1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
2 | % BAORadio : LAL/UPS, Irfu/SPP
|
---|
3 | % 21cm LSS P(k) sensitivity and foreground substraction
|
---|
4 | % R. Ansari, C. Magneville, J. Rich, C. Yeche et al
|
---|
5 | % 2010 - 2011
|
---|
6 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
7 | % aa.dem
|
---|
8 | % AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
|
---|
9 | % demonstration file
|
---|
10 | % (c) Springer-Verlag HD
|
---|
11 | % revised by EDP Sciences
|
---|
12 | %-----------------------------------------------------------------------
|
---|
13 | %
|
---|
14 | %\documentclass[referee]{aa} % for a referee version
|
---|
15 | %\documentclass[onecolumn]{aa} % for a paper on 1 column
|
---|
16 | %\documentclass[longauth]{aa} % for the long lists of affiliations
|
---|
17 | %\documentclass[rnote]{aa} % for the research notes
|
---|
18 | %\documentclass[letter]{aa} % for the letters
|
---|
19 | %
|
---|
20 | \documentclass[structabstract]{aa}
|
---|
21 | %\documentclass[traditabstract]{aa} % for the abstract without structuration
|
---|
22 | % (traditional abstract)
|
---|
23 | %
|
---|
24 | \usepackage{amsmath}
|
---|
25 | \usepackage{amssymb}
|
---|
26 |
|
---|
27 | \usepackage{graphicx}
|
---|
28 | \usepackage{color}
|
---|
29 |
|
---|
30 | \newcommand{\HI}{$\mathrm{H_I}$ }
|
---|
31 | \newcommand{\kb}{k_B} % Constante de Boltzmann
|
---|
32 | \newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
|
---|
33 | \newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
|
---|
34 | \newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
|
---|
35 | \newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
|
---|
36 | \newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
|
---|
37 |
|
---|
38 | \newcommand{\dlum}{d_L}
|
---|
39 | \newcommand{\dang}{d_A}
|
---|
40 | \newcommand{\hub}{ h_{70} }
|
---|
41 | \newcommand{\hubb}{ h_{100} }
|
---|
42 |
|
---|
43 | \newcommand{\etaHI}{ \eta_{\tiny HI} }
|
---|
44 | \newcommand{\fHI}{ f_{H_I}(z)}
|
---|
45 | \newcommand{\gHI}{ g_{H_I}}
|
---|
46 | \newcommand{\gHIz}{ g_{H_I}(z)}
|
---|
47 |
|
---|
48 | \newcommand{\vis}{{\cal V}_{12} }
|
---|
49 |
|
---|
50 | \newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
|
---|
51 |
|
---|
52 | \newcommand{\citep}[1]{ (\cite{#1}) }
|
---|
53 | %% \newcommand{\citep}[1]{ { (\tt{#1}) } }
|
---|
54 |
|
---|
55 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
56 | \usepackage{txfonts}
|
---|
57 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
58 | %
|
---|
59 | \begin{document}
|
---|
60 | %
|
---|
61 | \title{21 cm observation of LSS at z $\sim$ 1 }
|
---|
62 |
|
---|
63 | \subtitle{Instrument sensitivity and foreground subtraction}
|
---|
64 |
|
---|
65 | \author{
|
---|
66 | R. Ansari
|
---|
67 | \inst{1} \inst{2}
|
---|
68 | \and
|
---|
69 | J.E. Campagne \inst{3}
|
---|
70 | \and
|
---|
71 | P.Colom \inst{5}
|
---|
72 | \and
|
---|
73 | J.M. Le Goff \inst{4}
|
---|
74 | \and
|
---|
75 | C. Magneville \inst{4}
|
---|
76 | \and
|
---|
77 | J.M. Martin \inst{5}
|
---|
78 | \and
|
---|
79 | M. Moniez \inst{3}
|
---|
80 | \and
|
---|
81 | J.Rich \inst{4}
|
---|
82 | \and
|
---|
83 | C.Y\`eche \inst{4}
|
---|
84 | }
|
---|
85 |
|
---|
86 | \institute{
|
---|
87 | Universit\'e Paris-Sud, LAL, UMR 8607, F-91898 Orsay Cedex, France
|
---|
88 | \and
|
---|
89 | CNRS/IN2P3, F-91405 Orsay, France \\
|
---|
90 | \email{ansari@lal.in2p3.fr}
|
---|
91 | \and
|
---|
92 | Laboratoire de lÍAcc\'el\'erateur Lin\'eaire, CNRS-IN2P3, Universit\'e Paris-Sud,
|
---|
93 | B.P. 34, 91898 Orsay Cedex, France
|
---|
94 | % \thanks{The university of heaven temporarily does not
|
---|
95 | % accept e-mails}
|
---|
96 | \and
|
---|
97 | CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
|
---|
98 | \and
|
---|
99 | GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
|
---|
100 | }
|
---|
101 |
|
---|
102 | \date{Received June 15, 2011; accepted xxxx, 2011}
|
---|
103 |
|
---|
104 | % \abstract{}{}{}{}{}
|
---|
105 | % 5 {} token are mandatory
|
---|
106 |
|
---|
107 | \abstract
|
---|
108 | % context heading (optional)
|
---|
109 | % {} leave it empty if necessary
|
---|
110 | { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
|
---|
111 | cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
|
---|
112 | properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
|
---|
113 | using radio interferometers with large instanteneous field of view and waveband.}
|
---|
114 | % aims heading (mandatory)
|
---|
115 | { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
|
---|
116 | instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
|
---|
117 | % methods heading (mandatory)
|
---|
118 | { For each configuration, we determine instrument response by computing the (u,v) plane (Fourier angular frequency plane)
|
---|
119 | coverage using visibilities. The (u,v) plane response is then used to compute the three dimensional noise power spectrum,
|
---|
120 | hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
|
---|
121 | separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
|
---|
122 | % results heading (mandatory)
|
---|
123 | { We have computed the noise power spectrum for different instrument configuration as well as the extracted
|
---|
124 | LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. }
|
---|
125 | % conclusions heading (optional), leave it empty if necessary
|
---|
126 | { We show that a radio instrument with few hundred simultaneous beamns and a surface coverage of
|
---|
127 | $\lesssim 10000 \mathrm{m^2}$ will be able to detect BAO signal at redshift z $\sim 1$ }
|
---|
128 |
|
---|
129 | \keywords{ Cosmology:LSS --
|
---|
130 | Cosmology:Dark energy
|
---|
131 | }
|
---|
132 |
|
---|
133 | \maketitle
|
---|
134 | %
|
---|
135 | %________________________________________________________________
|
---|
136 | % {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
|
---|
137 | % Toutes les figures sont provisoires }
|
---|
138 |
|
---|
139 | \section{Introduction}
|
---|
140 |
|
---|
141 | % {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
|
---|
142 | The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
|
---|
143 | with redshift is one the major tools in observational cosmology. Theses structures are usually mapped through
|
---|
144 | optical observation of galaxies which are used as tracers of the underlying matter distribution.
|
---|
145 | An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
|
---|
146 | (\HI) as tracer with Total Intensity Mapping, has been proposed in recent years \citep{peterson.06} \citep{chang.08}.
|
---|
147 | Mapping the matter distribution using HI 21 cm emission as a tracer has been extensively discussed in literature
|
---|
148 | \citep{furlanetto.06} \citep{tegmark.08} and is being used in projects such as LOFAR \citep{rottgering.06} or
|
---|
149 | MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
|
---|
150 |
|
---|
151 | Evidences in favor of the acceleration of the expansion of the universe have been
|
---|
152 | accumulated over the last twelve years, thank to the observation of distant supernovae,
|
---|
153 | CMB anisotropies and detailed analysis of the LSS.
|
---|
154 | A cosmological Constant ($\Lambda$) or new cosmological
|
---|
155 | energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
|
---|
156 | Dark Energy is considered as one the most intriguing puzzles in Physics and Cosmology.
