| [3756] | 1 | //  Classes to compute Multi-Dish or CRT-like radio interferometer response | 
|---|
|  | 2 | //  R. Ansari - Avril-Mai 2010 | 
|---|
|  | 3 |  | 
|---|
|  | 4 | #ifndef MDISH_SEEN | 
|---|
|  | 5 | #define MDISH_SEEN | 
|---|
|  | 6 |  | 
|---|
|  | 7 | #include "machdefs.h"      // SOPHYA .h | 
|---|
|  | 8 | #include "sopnamsp.h"      // SOPHYA .h | 
|---|
|  | 9 | #include <math.h> | 
|---|
|  | 10 | #include <iostream> | 
|---|
|  | 11 | #include <vector> | 
|---|
|  | 12 | #include <string> | 
|---|
|  | 13 |  | 
|---|
|  | 14 | #include "genericfunc.h"   // SOPHYA .h | 
|---|
|  | 15 | #include "array.h"         // SOPHYA .h | 
|---|
| [3783] | 16 | #include "qhist.h" | 
|---|
| [3756] | 17 |  | 
|---|
| [3783] | 18 | #ifndef DeuxPI | 
|---|
| [3756] | 19 | #define DeuxPI 2.*M_PI | 
|---|
| [3783] | 20 | #endif | 
|---|
| [3756] | 21 |  | 
|---|
| [3796] | 22 | // -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (frequences angulaires theta,phi) | 
|---|
| [3756] | 23 | // typ=1 : Reponse gaussienne parabole diametre D exp[ - 0.5  (lambda  k_g / D )^2 ] | 
|---|
|  | 24 | // typ=2 : Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda | 
|---|
|  | 25 | // typ=3 : Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) | 
|---|
| [3796] | 26 | // typ=22 : Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda  avec un trou au centre | 
|---|
|  | 27 |  | 
|---|
| [3756] | 28 | class Four2DResponse  { | 
|---|
|  | 29 | public: | 
|---|
|  | 30 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda | 
|---|
| [3789] | 31 | Four2DResponse(int typ, double dx, double dy, double lambda=1.); | 
|---|
| [3756] | 32 |  | 
|---|
|  | 33 | Four2DResponse(Four2DResponse const& a) | 
|---|
| [3789] | 34 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_; | 
|---|
|  | 35 | lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; } | 
|---|
| [3756] | 36 | Four2DResponse& operator=(Four2DResponse const& a) | 
|---|
| [3789] | 37 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_; | 
|---|
|  | 38 | lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_;  return (*this); } | 
|---|
| [3756] | 39 |  | 
|---|
| [3787] | 40 | inline void setLambdaRef(double lambda=1.) | 
|---|
|  | 41 | { lambdaref_ = lambda; } | 
|---|
|  | 42 | inline void setLambda(double lambda=1.) | 
|---|
| [3789] | 43 | { lambda_ = lambda;   lambda_ratio_ = lambda_/lambdaref_; } | 
|---|
| [3787] | 44 |  | 
|---|
| [3756] | 45 | // Return the 2D response for wave vector (kx,ky) | 
|---|
|  | 46 | virtual double Value(double kx, double ky); | 
|---|
|  | 47 | inline  double operator()(double kx, double ky) | 
|---|
|  | 48 | { return Value(kx, ky); } | 
|---|
|  | 49 | virtual Histo2D GetResponse(int nx=256, int ny=256); | 
|---|
|  | 50 | inline double D() { return dx_; } ; | 
|---|
|  | 51 | inline double Dx() { return dx_; } ; | 
|---|
|  | 52 | inline double Dy() { return dy_; } ; | 
|---|
|  | 53 |  | 
|---|
|  | 54 | int typ_; | 
|---|
|  | 55 | double dx_, dy_; | 
|---|
| [3787] | 56 | double lambdaref_, lambda_; | 
|---|
|  | 57 | double lambda_ratio_;     // lambdaref_/lambda_; | 
|---|
|  | 58 |  | 
|---|
| [3756] | 59 | }; | 
|---|
|  | 60 |  | 
|---|
| [3788] | 61 |  | 
|---|
| [3756] | 62 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) | 
|---|
|  | 63 | class Four2DRespTable : public  Four2DResponse { | 
|---|
|  | 64 | public: | 
|---|
| [3792] | 65 | // Constructeur sans argument, utilise pour lire depuis un fichier | 
|---|
|  | 66 | Four2DRespTable(); | 
|---|
| [3756] | 67 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda | 
|---|
| [3792] | 68 | Four2DRespTable(Histo2D const & hrep, double d, double lambda=1.); | 
|---|
| [3796] | 69 | // Apres renormalisaton Value(kx,ky) <= max | 
|---|
|  | 70 | double renormalize(double max=1.); | 
|---|
| [3756] | 71 | // Return the 2D response for wave vector (kx,ky) | 
|---|
