source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4011

Last change on this file since 4011 was 4011, checked in by ansari, 14 years ago

Version quasi finale papier sensibilite, Reza 08/07/2011

File size: 89.1 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14%\documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30\newcommand{\HI}{$\mathrm{H_I}$ }
31\newcommand{\kb}{k_B} % Constante de Boltzmann
32\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
33\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
34\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
35\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
36\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
37
38\newcommand{\dlum}{d_L}
39\newcommand{\dang}{d_A}
40\newcommand{\hub}{ h_{70} }
41\newcommand{\hubb}{ h } % h_100
42
43\newcommand{\etaHI}{ n_{\tiny HI} }
44\newcommand{\fHI}{ f_{H_I}(z)}
45\newcommand{\gHI}{ g_{H_I}}
46\newcommand{\gHIz}{ g_{H_I}(z)}
47
48\newcommand{\vis}{{\cal V}_{12} }
49
50\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
51
52\newcommand{\citep}[1]{ (\cite{#1}) }
53%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
54
55%%% Definition pour la section sur les param DE par C.Y
56\def\Mpc{\mathrm{Mpc}}
57\def\hMpcm{\,h \,\Mpc^{-1}}
58\def\hmMpc{\,h^{-1}\Mpc}
59\def\kperp{k_\perp}
60\def\kpar{k_\parallel}
61\def\koperp{k_{BAO\perp }}
62\def\kopar{k_{BAO\parallel}}
63
64%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65\usepackage{txfonts}
66%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67%
68\begin{document}
69%
70 \title{21 cm observation of LSS at z $\sim$ 1 }
71
72 \subtitle{Instrument sensitivity and foreground subtraction}
73
74 \author{
75 R. Ansari
76 \inst{1} \inst{2}
77 \and
78 J.E. Campagne \inst{3}
79 \and
80 P.Colom \inst{5}
81 \and
82 J.M. Le Goff \inst{4}
83 \and
84 C. Magneville \inst{4}
85 \and
86 J.M. Martin \inst{5}
87 \and
88 M. Moniez \inst{3}
89 \and
90 J.Rich \inst{4}
91 \and
92 C.Y\`eche \inst{4}
93 }
94
95 \institute{
96 Universit\'e Paris-Sud, LAL, UMR 8607, F-91898 Orsay Cedex, France
97 \and
98 CNRS/IN2P3, F-91405 Orsay, France \\
99 \email{ansari@lal.in2p3.fr}
100 \and
101 Laboratoire de lÍAcc\'el\'erateur Lin\'eaire, CNRS-IN2P3, Universit\'e Paris-Sud,
102 B.P. 34, 91898 Orsay Cedex, France
103 % \thanks{The university of heaven temporarily does not
104 % accept e-mails}
105 \and
106 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
107 \and
108 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
109 }
110
111 \date{Received July 15, 2011; accepted xxxx, 2011}
112
113% \abstract{}{}{}{}{}
114% 5 {} token are mandatory
115
116 \abstract
117 % context heading (optional)
118 % {} leave it empty if necessary
119 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
120cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
121properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
122using radio interferometers with large instanteneous field of view and waveband.}
123 % aims heading (mandatory)
124 { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
125instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
126 % methods heading (mandatory)
127 { For each configuration, we determine instrument response by computing the (u,v) or Fourier angular frequency
128plane coverage using visibilities. The (u,v) plane response is then used to compute the three dimensional noise power spectrum,
129hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
130separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
131 % results heading (mandatory)
132 { We have computed the noise power spectrum for different instrument configuration as well as the extracted
133 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
134 the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
135 % conclusions heading (optional), leave it empty if necessary
136 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
137 $\lesssim 10000 \mathrm{m^2}$ will be able to detect BAO signal at redshift z $\sim 1$ and will be
138 competitive with optical surveys. }
139
140 \keywords{ Cosmology:LSS --
141 Cosmology:Dark energy -- Radio interferometer -- 21 cm
142 }
143
144 \maketitle
145%
146%________________________________________________________________
147% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
148% Toutes les figures sont provisoires }
149
150\section{Introduction}
151
152% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
153The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
154with redshift is one the major tools in observational cosmology. Theses structures are usually mapped through
155optical observation of galaxies which are used as tracers of the underlying matter distribution.
156An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
157(\HI) as tracer with Total Intensity Mapping, has been proposed in recent years \citep{peterson.06} \citep{chang.08}.