|
---|
157 | % Constraining the properties of this new cosmic fluid, more precisely
|
---|
158 | % its equation of state is central to current cosmological researches.
|
---|
159 | Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
|
---|
160 | more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
|
---|
161 | of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
|
---|
162 | and Baryon Acoustic Oscillations (BAO).
|
---|
163 |
|
---|
164 | BAO are features imprinted in the distribution of galaxies, due to the frozen
|
---|
165 | sound waves which were present in the photons baryons plasma prior to recombination
|
---|
166 | at z $\sim$ 1100.
|
---|
167 | This scale, which can be considered as a standard ruler with a comoving
|
---|
168 | length of $\sim 150 Mpc$.
|
---|
169 | Theses features have been first observed in the CMB anisotropies
|
---|
170 | and are usually referred to as {\em acoustic pics} \citep{mauskopf.00} \citep{hinshaw.08}.
|
---|
171 | The BAO modulation has been subsequently observed in the distribution of galaxies
|
---|
172 | at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
|
---|
173 | \citep{eisenstein.05} \citep{percival.07} and 2dGFRS \citep{cole.05} optical galaxy surveys.
|
---|
174 |
|
---|
175 | Ongoing or future surveys plan to measure precisely the BAO scale in the redshift range
|
---|
176 | $0 \lesssim z \lesssim 3$, using either optical observation of galaxies \citep{baorss} % CHECK/FIND baorss baolya references
|
---|
177 | or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars \cite{baolya}.
|
---|
178 | Mapping matter distribution using 21 cm emission of neutral hydrogen appears as
|
---|
179 | a very promising technique to map matter distribution up to redshift $z \sim 3$,
|
---|
180 | complementary to optical surveys, especially in the optical redshift desert range
|
---|
181 | $1 \lesssim z \lesssim 2$.
|
---|
182 |
|
---|
183 | In section 2, we discuss the intensity mapping and its potential for measurement of the
|
---|
184 | \HI mass distribution power spectrum. The method used in this paper to characterize
|
---|
185 | a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
|
---|
186 | We show also the results for the 3D noise power spectrum for several instrument configurations.
|
---|
187 | The contribution of foreground emissions due to the galactic synchrotron and radio sources
|
---|
188 | is described in section 4, as well as a simple component separation method The performance of this
|
---|
189 | method using sky model or known radio sources are also presented in section 4.
|
---|
190 | The constraints which can be obtained on the Dark Energy parameters and DETF figure
|
---|
191 | of merit for typical 21 cm intensity mapping survey are shown in section 5.
|
---|
192 |
|
---|
193 | \citep{ansari.08}
|
---|
194 |
|
---|
195 |
|
---|
196 | %__________________________________________________________________
|
---|
197 |
|
---|
198 | \section{Intensity mapping and \HI power spectrum}
|
---|
199 |
|
---|
200 | % {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
|
---|
201 |
|
---|
202 | \subsection{21 cm intensity mapping}
|
---|
203 | %%%
|
---|
204 | Most of the cosmological information in the LSS is located at large scales
|
---|
205 | ($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
|
---|
206 | might suffer from the uncertainties on the non linear clustering effects.
|
---|
207 | The BAO features in particular are at the degree angular scale on the sky
|
---|
208 | and thus can be resolved easily with a rather modest size radio instrument
|
---|
209 | ($D \lesssim 100 \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$
|
---|
210 | can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
|
---|
211 | or along the longitudinal (line of sight or redshift, $k_{\mathrm{BAO}}^\parallel$ ) direction. A direct measurement of
|
---|
212 | the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
|
---|
213 | BAO scale. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
|
---|
214 | longitudinal BAO clustering, which is a challenge for photometric optical surveys.
|
---|
215 |
|
---|
216 | In order to obtain a measurement of the LSS power spectrum with small enough statistical
|
---|
217 | uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
|
---|
218 | typically few $Gpc^3$. Moreover, stringent constrain on DE parameters can be obtained when
|
---|
219 | comparing the distance or Hubble parameter measurements as a function of redshift with
|
---|
220 | DE models, which translates into a survey depth $\Delta z \gtrsim 1$.
|
---|
221 |
|
---|
222 | Radio instruments intended for BAO surveys must thus have large instantaneous field
|
---|
223 | of view (FOV $\gtrsim 10 \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$).
|
---|
224 |
|
---|
225 | Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
|
---|
226 | discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}),
|
---|
227 | the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
|
---|
228 | However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
|
---|
229 | The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the of two polarisations
|
---|
230 | of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
|
---|
231 | \begin{equation}
|
---|
232 | S_{lim} = \frac{ \sqrt{2} \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
|
---|
233 | \end{equation}
|
---|
234 | where $t_{int}$ is the total integration time $\delta \nu$ is the detection frequency band. In table
|
---|
235 | \ref{slims21} (left) we have computed the sensitivity for 4 different set of instrument effective area and system
|
---|
236 | temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
|
---|
237 | The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
|
---|
238 | dispersion of few 100 km/s. Theses detection limits should be compared with the expected 21 cm brightness
|
---|
239 | $S_{21}$ of compact sources which can be computed using the expression below:
|
---|
240 | \begin{equation}
|
---|
241 | S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
|
---|
242 | \left( \frac{ 1\, \mathrm{Mpc}}{\dlum} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v}
|
---|
243 | \end{equation}
|
---|
244 | where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum$ is the luminosity distance and $\sigma_v$
|
---|
245 | is the source velocity dispersion.
|
---|
246 | {\color{red} Faut-il developper le calcul en annexe ? }
|
---|
247 |
|
---|
248 | In table \ref{slims21} (right), we show the 21 cm brightness for
|
---|
249 | compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
|
---|
250 | $200 \mathrm{km/s}$. The luminosity distance is computed for the standard
|
---|
251 | WMAP \LCDM universe. $10^9 - 10^{10} M_\odot$ of neutral gas mass
|
---|
252 | is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
|
---|
253 | would require collecting area in the range of $10^6 \mathrm{m^2}$.
|
---|
254 |
|
---|
255 | Intensity mapping has been suggested as an alternative and economic method to map the
|
---|
256 | 3D distribution of neutral hydrogen \citep{chang.08} \citep{ansari.08}. In this approach,
|
---|
257 | sky brightness map with angular resolution $\sim 10-30 \mathrm{arc.min}$ is made for a
|
---|
258 | wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
|
---|
259 | would correspond to a cell with a volume of $\sim 10 \mathrm{Mpc^3}$, containing hundreds of galaxies and a total
|
---|
260 | \HI mass $ \gtrsim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
|
---|
261 | the observed frequency $\nu$ would be translated to the emission redshift $z$ through
|
---|
262 | the well known relation:
|
---|
263 | \begin{eqnarray}
|
---|
264 | z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
|
---|
265 | \, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
|
---|
266 | \hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
|
---|
267 | z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
|
---|
268 | \, ; \, \lambda(z) = \lambda_{21} \times (1+z)
|
---|
269 | \hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
|
---|
270 | \end{eqnarray}
|
---|
271 | The large scale distribution of the neutral hydrogen, down to angular scales of $\sim 10 \mathrm{arc.min}$
|
---|
272 | can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
|
---|
273 | map as a function frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
|
---|
274 | (radiation power/unit solid angle/unit surface/unit frequency).
