMax, nxb, yMin, yMax, nyb);
 | 
|---|
| 116 | }
 | 
|---|
| 117 | void QHis2D::Define(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
 | 
|---|
| 118 | {
 | 
|---|
| 119 |   nx=nxb; ny=nyb;
 | 
|---|
| 120 |   xmin=xMin;  xmax=xMax;  
 | 
|---|
| 121 |   ymin=yMin;  ymax=yMax;  
 | 
|---|
| 122 |   dxb=(xmax-xmin)/(double)nx;
 | 
|---|
| 123 |   dyb=(ymax-ymin)/(double)ny;
 | 
|---|
| 124 |   sa_size_t sz[5];  sz[0]=nx;  sz[1]=ny;
 | 
|---|
| 125 |   aw.ReSize(2,sz);
 | 
|---|
| 126 |   SetZeroBin();
 | 
|---|
| 127 |   sumw0=0.;
 | 
|---|
| 128 |   return;
 | 
|---|
| 129 | }
 | 
|---|
| 130 | double QHis2D::Add(r_8 x, r_8 y, r_8 w, bool fgfh)
 | 
|---|
| 131 | {
 | 
|---|
| 132 |   sa_size_t ix = (sa_size_t)((x-xmin)/dxb);
 | 
|---|
| 133 |   sa_size_t jy = (sa_size_t)((y-ymin)/dyb);
 | 
|---|
| 134 |   if ((ix<0)||(ix>=nx)||(jy<0)||(jy>=ny))  return 0.;
 | 
|---|
| 135 |   double rw = ((ix==ixb0)&&(jy==jyb0)) ? w : 0.;
 | 
|---|
| 136 |   sumw0 += rw; 
 | 
|---|
| 137 |   if (fgfh) aw(ix,jy) += w;
 | 
|---|
| 138 |   return rw;
 | 
|---|
| 139 | }
 | 
|---|
| 140 | void QHis2D::SetZeroBin(r_8 x, r_8 y)
 | 
|---|
| 141 | {
 | 
|---|
| 142 |   ixb0 = (sa_size_t)((x-xmin)/dxb);
 | 
|---|
| 143 |   jyb0 = (sa_size_t)((y-ymin)/dyb);
 | 
|---|
| 144 | }
 | 
|---|
| 145 | Histo2D QHis2D::Convert()
 | 
|---|
| 146 | {
 | 
|---|
| 147 |   int_4 imn,jmn,imx,jmx;
 | 
|---|
| 148 |   r_8 min = aw(0,0);
 | 
|---|
| 149 |   r_8 max = aw(0,0);
 | 
|---|
| 150 |   imn=jmn=imx=jmx=0;
 | 
|---|
| 151 |   Histo2D h2(xmin,xmax,nx,ymin,ymax,ny);
 | 
|---|
| 152 |   for(int_4 j=0; j<ny; j++) 
 | 
|---|
| 153 |     for(int_4 i=0; i<nx; i++) {
 | 
|---|
| 154 |       h2(i,j) = aw(i,j);
 | 
|---|
| 155 |       if (aw(i,j)>max) {
 | 
|---|
| 156 |         imx=i;  jmx=j;  max=aw(i,j);
 | 
|---|
| 157 |       }
 | 
|---|
| 158 |       if (aw(i,j)<min) {
 | 
|---|
| 159 |         imn=i;  jmn=j;  min=aw(i,j);
 | 
|---|
| 160 |       }
 | 
|---|
| 161 |     }
 | 
|---|
| 162 |   cout << "QHis2D::Convert()/Info: Nx,Ny=" << nx << "," << ny << " SumW=" << sumw0 
 | 
|---|
| 163 |        << "\n ... Max:" << imx << "," << jmx << " ->" << max 
 | 
|---|
| 164 |        << " @" << imx*dxb+xmin << "," << jmx*dyb+ymin
 | 
|---|
| 165 |        << "\n ...Min:" << imn << "," << jmn << " ->" << min 
 | 
|---|
| 166 |        << " @" << imn*dxb+xmin << "," << jmn*dyb+ymin << endl;
 | 
|---|
| 167 |   return h2;
 | 
|---|
| 168 | }
 | 
|---|
| 169 | 
 | 
|---|
| 170 | //----------------------------------------------------------------------
 | 
|---|
| 171 | //  -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish 
 | 
|---|
| 172 | //----------------------------------------------------------------------
 | 
|---|
| 173 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
 | 
|---|
| 174 |   : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
 | 
|---|
| 175 | { 
 | 
|---|
| 176 |   SetThetaPhiRange();
 | 
|---|
| 177 |   SetRespHisNBins();
 | 
|---|
| 178 |   mcnt_=0;
 | 
|---|
| 179 | }
 | 
|---|
| 180 | 
 | 
|---|
| 181 | Histo2D MultiDish::GetResponse()
 | 
|---|
| 182 | {
 | 
|---|
| 183 |   cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
 | 
|---|
| 184 |   double kmx = 1.2*DeuxPI*dmax_/lambda_;
 | 
|---|
| 185 |   double dkmx = kmx/(double)nx_;
 | 
|---|
| 186 |   double dkmy = kmx/(double)ny_;
 | 
|---|
| 187 |   double kmxx = ((double)nx_+0.5)*dkmx;
 | 
|---|
| 188 |   double kmxy = ((double)ny_+0.5)*dkmy;
 | 
|---|
| 189 |   h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
 | 
|---|