158Mapping the matter distribution using HI 21 cm emission as a tracer has been extensively discussed in literature
159\citep{furlanetto.06} \citep{tegmark.08} and is being used in projects such as LOFAR \citep{rottgering.06} or
160MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
161
162Evidences in favor of the acceleration of the expansion of the universe have been
163accumulated over the last twelve years, thank to the observation of distant supernovae,
164CMB anisotropies and detailed analysis of the LSS.
165A cosmological Constant ($\Lambda$) or new cosmological
166energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
167Dark Energy is considered as one the most intriguing puzzles in Physics and Cosmology.
168% Constraining the properties of this new cosmic fluid, more precisely
169% its equation of state is central to current cosmological researches.
170Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
171more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
172of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
173and Baryon Acoustic Oscillations (BAO).
174
175BAO are features imprinted in the distribution of galaxies, due to the frozen
176sound waves which were present in the photons baryons plasma prior to recombination
177at z $\sim$ 1100.
178This scale, which can be considered as a standard ruler with a comoving
179length of $\sim 150 Mpc$.
180Theses features have been first observed in the CMB anisotropies
181and are usually referred to as {\em acoustic pics} \citep{mauskopf.00} \citep{hinshaw.08}.
182The BAO modulation has been subsequently observed in the distribution of galaxies
183at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
184\citep{eisenstein.05} \citep{percival.07} \citep{percival.10} and 2dGFRS \citep{cole.05} optical galaxy surveys.
185
186Ongoing \citep{eisenstein.11} or future surveys \citep{lsst.science}
187plan to measure precisely the BAO scale in the redshift range
188$0 \lesssim z \lesssim 3$, using either optical observation of galaxies % CHECK/FIND baorss baolya references
189or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars \citep{baolya},\citep{baolya2}.
190Mapping matter distribution using 21 cm emission of neutral hydrogen appears as
191a very promising technique to map matter distribution up to redshift $z \sim 3$,
192complementary to optical surveys, especially in the optical redshift desert range
193$1 \lesssim z \lesssim 2$.
194
195In section 2, we discuss the intensity mapping and its potential for measurement of the
196\HI mass distribution power spectrum. The method used in this paper to characterize
197a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
198We show also the results for the 3D noise power spectrum for several instrument configurations.
199The contribution of foreground emissions due to the galactic synchrotron and radio sources
200is described in section 4, as well as a simple component separation method. The performance of this
201method using two different sky models is also presented in section 4.
202The constraints which can be obtained on the Dark Energy parameters and DETF figure
203of merit for typical 21 cm intensity mapping survey are discussed in section 5.
204
205
206%__________________________________________________________________
207
208\section{Intensity mapping and \HI power spectrum}
209
210% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
211
212\subsection{21 cm intensity mapping}
213%%%
214Most of the cosmological information in the LSS is located at large scales
215($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
216might suffer from the uncertainties on the non linear clustering effects.
217The BAO features in particular are at the degree angular scale on the sky
218and thus can be resolved easily with a rather modest size radio instrument
219($D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
220can be measured both in the transverse plane (angular correlation function, ($k_{\mathrm{BAO}}^\perp$)
221or along the longitudinal (line of sight or redshift ($k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
222the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
223BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
224longitudinal BAO clustering, which is a challenge for photometric optical surveys.
225
226In order to obtain a measurement of the LSS power spectrum with small enough statistical
227uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
228typically few $\mathrm{Gpc^3}$. Moreover, stringent constrain on DE parameters can be obtained when
229comparing the distance or Hubble parameter measurements as a function of redshift with
230DE models, which translates into a survey depth $\Delta z \gtrsim 1$.
231
232Radio instruments intended for BAO surveys must thus have large instantaneous field
233of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$).
234
235Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
236discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}),
237the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
238However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
239The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the of two polarisations
240of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
241\begin{equation}
242S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
243\end{equation}
244where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
245\ref{slims21} (left) we have computed the sensitivity for 6 different set of instrument effective area and system
246temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
247The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
248dispersion of few 100 km/s. Theses detection limits should be compared with the expected 21 cm brightness
249$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
250\begin{equation}
251 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
252\left( \frac{ 1\, \mathrm{Mpc}}{\dlum} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v}
253\end{equation}
254 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum$ is the luminosity distance and $\sigma_v$
255is the source velocity dispersion.
256% {\color{red} Faut-il developper le calcul en annexe ? }
257
258In table \ref{slims21} (right), we show the 21 cm brightness for
259compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
260$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
261WMAP \LCDM universe. $10^9 - 10^{10} M_\odot$ of neutral gas mass
262is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
263would require collecting area in the range of $10^6 \mathrm{m^2}$.