|
---|
275 | can be converted to brightness temperature using the well known black body Rayleigh-Jeans approximation:
|
---|
276 | $$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
|
---|
277 |
|
---|
278 | %%%%%%%%
|
---|
279 | \begin{table}
|
---|
280 | \begin{center}
|
---|
281 | \begin{tabular}{|c|c|c|}
|
---|
282 | \hline
|
---|
283 | $A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
|
---|
284 | \hline
|
---|
285 | 5000 & 50 & 66 \\
|
---|
286 | 5000 & 25 & 33 \\
|
---|
287 | 100 000 & 50 & 3.3 \\
|
---|
288 | 100 000 & 25 & 1.66 \\
|
---|
289 | 500 000 & 50 & 0.66 \\
|
---|
290 | 500 000 & 25 & 0.33 \\
|
---|
291 | \hline
|
---|
292 | \end{tabular}
|
---|
293 | %%
|
---|
294 | \hspace{3mm}
|
---|
295 | %%
|
---|
296 | \begin{tabular}{|c|c|c|}
|
---|
297 | \hline
|
---|
298 | $z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
|
---|
299 | \hline
|
---|
300 | 0.25 & 1235 & 140 \\
|
---|
301 | 0.50 & 2800 & 27 \\
|
---|
302 | 1.0 & 6600 & 4.8 \\
|
---|
303 | 1.5 & 10980 & 1.74 \\
|
---|
304 | 2.0 & 15710 & 0.85 \\
|
---|
305 | 2.5 & 20690 & 0.49 \\
|
---|
306 | \hline
|
---|
307 | \end{tabular}
|
---|
308 | \caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
|
---|
309 | frequency band (left). Source 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
|
---|
310 | \label{slims21}
|
---|
311 | \end{center}
|
---|
312 | \end{table}
|
---|
313 |
|
---|
314 | \subsection{ \HI power spectrum and BAO}
|
---|
315 | In the absence of any foreground or background radiation, the brightness temperature
|
---|
316 | for a given direction and wavelength $\TTlam$ would be proportional to
|
---|
317 | the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
|
---|
318 | \begin{equation}
|
---|
319 | \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
|
---|
320 | \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
|
---|
321 | \end{equation}
|
---|
322 | where $A_{21}=1.87 \, 10^{-15} \mathrm{s^{-1}}$ is the spontaneous 21 cm emission
|
---|
323 | coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
|
---|
324 | constant and $H(z)$ is the Hubble parameter at the emission redshift.
|
---|
325 | For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
|
---|
326 | can be expressed as:
|
---|
327 | \begin{equation}
|
---|
328 | H(z) \simeq \hub \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
|
---|
329 | \times 70 \, \, \mathrm{km/s/Mpc}
|
---|
330 | \end{equation}
|
---|
331 | Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
|
---|
332 | neutral hydrogen number density can be written as:
|
---|
333 | \begin{equation}
|
---|
334 | \etaHI (\vec{\Theta}, z(\lambda) ) = \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
|
---|
335 | \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)
|
---|
336 | \end{equation}
|
---|
337 | where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
|
---|
338 | and critical densities, $m_{H}$ is the hydrogen atom mass, and
|
---|
339 | $\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
|
---|
340 |
|
---|
341 | The present day neutral hydrogen fraction $\gHI(0)$ has been measured to be
|
---|
342 | $\sim 1\%$ of the baryon density \citep{zwann.05}:
|
---|
343 | $$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
|
---|
344 | The neutral hydrogen fraction is expected to increase with redshift. Study
|
---|
345 | of Lyman-$\alpha$ absorption indicate a factor 3 increase in the neutral hydrogen
|
---|
346 | fraction at $z=1.5$, compared to the its present day value $\gHI(z=1.5) \sim 0.025$
|
---|
347 | \citep{wolf.05}.
|
---|
348 | The 21 cm brightness temperature and the corresponding power spectrum can be written as \citep{wyithe.07} :
|
---|
349 | \begin{eqnarray}
|
---|
350 | \TTlamz & = & \bar{T}_{21}(z) \times \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) \\
|
---|
351 | P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \\
|
---|
352 | \bar{T}_{21}(z) & \simeq & 0.054 \, \mathrm{mK}
|
---|
353 | \frac{ (1+z)^2 \, \hub }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
|
---|
354 | \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
|
---|
355 | \end{eqnarray}
|
---|
356 |
|
---|
357 | The table \ref{tabcct21} below shows the mean 21 cm brightness temperature for the
|
---|
358 | standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
|
---|
359 | linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
|
---|
360 | 21 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
|
---|
361 | ($\gHI=0.02$). The matter power spectrum has been computed using the
|
---|
362 | \cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
|
---|
363 | shown for the standard WMAP \LCDM cosmology, according to the relation:
|
---|
364 | \begin{equation}
|
---|
365 | \mathrm{ang.sc} = \frac{2 \pi}{k^{comov} \, \dang(z) \, (1+z) }
|
---|
366 | \hspace{3mm}
|
---|
367 | k^{comov} = \frac{2 \pi}{ \mathrm{ang.sc} \, \dang(z) \, (1+z) }
|
---|
368 | \end{equation}
|
---|
369 | where $k^{comov}$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
|
---|
370 | It should be noted that the maximum transverse $k^{comov} $ sensitivity range
|
---|
371 | for an instrument corresponds approximately to half of its angular resolution.
|
---|
372 | {\color{red} Faut-il developper completement le calcul en annexe ? }
|
---|
373 |
|
---|
374 | \begin{table}
|
---|
375 | \begin{center}
|
---|
376 | \begin{tabular}{|l|c|c|c|c|c|c|c|}
|
---|
377 | \hline
|
---|
378 | \hline
|
---|
379 | & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
|
---|
380 | \hline
|
---|
381 | (a) $\bar{T}_{21}$ (mK) & 0.08 & 0.1 & 0.13 & 0.16 & 0.18 & 0.2 & 0.21 \\
|
---|
382 | \hline
|
---|
383 | (b) $\bar{T}_{21}$ (mK) & 0.08 & 0.12 & 0.21 & 0.32 & 0.43 & 0.56 & 0.68 \\
|
---|
384 | \hline
|
---|
385 | \hline
|
---|
386 | \end{tabular}
|
---|
387 | \caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
|
---|
388 | standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
|
---|
389 | increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
|
---|
390 | \label{tabcct21}
|
---|
391 | \end{center}
|
---|
392 | \end{table}
|
---|
393 |
|
---|
394 | \begin{figure}
|
---|
395 | \centering
|
---|
396 | \includegraphics[width=0.5\textwidth]{Figs/pk21cmz12.pdf}
|
---|
397 | \caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
|
---|
398 | neutral gas fraction $\gHI=2\%$}
|
---|
399 | \label{figpk21}
|
---|
400 | \end{figure}
|
---|
401 |
|
---|
402 |
|
---|
403 | \section{interferometric observations and P(k) measurement sensitivity }
|
---|
404 |
|
---|
405 | \subsection{Instrument response}
|
---|
406 | In astronomy we are usually interested in measuring the sky emission intensity,
|
---|
407 | $I(\vec{\Theta},\lambda)$ in a given wave band, as a function the direction. In radio astronomy
|
---|
408 | and interferometry in particular, receivers are sensitive to the sky emission complex
|
---|
409 | amplitudes. However, for most sources, the phases vary randomly and bear no information:
|
---|
410 | \begin{eqnarray}
|
---|
411 | & &
|
---|
412 | I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
|
---|
413 | & & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = \delta( \vec{\Theta} - \vec{\Theta '} ) I(\vec{\Theta},\lambda)
|
---|
414 | \end{eqnarray}
|
---|
415 | A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
|
---|
416 | its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
|
---|
417 | for each frequency can be written as a function of the electromagnetic wave vector
|
---|
418 | $\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
|
---|
419 | \begin{equation}
|
---|
420 | s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
|
---|
421 | \end{equation}
|
---|
422 | We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
|
---|
423 | the EM wave vector is related to the wavelength $\lambda$ through the usual
|
---|
424 | $ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
|
---|
425 | corresponds to the receiver intensity response:
|
---|
426 | \begin{equation}
|
---|
427 | L(\vec{\Theta}), \lambda = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
|
---|
428 | \end{equation}
|
---|
429 | The visibility signal between two receivers corresponds to the time averaged correlation between
|
---|
430 | signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
|
---|
431 | visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
|
---|
432 | $\vec{r_2}$ can simply be written as a function their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
|
---|
433 | \begin{equation}
|
---|
434 | \vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
|
---|
435 | e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
|
---|
436 | \end{equation}
|
---|
437 | This expression can be simplified if we consider receivers with narrow field of view
|
---|
438 | ($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \mathrm{deg.} $ ),
|
---|
439 | and coplanar in respect to their common axis.