| 190 |   h2w_.SetZeroBin(0.,0.);
 | 
|---|
| 191 | 
 | 
|---|
| 192 |   double dold = dishes_[0].D/lambda_;
 | 
|---|
| 193 |   double dolx = dishes_[0].Dx/lambda_;
 | 
|---|
| 194 |   double doly = dishes_[0].Dy/lambda_;
 | 
|---|
| 195 | 
 | 
|---|
| 196 |   Four2DResponse rd(2, dold, dold);
 | 
|---|
| 197 |   Four2DResponse rdr(3, dolx, doly);
 | 
|---|
| 198 | 
 | 
|---|
| 199 |   if (!dishes_[0].isCircular())  rd = rdr;
 | 
|---|
| 200 | 
 | 
|---|
| 201 |   double dtet = thetamax_/(double)ntet_;
 | 
|---|
| 202 |   double dphi = phimax_/(double)ntet_;
 | 
|---|
| 203 | 
 | 
|---|
| 204 |   double sumw = 0.;
 | 
|---|
| 205 |   for(int kt=0; kt<ntet_; kt++) 
 | 
|---|
| 206 |     for(int jp=0; jp<nphi_; jp++) 
 | 
|---|
| 207 |       sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
 | 
|---|
| 208 | 
 | 
|---|
| 209 |   double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
 | 
|---|
| 210 |   double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
 | 
|---|
| 211 |   int_4 ib,jb;
 | 
|---|
| 212 |   //  h2w_ /= h2cnt_; 
 | 
|---|
| 213 |   Histo2D h2 = h2w_.Convert();
 | 
|---|
| 214 |   h2.FindBin(kx1, ky1, ib, jb);
 | 
|---|
| 215 |   if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
 | 
|---|
| 216 |     cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
 | 
|---|
| 217 |     ib=jb=0;
 | 
|---|
| 218 |   }
 | 
|---|
| 219 |   double vmax=h2.VMax();
 | 
|---|
| 220 |   cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax  
 | 
|---|
| 221 |        << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
 | 
|---|
| 222 |   //  double fnorm=sqrt((double)dishes_.size())/h2.VMax();
 | 
|---|
| 223 |   double fnorm=1.;
 | 
|---|
| 224 |   if (vmax > sumw) {
 | 
|---|
| 225 |     fnorm=(double)dishes_.size()/h2.VMax();
 | 
|---|
| 226 |     cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " >  sumw=" << sumw << endl;  
 | 
|---|
| 227 |     cout << "   ... NDishes=" << dishes_.size() << " sumw=" << sumw 
 | 
|---|
| 228 |          << " Renormalizing x NDishes/VMax  " << fnorm << endl;
 | 
|---|
| 229 |   }
 | 
|---|
| 230 |   else {
 | 
|---|
| 231 |     fnorm=(double)dishes_.size()/sumw;
 | 
|---|
| 232 |     cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw  
 | 
|---|
| 233 |          << " Renormalizing x NDishes/sumw   " << fnorm << endl;
 | 
|---|
| 234 |   }
 | 
|---|
| 235 |   h2 *= fnorm;
 | 
|---|
| 236 |   cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)=" 
 | 
|---|
| 237 |        << h2(0,0) << endl;
 | 
|---|
| 238 |   return h2;
 | 
|---|
| 239 | }
 | 
|---|
| 240 | 
 | 
|---|
| 241 | Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
 | 
|---|
| 242 | {
 | 
|---|
| 243 |   if (dmax<1e-3)  dmax=nx*dishes_[0].Diameter();
 | 
|---|
| 244 |   double dd = dmax/nx/2.;
 | 
|---|
| 245 |   Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
 | 
|---|
| 246 |   for(size_t i=0; i<NbDishes(); i++) {
 | 
|---|
| 247 |     hpos.Add(dishes_[i].X, dishes_[i].Y);
 | 
|---|
| 248 |   }
 | 
|---|
| 249 |   return hpos;
 | 
|---|
| 250 | }
 | 
|---|
| 251 | 
 | 
|---|
| 252 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
 | 
|---|
| 253 | {
 | 
|---|
| 254 |   double xxp = kx0+x;
 | 
|---|
| 255 |   double yyp = ky0+y;
 | 
|---|
| 256 |   double sumw=0.;
 | 
|---|
| 257 |   sumw += h2w_.Add(xxp, yyp, w, fgfh);
 | 
|---|
| 258 |   double xxm=kx0-x;
 | 
|---|
| 259 |   double yym=ky0-y;
 | 
|---|
| 260 |   //  if (xxm>0.)  {
 | 
|---|
| 261 |   sumw += h2w_.Add(xxm, yyp, w, fgfh);
 | 
|---|
| 262 |   // if (yym>0.)  