264
265Intensity mapping has been suggested as an alternative and economic method to map the
2663D distribution of neutral hydrogen \citep{chang.08} \citep{ansari.08} \citep{seo.10}.
267In this approach, sky brightness map with angular resolution $\sim 10-30 \, \mathrm{arc.min}$ is made for a
268wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
269would correspond to a cell with a volume of $\sim 10 \mathrm{Mpc^3}$, containing hundreds of galaxies and a total
270\HI mass $ \gtrsim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
271the observed frequency $\nu$ would be translated to the emission redshift $z$ through
272the well known relation:
273\begin{eqnarray}
274 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
275\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
276\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
277 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
278\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
279\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
280\end{eqnarray}
281The large scale distribution of the neutral hydrogen, down to angular scales of $\sim 10 \mathrm{arc.min}$
282can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
283map as a function frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
284(radiation power/unit solid angle/unit surface/unit frequency)
285can be converted to brightness temperature using the well known black body Rayleigh-Jeans approximation:
286$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
287
288%%%%%%%%
289\begin{table}
290\begin{center}
291\begin{tabular}{|c|c|c|}
292\hline
293$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
294\hline
2955000 & 50 & 66 \\
2965000 & 25 & 33 \\
297100 000 & 50 & 3.3 \\
298100 000 & 25 & 1.66 \\
299500 000 & 50 & 0.66 \\
300500 000 & 25 & 0.33 \\
301\hline
302\end{tabular}
303%%
304\hspace{3mm}
305%%
306\begin{tabular}{|c|c|c|}
307\hline
308$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
309\hline
3100.25 & 1235 & 140 \\
3110.50 & 2800 & 27 \\
3121.0 & 6600 & 4.8 \\
3131.5 & 10980 & 1.74 \\
3142.0 & 15710 & 0.85 \\
3152.5 & 20690 & 0.49 \\
316\hline
317\end{tabular}
318\caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
319frequency band (left). Source 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
320\label{slims21}
321\end{center}
322\end{table}
323
324\subsection{ \HI power spectrum and BAO}
325In the absence of any foreground or background radiation, the brightness temperature
326for a given direction and wavelength $\TTlam$ would be proportional to
327the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
328\begin{equation}
329 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
330 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
331\end{equation}
332where $A_{21}=1.87 \, 10^{-15} \mathrm{s^{-1}}$ is the spontaneous 21 cm emission
333coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
334constant and $H(z)$ is the Hubble parameter at the emission redshift.
335For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
336can be expressed as:
337\begin{equation}
338H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
339\times 100 \, \, \mathrm{km/s/Mpc}
340\label{eq:expHz}
341\end{equation}
342Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
343neutral hydrogen number density relative fluctuations can be written as, and the corresponding
34421 cm emission temperature can be written as:
345\begin{eqnarray}
346\frac{ \delta \etaHI}{\etaHI} (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
347\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) \\
348 \TTlamz & = & \bar{T}_{21}(z) \times \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)
349\end{eqnarray}
350where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
351and critical densities, $m_{H}$ is the hydrogen atom mass, and
352$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
353
354The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
355measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
356$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
357The neutral hydrogen fraction is expected to increase with redshift. Study
358of Lyman-$\alpha$ absorption indicate a factor 3 increase in the neutral hydrogen
359fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
360compared to the its present day value $\gHI(z=1.5) \sim 0.025$.
361The 21 cm brightness temperature and the corresponding power spectrum can be written as \citep{wyithe.07} :
362\begin{eqnarray}
363 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
364 \bar{T}_{21}(z) & \simeq & 0.077 \, \mathrm{mK}
365\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
366 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
367\label{eq:tbar21z}
368\end{eqnarray}
369
370The table \ref{tabcct21} below shows the mean 21 cm brightness temperature for the
371standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
372linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
37321 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
374($\gHI=0.02$). The matter power spectrum has been computed using the
375\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
376shown for the standard WMAP \LCDM cosmology, according to the relation:
377\begin{equation}
378\theta_k = \frac{2 \pi}{k^{comov} \, \dang(z) \, (1+z) }
379\hspace{3mm}
380k^{comov} = \frac{2 \pi}{ \theta_\mathrm{scale} \, \dang(z) \, (1+z) }
381\end{equation}
382where $k^{comov}$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
383It should be noted that the maximum transverse $k^{comov} $ sensitivity range
384for an instrument corresponds approximately to half of its angular resolution.