|
---|
440 | If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
|
---|
441 | the common receivers axis, the visibilty would be written as the 2D Fourier transform
|
---|
442 | of the product of the sky intensity and the receiver beam, for the angular frequency
|
---|
443 | \mbox{$(u,v)_{12} = 2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$}:
|
---|
444 | \begin{equation}
|
---|
445 | \vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
|
---|
446 | \exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
|
---|
447 | \end{equation}
|
---|
448 | where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
|
---|
449 | the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
|
---|
450 | two $(\alpha, \beta)$ angular planes.
|
---|
451 |
|
---|
452 | Furthermore, we introduce the conjugate Fourier variables $(u,v)$ and the Fourier transforms
|
---|
453 | of the sky intensity and the receiver beam:
|
---|
454 | \begin{center}
|
---|
455 | \begin{tabular}{ccc}
|
---|
456 | $(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(u,v)$ \\
|
---|
457 | $I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(u,v, \lambda)$ \\
|
---|
458 | $L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(u,v, \lambda)$ \\
|
---|
459 | \end{tabular}
|
---|
460 | \end{center}
|
---|
461 |
|
---|
462 | The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
|
---|
463 | wave number domain located around
|
---|
464 | $(u, v)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$. The weight function is
|
---|
465 | given by the receiver beam Fourier transform.
|
---|
466 | \begin{equation}
|
---|
467 | \vis(\lambda) \simeq \iint d u d v \, \, {\cal I}(u,v, \lambda) \, {\cal L}(u - 2 \pi \frac{\Delta x}{\lambda} , v - 2 \pi \frac{\Delta y}{\lambda} , \lambda)
|
---|
468 | \end{equation}
|
---|
469 |
|
---|
470 | A single receiver instrument would measure the total power integrated in a spot centered around the
|
---|
471 | origin in the $(u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver
|
---|
472 | beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
|
---|
473 | size. The correlation signal from a pair of receivers would measure the integrated signal on a similar
|
---|
474 | spot, located around the central angular wave mode $(u, v)_{12}$ determined by the relative
|
---|
475 | position of the two receivers (see figure \ref{figuvplane}).
|
---|
476 | In an interferometer with multiple receivers, the area covered by different receiver pairs in the
|
---|
477 | $(u,v)$ plane might overlap and some pairs might measure the same area (same base lines).
|
---|
478 | Several beam can be formed using different combination of the correlation from different
|
---|
479 | antenna pairs.
|
---|
480 |
|
---|
481 | An instrument can thus be characterized by its $(u,v)$ plane coverage or response
|
---|
482 | ${\cal R}(u,v,\lambda)$. For a single dish with a single receiver in the focal plane,
|
---|
483 | the instrument response is simply the Fourier transform of the beam.
|
---|
484 | For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
|
---|
485 | a multi horn system, each beam (b) will have its own response
|
---|
486 | ${\cal R}_b(u,v,\lambda)$.
|
---|
487 | For an interferometer, we can compute a raw instrument response
|
---|
488 | ${\cal R}_{raw}(u,v,\lambda)$ which corresponds to $(u,v)$ plane coverage by all
|
---|
489 | receiver pairs with uniform weighting.
|
---|
490 | Obviously, different weighting schemes can be used, changing
|
---|
491 | the effective beam shape and thus the response ${\cal R}_{w}(u,v,\lambda)$
|
---|
492 | and the noise behaviour.
|
---|
493 |
|
---|
494 | \begin{figure}
|
---|
495 | % \vspace*{-2mm}
|
---|
496 | \centering
|
---|
497 | \mbox{
|
---|
498 | \includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
|
---|
499 | }
|
---|
500 | \vspace*{-15mm}
|
---|
501 | \caption{Schematic view of the $(u,v)$ plane coverage by interferometric measurement}
|
---|
502 | \label{figuvplane}
|
---|
503 | \end{figure}
|
---|
504 |
|
---|
505 | \subsection{Noise power spectrum}
|
---|
506 | Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
|
---|
507 | bandwidth $\delta \nu$, with an integration time $t_{int}$, characterized by a system temperature
|
---|
508 | $\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
|
---|
509 | $\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
|
---|
510 | corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
|
---|
511 | noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
|
---|
512 | corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
|
---|
513 | The sky temperature measurement can thus be characterized by the noise spectral power density in
|
---|
514 | the angular frequencies plane $P_{noise}^{(u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$
|
---|
515 | per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:
|
---|
516 | \begin{eqnarray}
|
---|
517 | P_{noise}^{(u,v)} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
|
---|
518 | P_{noise}^{(u,v)} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
|
---|
519 | \hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \\
|
---|
520 | \end{eqnarray}
|
---|
521 |
|
---|
522 | In a given instrument configuration, if several ($n$) receiver pairs have the same baseline,
|
---|
523 | the noise power density in the corresponding $(u,v)$ plane area is reduced by a factor $1/n$.
|
---|
524 | When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
|
---|
525 | $P(k)$ is computed, angles are translated into comoving transverse distance scale,
|
---|
526 | and frequencies or wavelengths into comoving radial distance, using the following relations:
|
---|
527 | \begin{eqnarray}
|
---|
528 | \delta \alpha , \beta & \rightarrow & \delta \ell_\perp = (1+z) \, \dang(z) \, \delta \alpha,\beta \\
|
---|
529 | \delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
|
---|
530 | = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
|
---|
531 | \delta u , v & \rightarrow & \delta k_\perp = \frac{ \delta u , v }{ (1+z) \, \dang(z) } \\
|
---|
532 | \frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
|
---|
533 | = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
|
---|
534 | \end{eqnarray}
|
---|
535 |
|
---|
536 | The three dimensional projected noise spectral density can then be written as:
|
---|
537 | \begin{equation}
|
---|
538 | P_{noise}(k) = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
|
---|
539 | \end{equation}
|
---|
540 |
|
---|
541 | $P_{noise}(k)$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
|
---|
542 | $t_{int}$ in second, $\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
|
---|
543 | $H(z)$ in $\mathrm{km/s/Mpc}$.
|
---|
544 | The matter or \HI distribution power spectrum determination statistical errors vary as the number of
|
---|
545 | observed Fourier modes, which is inversely proportional to volume of the universe
|
---|
546 | which is observed (sample variance).
|
---|
547 |
|
---|
548 | In the following, we will consider the survey of a fixed
|
---|
549 | fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a fixed total
|
---|
550 | observation time $t_{obs}$. We will consider several instrument configurations, having
|
---|
551 | comparable instantaneous bandwidth, and comparable system receiver noise $\Tsys$:
|
---|
552 | \begin{enumerate}
|
---|
553 | \item Single dish instrument, diameter $D$ with one or several independent feeds (beams) in the focal plane
|
---|
554 | \item Filled square shaped arrays, made of $n = q \times q$ dishes of diameter $D_{dish}$
|
---|
555 | \item Packed or unpacked cylinder arrays
|
---|
556 | \item Semi-filled array of $n$ dishes
|
---|
557 | \end{enumerate}
|
---|
558 |
|
---|
559 | We compute below a simple expression for the noise spectral power density for radio
|
---|
560 | sky 3D mapping surveys.
|
---|
561 | It is important to notice that the instruments we are considering do not have a flat
|
---|
562 | response in the $(u,v)$ plane, and the observations provide no information above
|
---|
563 | $u_{max},v_{max}$. One has to take into account either a damping of the
|
---|
564 | observed sky power spectrum or an increase of the noise spectral power if
|
---|
565 | the observed power spectrum is corrected for damping. The white noise
|
---|
566 | expressions given below should thus be considered as a lower limit or floor of the
|
---|
567 | instrument noise spectral density.