 | 
|---|
| 263 |   sumw += h2w_.Add(xxm, yym, w, fgfh);
 | 
|---|
| 264 |   //  }
 | 
|---|
| 265 |   // if (yym>0.)  
 | 
|---|
| 266 |   sumw += h2w_.Add(xxp, yym, w, fgfh);
 | 
|---|
| 267 |   return sumw; 
 | 
|---|
| 268 | }
 | 
|---|
| 269 | 
 | 
|---|
| 270 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
 | 
|---|
| 271 | {
 | 
|---|
| 272 |   //  cout << " MultiDish::CumulResp()  theta=" << theta << " phi=" << phi << endl;
 | 
|---|
| 273 | 
 | 
|---|
| 274 |   double dx = h2w_.WBinX()/5;
 | 
|---|
| 275 |   double dy = h2w_.WBinY()/5;
 | 
|---|
| 276 |   int nbx = DeuxPI*rd.Dx()/dx+1;
 | 
|---|
| 277 |   int nby = DeuxPI*rd.Dy()/dy+1;
 | 
|---|
| 278 |   dx = DeuxPI*rd.Dx()/(double)nbx;
 | 
|---|
| 279 |   dy = DeuxPI*rd.Dy()/(double)nby;
 | 
|---|
| 280 |   if (mcnt_==0) 
 | 
|---|
| 281 |     cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
 | 
|---|
| 282 |   mcnt_++;
 | 
|---|
| 283 | 
 | 
|---|
| 284 |   double sumw = 0.;
 | 
|---|
| 285 |   Rotation rot(theta, phi);
 | 
|---|
| 286 | 
 | 
|---|
| 287 |   for(size_t i=0; i<dishes_.size(); i++) {
 | 
|---|
| 288 |     for(size_t j=0; j<dishes_.size(); j++) {
 | 
|---|
| 289 |       double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
 | 
|---|
| 290 |       double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
 | 
|---|
| 291 |       rot.Do(kx0, ky0);
 | 
|---|
| 292 |       //    if (kx0<0) kx0=-kx0;
 | 
|---|
| 293 |       //    if (ky0<0) ky0=-ky0;
 | 
|---|
| 294 |       bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
 | 
|---|
| 295 |       for(int ix=0; ix<nbx; ix++) 
 | 
|---|
| 296 |         for(int jy=0; jy<nby; jy++) { 
 | 
|---|
| 297 |           double x = ix*dx;  
 | 
|---|
| 298 |           double y = jy*dy;
 | 
|---|
| 299 |           if ((ix>0)&&(jy>0)) {
 | 
|---|
| 300 |             sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
 | 
|---|
| 301 |           }
 | 
|---|
| 302 |           else {
 | 
|---|
| 303 |             if ((ix==0)&&(jy==0)) 
 | 
|---|
| 304 |               sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
 | 
|---|
| 305 |             else {
 | 
|---|
| 306 |               double w = rd(x,y);
 | 
|---|
| 307 |               if (ix==0) {
 | 
|---|
| 308 |                 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
 | 
|---|
| 309 |                 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
 | 
|---|
| 310 |               }
 | 
|---|
| 311 |               else {
 | 
|---|
| 312 |                 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
 | 
|---|
| 313 |                 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
 | 
|---|
| 314 |               }
 | 
|---|
| 315 |             }
 | 
|---|
| 316 |             //   
 | 
|---|
| 317 |           }
 | 
|---|
| 318 |         }
 | 
|---|
| 319 |     //    if (i%10==0) 
 | 
|---|
| 320 |     //      cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size() 
 | 
|---|
| 321 |     //     << " theta=" << theta << " phi=" << phi << endl;
 | 
|---|
| 322 |     }
 | 
|---|
| 323 |   }
 | 
|---|
| 324 |   return sumw;
 | 
|---|
| 325 | }
 | 
|---|
| 326 | 
 | 
|---|