385% {\color{red} Faut-il developper completement le calcul en annexe ? }
386
387\begin{table}
388\begin{center}
389\begin{tabular}{|l|c|c|c|c|c|c|c|}
390\hline
391\hline
392 & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
393\hline
394(a) $\bar{T}_{21}$ (mK) & 0.08 & 0.1 & 0.13 & 0.16 & 0.18 & 0.2 & 0.21 \\
395\hline
396(b) $\bar{T}_{21}$ (mK) & 0.08 & 0.12 & 0.21 & 0.32 & 0.43 & 0.56 & 0.68 \\
397\hline
398\hline
399\end{tabular}
400\caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
401standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
402increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
403\label{tabcct21}
404\end{center}
405\end{table}
406
407\begin{figure}
408\vspace*{-15mm}
409\hspace{-5mm}
410\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
411\vspace*{-10mm}
412\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
413neutral gas fraction $\gHI=2\%$}
414\label{figpk21}
415\end{figure}
416
417
418\section{interferometric observations and P(k) measurement sensitivity }
419\label{pkmessens}
420\subsection{Instrument response}
421\label{instrumresp}
422We introduce briefly here the principles of interferometric observations and the definition of
423quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
424and complete presentation of observation methods and signal processing in radio astronomy.
425In astronomy we are usually interested in measuring the sky emission intensity,
426$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
427and interferometry in particular, receivers are sensitive to the sky emission complex
428amplitudes. However, for most sources, the phases vary randomly and bear no information:
429\begin{eqnarray}
430& &
431I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
432& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = \delta( \vec{\Theta} - \vec{\Theta '} ) I(\vec{\Theta},\lambda)
433\end{eqnarray}
434A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
435its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
436for each frequency can be written as a function of the electromagnetic wave vector
437$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
438\begin{equation}
439s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
440\end{equation}
441We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
442the EM wave vector is related to the wavelength $\lambda$ through the usual
443$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
444corresponds to the receiver intensity response:
445\begin{equation}
446L(\vec{\Theta}), \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
447\end{equation}
448The visibility signal of two receivers corresponds to the time averaged correlation between
449signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
450visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
451$\vec{r_2}$ can simply be written as a function their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
452\begin{equation}
453\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
454e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
455\end{equation}
456This expression can be simplified if we consider receivers with narrow field of view
457($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \mathrm{deg.} $ ),
458and coplanar in respect to their common axis.
459If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
460the common receivers axis, the visibilty would be written as the 2D Fourier transform
461of the product of the sky intensity and the receiver beam, for the angular frequency
462\mbox{$(u,v)_{12} = 2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$}:
463\begin{equation}
464\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
465\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
466\end{equation}
467where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
468the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
469two $(\alpha, \beta)$ angular planes.
470
471Furthermore, we introduce the conjugate Fourier variables $(u,v)$ and the Fourier transforms
472of the sky intensity and the receiver beam:
473\begin{center}
474\begin{tabular}{ccc}
475$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(u,v)$ \\
476$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(u,v, \lambda)$ \\
477$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(u,v, \lambda)$ \\
478\end{tabular}
479\end{center}
480
481The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
482wave number domain located around
483$(u, v)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$. The weight function is
484given by the receiver beam Fourier transform.
485\begin{equation}
486\vis(\lambda) \simeq \iint d u d v \, \, {\cal I}(u,v, \lambda) \, {\cal L}(u - 2 \pi \frac{\Delta x}{\lambda} , v - 2 \pi \frac{\Delta y}{\lambda} , \lambda)
487\end{equation}
488
489A single receiver instrument would measure the total power integrated in a spot centered around the
490origin in the $(u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver
491beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
492size.
493
494The correlation signal from a pair of receivers would measure the integrated signal on a similar
495spot, located around the central angular wave mode $(u, v)_{12}$ determined by the relative
496position of the two receivers (see figure \ref{figuvplane}).
497In an interferometer with multiple receivers, the area covered by different receiver pairs in the
498$(u,v)$ plane might overlap and some pairs might measure the same area (same base lines).
499Several beams can be formed using different combination of the correlations from a set of
500antenna pairs.
501
502An instrument can thus be characterized by its $(u,v)$ plane coverage or response
503${\cal R}(u,v,\lambda)$. For a single dish with a single receiver in the focal plane,
504the instrument response is simply the Fourier transform of the beam.
505For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
506a multi horn system, each beam (b) will have its own response
507${\cal R}_b(u,v,\lambda)$.
508For an interferometer, we can compute a raw instrument response
509${\cal R}_{raw}(u,v,\lambda)$ which corresponds to $(u,v)$ plane coverage by all
510receiver pairs with uniform weighting.