|
---|
568 |
|
---|
569 | % \noindent {\bf Single dish instrument} \\
|
---|
570 | A single dish instrument with diameter $D$ would have an instantaneous field of view
|
---|
571 | (or 2D pixel size) $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
|
---|
572 | a number of pointing $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
|
---|
573 | The noise power spectral density could then be written as:
|
---|
574 | \begin{equation}
|
---|
575 | P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
|
---|
576 | \end{equation}
|
---|
577 | For a single dish instrument equipped with a multi-feed or phase array receiver system,
|
---|
578 | with $n$ independent beam on sky, the noise spectral density decreases by a factor $n$,
|
---|
579 | thanks to the an increase of per pointing integration time.
|
---|
580 |
|
---|
581 | For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
|
---|
582 | observations provide information up to $u,v_{max} \lesssim 2 \pi D / \lambda $. This value of
|
---|
583 | $u,v_{max}$ would be mapped to a maximum transverse cosmological wave number
|
---|
584 | $k^{comov}_{\perp \, max}$:
|
---|
585 | \begin{eqnarray}
|
---|
586 | k^{comov}_{\perp} & = & \frac{(u,v)}{(1+z) \dang} \\
|
---|
587 | k^{comov}_{\perp \, max} & \lesssim & \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
|
---|
588 | \end{eqnarray}
|
---|
589 |
|
---|
590 | Figure \ref{pnkmaxfz} shows the evolution of a radio 3D temperature mapping
|
---|
591 | $P_{noise}^{survey}(k)$ as a function of survey redshift.
|
---|
592 | The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \mathrm{srad}$, in one
|
---|
593 | year. The maximum comoving wave number $k^{comov}$ is also shown as a function
|
---|
594 | of redshift, for an instrument with $D=100 \mathrm{m}$ maximum extent. In order
|
---|
595 | to take into account the radial component of $\vec{k^{comov}}$ and the increase of
|
---|
596 | the instrument noise level with $k^{comov}_{\perp}$, we have taken:
|
---|
597 | \begin{equation}
|
---|
598 | k^{comov}_{ max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
|
---|
599 | \end{equation}
|
---|
600 |
|
---|
601 | \begin{figure}
|
---|
602 | \vspace*{-25mm}
|
---|
603 | \centering
|
---|
604 | \mbox{
|
---|
605 | \hspace*{-10mm}
|
---|
606 | \includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
|
---|
607 | }
|
---|
608 | \vspace*{-40mm}
|
---|
609 | \caption{Minimal noise level for a 100 beam instrument as a function of redshift (top).
|
---|
610 | Maximum $k$ value for a 100 meter diameter primary antenna (bottom) }
|
---|
611 | \label{pnkmaxfz}
|
---|
612 | \end{figure}
|
---|
613 |
|
---|
614 |
|
---|
615 | \subsection{Instrument configurations and noise power spectrum}
|
---|
616 |
|
---|
617 | We have numerically computed the instrument response ${\cal R}(u,v,\lambda)$
|
---|
618 | with uniform weights in the $(u,v)$ plane for several instrument configurations:
|
---|
619 | \begin{itemize}
|
---|
620 | \item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
|
---|
621 | a square $11 \times 11$ configuration ($q=11$). This array covers an area of
|
---|
622 | $55 \times 55 \, \mathrm{m^2}$
|
---|
623 | \item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \mathrm{m}$ dishes, arranged
|
---|
624 | in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
|
---|
625 | $80 \times 80 \, \mathrm{m^2}$
|
---|
626 | \item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \mathrm{m}$ dishes, arranged
|
---|
627 | over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
|
---|
628 | particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
|
---|
629 | four array corners.
|
---|
630 | \item [{\bf d} :] A single dish instrument, with diameter $D=75 \mathrm{m}$,
|
---|
631 | equipped with a 100 beam focal plane instrument.
|
---|
632 | \item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
|
---|
633 | a square $20 \times 20$ configuration ($q=20$). This array covers an area of
|
---|
634 | $100 \times 100 \, \mathrm{m^2}$
|
---|
635 | \item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
|
---|
636 | wide. The focal line of each cylinder is equipped with 100 receivers, each with length
|
---|
637 | $2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
|
---|
638 | This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
|
---|
639 | a total of $400$ receivers per polarisation, as in the (e) configuration.
|
---|
640 | We have computed the noise power spectrum for {\em perfect}
|
---|
641 | cylinders, where all receiver pair correlations are used (fp), or for
|
---|
642 | a non perfect instrument, where only correlations between receivers
|
---|
643 | from different cylinders are used.
|
---|
644 | \item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
|
---|
645 | wide. The focal line of each cylinder is equipped with 100 receivers, each with length
|
---|
646 | $2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
|
---|
647 | This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
|
---|
648 | a total of 960 receivers per polarisation. As for the (f) configuration,
|
---|
649 | we have computed the noise power spectrum for {\em perfect}
|
---|
650 | cylinders, where all receiver pair correlations are used (gp), or for
|
---|
651 | a non perfect instrument, where only correlations between receivers
|
---|
652 | from different cylinders are used.
|
---|
653 | \end{itemize}
|
---|
654 | The array layout for configurations (b) and (c) are shown in figure \ref{figconfab}.
|
---|
655 | \begin{figure}
|
---|
656 | \centering
|
---|
657 | \vspace*{-15mm}
|
---|
658 | \mbox{
|
---|
659 | \hspace*{-10mm}
|
---|
660 | \includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
|
---|
661 | }
|
---|
662 | \vspace*{-15mm}
|
---|
663 | \caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
|
---|
664 | diameter dishes. }
|
---|
665 | \label{figconfab}
|
---|
666 | \end{figure}
|
---|
667 |
|
---|
668 | We have used simple triangular shaped dish response in the $(u,v)$ plane.
|
---|
669 | However, we have introduced a fill factor or illumination efficiency
|
---|
670 | $\eta$, relating the effective dish diameter $D_{ill}$ to the
|
---|
671 | mechanical dish size $D^{ill} = \eta \, D_{dish}$.
|
---|
672 | \begin{eqnarray}
|
---|
673 | {\cal L}_\circ (u,v,\lambda) & = & \bigwedge_{[\pm 2 \pi D^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\
|
---|
674 | L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
|
---|
675 | \hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
|
---|
676 | \end{eqnarray}
|
---|
677 | For the multi-dish configuration studied here, we have taken the illumination efficiency factor
|
---|
678 | {\bf $\eta = 0.9$}.
|
---|
679 |
|
---|
680 | For the receivers along the focal line of cylinders, we have assumed that the
|
---|
681 | individual receiver response in the $(u,v)$ plane corresponds to one from a
|
---|
682 | rectangular shaped antenna. The illumination efficiency factor has been taken
|
---|
683 | equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
|
---|
684 | along the cylinder length. It should be noted that the small angle approximation
|
---|
685 | used here for the expression of visibilities is not valid for the receivers along
|
---|
686 | the cylinder axis. However, some preliminary numerical checks indicate that
|
---|
687 | the results obtained here for the noise power would not be significantly changed.
|
---|
688 | \begin{equation}
|
---|
689 | {\cal L}_\Box(u,v,\lambda) =
|
---|
690 | \bigwedge_{[\pm 2 \pi D^{ill}_x / \lambda]} (u ) \times
|
---|
691 | \bigwedge_{[\pm 2 \pi D^{ill}_y / \lambda ]} (v )
|
---|
692 | \end{equation}
|
---|
693 | Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(u,v,\lambda)$
|
---|
694 | for the four configurations (a,b,c,d) with $\sim 100$ receivers per
|
---|
695 | polarisation. The resulting projected noise spectral power density is shown in figure
|
---|
696 | \ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
|
---|
697 | is due to the fact that we have ignored all auto-correlation measurements.
|
---|
698 | It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
|
---|
699 | should have enough sensitivity to map LSS in 21 cm at redshift z=1.
|
---|
700 |
|
---|
701 | \begin{figure*}
|
---|
702 | \centering
|
---|
703 | \mbox{
|
---|
704 | \hspace*{-10mm}
|
---|
705 | \includegraphics[width=0.90\textwidth]{Figs/uvcovabcd.pdf}
|
---|
706 | }
|
---|
707 | \caption{(u,v) plane coverage for four configurations.