|  | 72 | virtual double Value(double kx, double ky); | 
|---|
| [3792] | 73 |  | 
|---|
|  | 74 | void writeToPPF(string flnm); | 
|---|
|  | 75 | void readFromPPF(string flnm); | 
|---|
|  | 76 |  | 
|---|
| [3756] | 77 | Histo2D hrep_; | 
|---|
|  | 78 | }; | 
|---|
|  | 79 |  | 
|---|
| [3788] | 80 |  | 
|---|
|  | 81 | // -- Four2DRespRatio: Retourne le rapport de la reponse entre deux objets Four2DResponse | 
|---|
|  | 82 | class Four2DRespRatio : public  Four2DResponse { | 
|---|
|  | 83 | public: | 
|---|
| [3797] | 84 | Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr=5.e-2); | 
|---|
| [3788] | 85 | // Return the ratio a.Value(kx,ky) / b.Value(kx, ky) - with protection against divide by zero | 
|---|
|  | 86 | virtual double Value(double kx, double ky); | 
|---|
|  | 87 | Four2DResponse& a_; | 
|---|
|  | 88 | Four2DResponse& b_; | 
|---|
| [3789] | 89 | double divzthr_; | 
|---|
| [3788] | 90 | }; | 
|---|
|  | 91 |  | 
|---|
| [3756] | 92 | // Classe toute simple pour representer un element de reception de type dish | 
|---|
|  | 93 | class Dish { | 
|---|
|  | 94 | public: | 
|---|
|  | 95 | // Circular dish | 
|---|
|  | 96 | Dish(int id, double x, double y, double diam) | 
|---|
| [3769] | 97 | :  id_(id), X(x), Y(y), D(diam), Dx(D), Dy(D), fgcirc_(true)   {   } | 
|---|
| [3756] | 98 | // Receiver with rectangular type answer in kx,ky plane | 
|---|
|  | 99 | Dish(int id, double x, double y, double dx, double dy) | 
|---|
| [3769] | 100 | :  id_(id), X(x), Y(y), D(sqrt(dx*dy)), Dx(dx), Dy(dy), fgcirc_(false)   {   } | 
|---|
| [3756] | 101 | Dish(Dish const& a) | 
|---|
|  | 102 | :  id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_)     {   } | 
|---|
|  | 103 | inline bool isCircular() { return fgcirc_; } | 
|---|
|  | 104 | inline int ReflectorId() { return id_; } | 
|---|
| [3769] | 105 | inline double Diameter() { return D; } | 
|---|
|  | 106 | inline double DiameterX() { return Dx; } | 
|---|
|  | 107 | inline double DiameterY() { return Dx; } | 
|---|
| [3756] | 108 |  | 
|---|
|  | 109 | int id_;   // numero de reflecteur | 
|---|
|  | 110 | double D,X,Y; | 
|---|
|  | 111 | double Dx, Dy; | 
|---|
|  | 112 | bool fgcirc_;  // false -> rectangular dish | 
|---|
|  | 113 | }; | 
|---|
|  | 114 |  | 
|---|
|  | 115 |  | 
|---|
|  | 116 | // ------------------------------------------------------------------- | 
|---|
|  | 117 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish | 
|---|
|  | 118 | class MultiDish { | 
|---|
|  | 119 | public: | 
|---|
|  | 120 | MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto=false); | 
|---|
|  | 121 |  | 
|---|
|  | 122 | inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1) | 
|---|
|  | 123 | { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; } | 
|---|
|  | 124 |  | 
|---|
|  | 125 | inline void SetRespHisNBins(int nx=128, int ny=128) | 
|---|
|  | 126 | { nx_=nx; ny_=ny; } | 
|---|
|  | 127 | Histo2D GetResponse(); | 
|---|
|  | 128 |  | 
|---|
|  | 129 | double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.); | 
|---|
|  | 130 | inline size_t NbDishes() { return dishes_.size(); } | 
|---|
| [3769] | 131 | inline Dish&  operator[](size_t k) { return dishes_[k]; } | 
|---|
| [3756] | 132 |  | 
|---|
| [3769] | 133 | virtual Histo2D PosDist(int nx=30, int ny=30, double dmax=0.); | 
|---|
|  | 134 |  | 
|---|
|  | 135 | protected: | 
|---|
| [3756] | 136 | double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh); | 
|---|
|  | 137 |  | 
|---|
|  | 138 | double lambda_, dmax_; | 
|---|
|  | 139 | vector<Dish> dishes_; | 
|---|
|  | 140 | bool fgnoauto_; | 
|---|
|  | 141 | double thetamax_, phimax_; | 
|---|
|  | 142 | int ntet_,nphi_; | 
|---|
|  | 143 | int nx_, ny_; | 
|---|
|  | 144 | //   Histo2D h2w_, h2cnt_; | 
|---|
|  | 145 | QHis2D h2w_; | 
|---|
|  | 146 | int mcnt_; | 
|---|
|  | 147 | }; | 
|---|
|  | 148 |  | 
|---|
|  | 149 |  | 
|---|
|  | 150 | #endif | 
|---|