|
---|
708 | (a) 121 D=5 meter diameter dishes arranged in a compact, square array
|
---|
709 | of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each,
|
---|
710 | (c) 129 dishes arranged as above, single D=65 meter diameter, with 100 beams.
|
---|
711 | color scale : black $<1$, blue, green, yellow, red $\gtrsim 80$ }
|
---|
712 | \label{figuvcovabcd}
|
---|
713 | \end{figure*}
|
---|
714 |
|
---|
715 | \begin{figure*}
|
---|
716 | \vspace*{-10mm}
|
---|
717 | \centering
|
---|
718 | \mbox{
|
---|
719 | \hspace*{-10mm}
|
---|
720 | \includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
|
---|
721 | }
|
---|
722 | \vspace*{-10mm}
|
---|
723 | \caption{P(k) LSS power and noise power spectrum for several interferometer
|
---|
724 | configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.}
|
---|
725 | \label{figpnoisea2g}
|
---|
726 | \end{figure*}
|
---|
727 |
|
---|
728 |
|
---|
729 | \section{ Foregrounds and Component separation }
|
---|
730 | Reaching the required sensitivities is not the only difficulty of observing the large
|
---|
731 | scale structures in 21 cm. Indeed, the synchrotron emission of the
|
---|
732 | Milky Way and the extra galactic radio sources are a thousand time brighter than the
|
---|
733 | emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
|
---|
734 | using Intensity Mapping, without identifying the \HI point sources is the main challenge
|
---|
735 | for this novel observation method. Although this task might seem impossible at first,
|
---|
736 | it has been suggested that the smooth frequency dependence of the synchrotron
|
---|
737 | emissions can be used to separate the faint LSS signal from the Galactic and radio source
|
---|
738 | emissions. However, any real radio instrument has a beam shape which changes with
|
---|
739 | frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
|
---|
740 | technique. The effect of frequency dependent beam shape is often referred to as {\em
|
---|
741 | mode mixing} \citep{morales.09}.
|
---|
742 |
|
---|
743 | In this section, we present a short description of the foreground emissions and
|
---|
744 | the simple models we have used for computing the sky radio emissions in the GHz frequency
|
---|
745 | range. We present also a simple component separation method to extract the LSS signal and
|
---|
746 | its performance. We show in particular the effect of the instrument response on the recovered
|
---|
747 | power spectrum, and possible way of getting around this difficulty. The results presented in this section concern the
|
---|
748 | total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
|
---|
749 | corresponding to the central frequency $\nu \sim 884$ MHz.
|
---|
750 |
|
---|
751 | \subsection{ Synchrotron and radio sources }
|
---|
752 | We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
|
---|
753 | brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
|
---|
754 | and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
|
---|
755 | $90 \times 30 \simeq 2500 \mathrm{deg^2}$ of the sky, centered on $\alpha= 10:00 \mathrm{h} , \delta=+10 \mathrm{deg.}$,
|
---|
756 | and covering 128 MHz in frequency. The sky cube characteristics (coordinate range, size, resolution)
|
---|
757 | used in the simulations is given in the table below:
|
---|
758 | \begin{center}
|
---|
759 | \begin{tabular}{|c|c|c|}
|
---|
760 | \hline
|
---|
761 | & range & center \\
|
---|
762 | \hline
|
---|
763 | Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
|
---|
764 | Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
|
---|
765 | Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
|
---|
766 | Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
|
---|
767 | Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
|
---|
768 | \hline
|
---|
769 | \hline
|
---|
770 | & resolution & N-cells \\
|
---|
771 | \hline
|
---|
772 | Right ascension & 3 arcmin & 1800 \\
|
---|
773 | Declination & 3 arcmin & 600 \\
|
---|
774 | Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
|
---|
775 | \hline
|
---|
776 | \end{tabular} \\[1mm]
|
---|
777 | Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ \\
|
---|
778 | $ 1800 \times 600 \times 256 \simeq 123 \, 10^6$ cells
|
---|
779 | \end{center}
|
---|
780 |
|
---|
781 | Two different methods have been used to compute the sky temperature data cubes.
|
---|
782 | We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
|
---|
783 | maps of the emission temperature at different frequencies, from which we have
|
---|
784 | extracted the brightness temperature cube for the region defined above
|
---|
785 | (Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
|
---|
786 | As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
|
---|
787 | difficult to have reliable results for the effect of point sources on the reconstructed
|
---|
788 | LSS power spectrum.
|
---|
789 |
|
---|
790 | We have thus also created a simple sky model using the Haslam Galactic synchrotron map
|
---|
791 | at 408 Mhz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
|
---|
792 | catalog \cite{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
|
---|
793 | has been computed through the following steps:
|
---|
794 |
|
---|
795 | \begin{enumerate}
|
---|
796 | \item The Galactic synchrotron emission is modeled power law with spatially
|
---|
797 | varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
|
---|
798 | $\beta$ has a gaussian distribution centered at -2.8 and with standard
|
---|
799 | deviation $\sigma_\beta = 0.15$.
|
---|
800 | The synchrotron contribution to the sky temperature for each cell is then
|
---|
801 | obtained through the formula:
|
---|
802 | $$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 MHz}\right)^\beta $$
|
---|
803 | %%
|
---|
804 | \item A two dimensional $T_{nvss}(\alpha,\delta)$sky brightness temperature at 1.4 GHz is computed
|
---|
805 | by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
|
---|
806 | the sky cubes. The source brightness in Jansky is converted to temperature taking the
|
---|
807 | pixel angular size into account ($ \sim 21 \mathrm{mK / mJansky}$ at 1.4 GHz and $3' \times 3'$ pixels).
|
---|
808 | A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
|
---|
809 | map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
|
---|
810 | contribution of the radiosources to the sky temperature is computed as follow:
|
---|
811 | $$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 MHz}\right)^{\beta_{src}} $$
|
---|
812 | %%
|
---|
813 | \item The sky brightness temperature data cube is obtained through the sum of
|
---|
814 | the two contributions, Galactic synchrotron and resolved radio sources:
|
---|
815 | $$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{sync}(\alpha, \delta, \nu) $$
|
---|
816 | \end{enumerate}
|
---|
817 |
|
---|
818 | The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
|
---|
819 | $T_{lss}(\alpha, \delta, \nu)$ has been computed using the SimLSS software package
|
---|
820 | \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} }.
|
---|
821 | {\color{red}: CMV, please add few line description of SimLSS}.
|
---|
822 | We have generated the mass fluctuations $\delta \rho/\rho$ at $z=0.6$, in cells of size
|
---|
823 | $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
|
---|
824 | sky cube angular and frequency resolution defined above. The mass fluctuations has been
|
---|
825 | converted into temperature through a factor $0.13 \mathrm{mK}$, corresponding to a hydrogen
|
---|
826 | fraction $0.008 \times (1+0.6)$. The total sky brightness temperature is then computed as the sum
|
---|
827 | of foregrounds and the LSS 21 cm emission:
|
---|
828 | $$ T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
|
---|
829 | T_{sky} = T_{gsm}+T_{lss} $$
|
---|
830 |
|
---|
831 | Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
|
---|
832 | temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
|
---|
833 | Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
|
---|
834 | with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
|
---|
835 | Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
|
---|
836 | for Model-I/GSM and Model-II. There is good agreement between the two models, although
|
---|
837 | the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
|
---|
838 |
|
---|
839 | \begin{table}
|
---|
840 | \begin{tabular}{|c|c|c|}
|
---|
841 | \hline
|
---|
842 | & mean (K) & std.dev (K) \\
|
---|
843 | \hline
|
---|
844 | Haslam & 2.17 & 0.6 \\
|
---|
845 | NVSS & 0.13 & 7.73 \\
|
---|
846 | Haslam+NVSS & 2.3 & 7.75 \\
|
---|
847 | (Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
|
---|
848 | GSM & 2.1 & 0.8 \\
|
---|
849 | \hline
|
---|
850 | \end{tabular}
|
---|
851 | \caption{ Mean temperature and standard deviation for the different sky brightness
|
---|
852 | data cubes computed for this study}
|
---|
853 | \label{sigtsky}
|
---|
854 | \end{table}
|
---|
855 |
|
---|
856 | we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
|
---|
857 | as for the radio foreground temperature cubes computed using our two foreground
|
---|
858 | models. We have also computed the power spectrum on sky brightness temperature
|
---|
859 | cubes, as measured by a perfect instrument having a 25 arcmin gaussian beam.
|
---|
860 | The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
|
---|
861 | The GSM model has more large scale power compared to our simple model, while
|
---|
862 | it lacks power at higher spatial frequencies. The mode mixing due to
|
---|
863 | frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
|
---|
864 | case. It can also be seen that the radio foreground power spectrum is more than
|
---|
865 | $\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
|
---|
866 | to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
|
---|
867 | compared to the mK LSS signal.
|
---|
868 |
|
---|
869 | It should also be noted that in section 3, we presented the different instrument
|
---|
870 | configuration noise level after {\em correcting or deconvolving} the instrument response. The LSS
|
---|
871 | power spectrum is recovered unaffected in this case, while the noise power spectrum
|
---|
872 | increases at high k values (small scales). In practice, clean deconvolution is difficult to
|
---|
873 | implement for real data and the power spectra presented in this section are NOT corrected
|
---|
874 | for the instrumental response.
|
---|
875 |
|
---|
876 | \begin{figure}
|
---|
877 | \centering
|
---|
878 | \vspace*{-10mm}
|
---|
879 | \mbox{
|
---|
880 | \hspace*{-20mm}
|
---|
881 | \includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
|
---|
882 | }
|
---|
883 | \vspace*{-10mm}
|
---|
884 | \caption{Comparison of GSM (black) Model-II (red) sky cube temperature distribution.
|
---|
885 | The Model-II (Haslam+NVSS),
|
---|
886 | has been smoothed with a 35 arcmin gaussian beam. }
|
---|
887 | \label{compgsmhtemp}
|
---|
888 | \end{figure}
|
---|
889 |
|
---|
890 | \begin{figure*}
|
---|
891 | \centering
|
---|
892 | \mbox{
|
---|
893 | \hspace*{-10mm}
|
---|
894 | \includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
|
---|
895 | }
|
---|
896 | \caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
|
---|
897 | The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin gaussian beam.}
|
---|
898 | \label{compgsmmap}
|
---|
899 | \end{figure*}
|
---|
900 |
|
---|
901 | \begin{figure}
|
---|
902 | \centering
|
---|
903 | \vspace*{-20mm}
|
---|
904 | \mbox{
|
---|
905 | \hspace*{-20mm}
|
---|
906 | \includegraphics[width=0.7\textwidth]{Figs/pk_gsm_lss.pdf}
|
---|
907 | }
|
---|
908 | \vspace*{-40mm}
|
---|
909 | \caption{Comparison of the 21cm LSS power spectrum (red, orange) with the radio foreground power spectrum.
|
---|
910 | The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
|
---|
911 | model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
|
---|
912 | as observed by a perfect instrument with a 25 arcmin beam.}
|
---|
913 | \label{pkgsmlss}
|
---|
914 | \end{figure}
|
---|
915 |
|
---|
916 |
|
---|
917 |
|
---|
918 | \subsection{ Instrument response and LSS signal extraction }
|
---|
919 |
|
---|
920 | The observed data cube is obtained from the sky brightness temperature 3D map
|
---|
921 | $T_{sky}(\alpha, \delta, \nu)$ by applying the frequency dependent instrument response
|
---|
922 | ${\cal R}(u,v,\lambda)$.
|
---|
923 | As a simplification, we have considered that the instrument response is independent
|
---|
924 | of the sky direction.
|
---|
925 | For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
|
---|
926 | \begin{enumerate}
|
---|
927 | \item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
|
---|
928 | $$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(u, v, \lambda_k)$$
|
---|
929 | \item Apply instrument response in the angular wave mode plane
|
---|
930 | $$ {\cal T}_{sky}(u, v, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda) $$
|
---|
931 | \item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
|
---|
932 | without instrumental (electronic/$\Tsys$) white noise:
|
---|
933 | $$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda)
|
---|
934 | \rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
|
---|
935 | \item Add white noise (gaussian fluctuations) to obtain the measured sky brightness temperature
|
---|
936 | $T_{mes}(\alpha, \delta, \nu_k)$. We have also considered that the system temperature and thus the
|
---|
937 | additive white noise level was independent of the frequency or wavelength.
|
---|
938 | \end{enumerate}
|
---|
939 | The LSS signal extraction depends indeed on the white noise level.
|
---|
940 | The results shown here correspond to the (a) instrument configuration, a packed array of
|
---|
941 | $11 \times 11 = 121$ 5 meter diameter dishes, with a white noise level corresponding
|
---|
942 | to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500 kHz$
|
---|
943 | cell.
|
---|
944 |
|
---|
945 | Our simple component separation procedure is described below:
|
---|
946 | \begin{enumerate}
|
---|
947 | \item The measured sky brightness temperature is first corrected for the frequency dependent
|
---|
948 | beam effects through a convolution by a virtual, frequency independent beam. We assume
|
---|
949 | that we have a perfect knowledge of the intrinsic instrument response.
|
---|
950 | $$ T_{mes}(\alpha, \delta, \nu) \longrightarrow T_{mes}^{bcor}(\alpha,\delta,\nu) $$
|
---|
951 | The virtual target instrument has a beam width larger to the worst real instrument beam,
|
---|
952 | i.e at the lowest observed frequency.
|
---|
953 | \item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
|
---|
954 | is fitted to the beam-corrected brightness temperature. $b$ is the power law index and $10^a$
|
---|
955 | is the brightness temperature at the reference frequency $\nu_0$:
|
---|
956 | \begin{eqnarray*}
|
---|
957 | P1 & : & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) \\
|
---|
958 | P2 & : & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) + c \log10 ( \nu/\nu_0 ) ^2
|
---|
959 | \end{eqnarray*}
|
---|
960 | \item The difference between the beam-corrected sky temperature and the fitted power law
|
---|
961 | $(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
|
---|
962 | \end{enumerate}
|
---|
963 |
|
---|
964 | Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
|
---|
965 | for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
|
---|
966 | 21 cm LSS power spectrum, as seen by a perfect instrument with a gaussian frequency independent
|
---|
967 | beam is shown in orange (solid line), and the extracted power spectrum, after beam correction
|
---|
968 | and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
|
---|
969 | We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
|
---|
970 | or with the first order polynomial fit (P1).
|
---|
971 |
|
---|
972 | It can be seen that a precise knowledge of the instrument beam and the beam correction
|
---|
973 | is a key ingredient for recovering the 21 cm LSS power spectrum. It is also worthwhile to
|
---|
974 | note that while it is enough to correct the beam to the lowest resolution instrument beam
|
---|
975 | ($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM model, a stronger beam correction
|
---|
976 | has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
|
---|
977 | significantly the ripples from bright radio sources. The effect of mode mixing is reduced for
|
---|
978 | an instrument with smooth (gaussian) beam, compared to the instrument response
|
---|
979 | ${\cal R}(u,v,\lambda)$ used here.
|
---|
980 |
|
---|
981 | Figure \ref{extlssratio} shows the overall {\em transfer function} for 21 cm LSS power
|
---|
982 | spectrum measurement. We have shown (solid line, orange) the ratio of measured LSS power spectrum
|
---|
983 | by a perfect instrument $P_{perf-obs}(k)$, with a gaussian beam of $\sim$ 36 arcmin, respectively $\sim$ 30 arcmin,
|
---|
984 | in the absence of any foregrounds or instrument noise, to the original 21 cm power spectrum $P_{21cm}(k)$.
|
---|
985 | The ratio of the recovered LSS power spectrum $P_{ext}(k)$ to $P_{perf-obs}(k)$ is shown in red, and the
|
---|
986 | ratio of the recovered spectrum to $P_{21cm}(k)$ is shown in black (thin line).
|
---|
987 |
|
---|
988 | \begin{figure*}
|
---|
989 | \centering
|
---|
990 | \vspace*{-20mm}
|
---|
991 | \mbox{
|
---|
992 | \hspace*{-20mm}
|
---|
993 | \includegraphics[width=1.1\textwidth]{Figs/extlsspk.pdf}
|
---|
994 | }
|
---|
995 | \vspace*{-30mm}
|
---|
996 | \caption{Power spectrum of the 21cm LSS temperature fluctuations, separated from the
|
---|
997 | continuum radio emissions at $z \sim 0.6$.
|
---|
998 | Left: GSM/Model-I , right: Haslam+NVSS/Model-II. }
|
---|
999 | \label{extlsspk}
|
---|
1000 | \end{figure*}
|
---|
1001 |
|
---|
1002 |
|
---|
1003 | \begin{figure*}
|
---|
1004 | \centering
|
---|
1005 | \vspace*{-20mm}
|
---|
1006 | \mbox{
|
---|
1007 | \hspace*{-20mm}
|
---|
1008 | \includegraphics[width=1.1\textwidth]{Figs/extlssratio.pdf}
|
---|
1009 | }
|
---|
1010 | \vspace*{-30mm}
|
---|
1011 | \caption{Power spectrum of the 21cm LSS temperature fluctuations, separated from the
|
---|
1012 | continuum radio emissions at $z \sim 0.6$.
|
---|
1013 | Left: GSM/Model-I , right: Haslam+NVSS/Model-II. }
|
---|
1014 | \label{extlssratio}
|
---|
1015 | \end{figure*}
|
---|
1016 |
|
---|
1017 | \section{ BAO scale determination and constrain on dark energy parameters}
|
---|
1018 | % {\color{red} \large \it CY ( + JR ) } \\[1mm]
|
---|
1019 | We compute reconstructed LSS-P(k) (after component separation) at different z's
|
---|
1020 | and determine BAO scale as a function of redshifts.
|
---|
1021 | Method:
|
---|
1022 | \begin{itemize}
|
---|
1023 | \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
|
---|
1024 | \item Compute / guess the instrument noise level for the same redshit values
|
---|
1025 | \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
|
---|
1026 | \item Compute the DETF ellipse with different priors
|
---|
1027 | \end{itemize}
|
---|
1028 |
|
---|
1029 |
|
---|
1030 | \section{Conclusions}
|
---|
1031 |
|
---|
1032 | % \begin{acknowledgements}
|
---|
1033 | % \end{acknowledgements}
|
---|
1034 |
|
---|
1035 | %%% Quelques figures pour illustrer les resultats attendus
|
---|
1036 |
|
---|
1037 |
|
---|
1038 |
|
---|
1039 | % \caption{Comparison of the original simulated LSS (frequency plane) and the recovered LSS.
|
---|
1040 | % Color scale in mK } \label{figcompexlss}
|
---|
1041 |
|
---|
1042 | % \caption{Comparison of the original simulated foreground (frequency plane) and
|
---|
1043 | % the recovered foreground map. Color scale in Kelvin } \label{figcompexfg}
|
---|
1044 |
|
---|
1045 | % \caption{Comparison of the LSS power spectrum at 21 cm at 900 MHz ($z \sim 0.6$)
|
---|
1046 | % and the synchrotron/radio sources - GSM (Global Sky Model) foreground sky cube}
|
---|
1047 | % \label{figcompexfg}
|
---|
1048 |
|
---|
1049 |
|
---|
1050 | % \caption{Recovered LSS power spectrum, after component separation - - GSM (Global Sky Model) foreground sky cube}
|
---|
1051 | % \label{figexlsspk}
|
---|
1052 |
|
---|
1053 | \bibliographystyle{aa}
|
---|
1054 |
|
---|
1055 | \begin{thebibliography}{}
|
---|
1056 |
|
---|
1057 | %%%
|
---|
1058 | \bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
|
---|
1059 | V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , ArXiv:0807.3614
|
---|
1060 |
|
---|
1061 | % MWA description
|
---|
1062 | \bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
|
---|
1063 |
|
---|
1064 | % Intensity mapping/HSHS
|
---|
1065 | \bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P. 2008, \prl, 100, 091303
|
---|
1066 |
|
---|
1067 | % 2dFRS BAO observation
|
---|
1068 | \bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
|
---|
1069 |
|
---|
1070 | % NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
|
---|
1071 | \bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
|
---|
1072 | Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
|
---|
1073 |
|
---|
1074 | % Parametrisation P(k)
|
---|
1075 | \bibitem[Eisentein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112)
|
---|
1076 |
|
---|
1077 | % SDSS first BAO observation
|
---|
1078 | \bibitem[Eisentein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
|
---|
1079 |
|
---|
1080 | % 21 cm emission for mapping matter distribution
|
---|
1081 | \bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
|
---|
1082 |
|
---|
1083 | % Haslam 400 MHz synchrotron map
|
---|
1084 | \bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
|
---|
1085 | Astron. \& Astrophys. Supp. Vol 47, {\tt (http://lambda.gsfc.nasa.gov/product/foreground/haslam\_408.cfm)}
|
---|
1086 |
|
---|
1087 | % WMAP CMB anisotropies 2008
|
---|
1088 | \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
|
---|
1089 |
|
---|
1090 | % HI mass in galaxies
|
---|
1091 | \bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras
|
---|
1092 | ( astro-ph/0907.1416)
|
---|
1093 |
|
---|
1094 | % Boomerang 2000, Acoustic pics
|
---|
1095 | \bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
|
---|
1096 |
|
---|
1097 | % Papier sur le traitement des obseravtions radio / mode mixing - REFERENCE A CHERCHER
|
---|
1098 | \bibitem[Morales et al. (2009)]{morales.09} Morales, M and other 2009, arXiv:0999.XXXX
|
---|
1099 |
|
---|
1100 | % Global Sky Model Paper
|
---|
1101 | \bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
|
---|
1102 | \mnras, 388, 247-260
|
---|
1103 |
|
---|
1104 | % Original CRT HSHS paper
|
---|
1105 | \bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:astro-ph/0606104
|
---|
1106 |
|
---|
1107 | % SDSS BAO 2007
|
---|
1108 | \bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
|
---|
1109 |
|
---|
1110 | %% LOFAR description
|
---|
1111 | \bibitem[Rottering et a,. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
|
---|
1112 | %%%%
|
---|
1113 |
|
---|
1114 | % Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
|
---|
1115 |
|
---|
1116 | \bibitem[SKA.Science]{ska.science}
|
---|
1117 | {\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
|
---|
1118 | New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
|
---|
1119 | { \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
|
---|
1120 |
|
---|
1121 | % FFT telescope
|
---|
1122 | \bibitem[Tegmark \& Zaldarriaga (2008)]{tegmark.08} Tegmark, M. \& Zaldarriaga, M. 2008, arXiv:0802.1710
|
---|
1123 |
|
---|
1124 | % Lyman-alpha, HI fraction
|
---|
1125 | \bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
|
---|
1126 |
|
---|
1127 | % 21 cm temperature
|
---|
1128 | \bibitem[Wyithe et al.(2007)]{wyithe.07} Wyithe, S., Loeb, A. \& Geil, P. 2007 http://fr.arxiv.org/abs/0709.2955, submitted to \mnras
|
---|
1129 |
|
---|
1130 | %% Today HI cosmological density
|
---|
1131 | \bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
|
---|
1132 |
|
---|
1133 | \end{thebibliography}
|
---|
1134 |
|
---|
1135 | \end{document}
|
---|
1136 |
|
---|
1137 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
1138 | % Examples for figures using graphicx
|
---|
1139 | % A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
|
---|
1140 | % is available on a lot of LaTeX public servers or ctan mirrors.
|
---|
1141 | % The file is : epslatex.pdf
|
---|
1142 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
1143 |
|
---|
1144 |
|
---|
1145 | \end{document}
|
---|