511Obviously, different weighting schemes can be used, changing
512the effective beam shape and thus the response ${\cal R}_{w}(u,v,\lambda)$
513and the noise behaviour. If the same Fourier angular frequency mode is measured
514by several receiver pairs, the raw instrument response might then be larger
515that unity. This non normalized instrument response is used to compute the projected
516noise power spectrum in the following section (\ref{instrumnoise}).
517We can also define a normalized instrument response, ${\cal R}_{norm}(u,v,\lambda) \lesssim 1$ as:
518\begin{equation}
519{\cal R}_{norm}(u,v,\lambda) = {\cal R}(u,v,\lambda) / \mathrm{Max_{(u,v)}} \left[ {\cal R}(u,v,\lambda) \right]
520\end{equation}
521This normalized instrument response can be used to compute the effective instrument beam,
522in particular in section \ref{recsec}.
523
524\begin{figure}
525% \vspace*{-2mm}
526\centering
527\mbox{
528\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
529}
530\vspace*{-15mm}
531\caption{Schematic view of the $(u,v)$ plane coverage by interferometric measurement}
532\label{figuvplane}
533\end{figure}
534
535\subsection{Noise power spectrum}
536\label{instrumnoise}
537Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
538bandwidth $\delta \nu$, with an integration time $t_{int}$, characterized by a system temperature
539$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
540$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
541corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
542noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
543corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$), corresponding to a visibility
544measurement from a pair of receivers can be written as:
545\begin{eqnarray}
546P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
547P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
548\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
549\label{eq:pnoisepairD}
550\end{eqnarray}
551
552The sky temperature measurement can thus be characterized by the noise spectral power density in
553the angular frequencies plane $P_{noise}^{(u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$
554per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:
555We can characterize the sky temperature measurement by a radio instrument by the noise
556spectral power density in the angular frequencies plane $P_{noise}(u,v)$ in units of $\mathrm{Kelvin^2}$
557per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$.
558For an interferometer made of identical receiver elements, several ($n$) receiver pairs
559might have the same baseline. The noise power density in the corresponding $(u,v)$ plane area
560is then reduced by a factor $1/n$. More generally, we cam write the instrument noise
561spectral power density using the instrument response defined in section \ref{instrumresp} :
562\begin{equation}
563P_{noise}(u,v) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(u,v,\lambda) }
564\end{equation}
565
566When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
567$P(k)$ is computed, angles are translated into comoving transverse distances,
568and frequencies or wavelengths into comoving radial distance, using the following relations:
569\begin{eqnarray}
570\delta \alpha , \beta & \rightarrow & \delta \ell_\perp = (1+z) \, \dang(z) \, \delta \alpha,\beta \\
571\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
572 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
573\delta u , \delta v & \rightarrow & \delta k_\perp = \frac{ \delta u \, , \, \delta v }{ (1+z) \, \dang(z) } \\
574\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
575 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
576\end{eqnarray}
577
578If we consider a uniform noise spectral density in the $(u,v)$ plane corresponding to the
579equation \ref{eq:pnoisepairD} above, the three dimensional projected noise spectral density
580can then be written as:
581\begin{equation}
582P_{noise}(k) = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
583\label{ctepnoisek}
584\end{equation}
585
586$P_{noise}(k)$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
587$t_{int}$ in second, $\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
588 $H(z)$ in $\mathrm{km/s/Mpc}$.
589
590The matter or \HI distribution power spectrum determination statistical errors vary as the number of
591observed Fourier modes, which is inversely proportional to volume of the universe
592which is observed (sample variance). As the observed volume is proportional to the
593surveyed solid angle, we consider the survey of a fixed
594fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a determined
595total observation time $t_{obs}$.
596A single dish instrument with diameter $D$ would have an instantaneous field of view
597$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
598a number of pointing $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
599Each sky direction or pixel of size $\Omega_{FOV}$ will be observed during an integration
600time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
601for the integration time, we can compute a simple expression
602for the noise spectral power density by a single dish instrument of diameter $D$:
603\begin{equation}
604P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
605\end{equation}
606
607It is important to note that any real instrument do not have a flat
608response in the $(u,v)$ plane, and the observations provide no information above
609a maximum angular frequency $u_{max},v_{max}$.
610One has to take into account either a damping of the observed sky power
611spectrum or an increase of the noise spectral power if
612the observed power spectrum is corrected for damping. The white noise
613expressions given below should thus be considered as a lower limit or floor of the
614instrument noise spectral density.
615
616For a single dish instrument of diameter $D$ equipped with a multi-feed or
617phase array receiver system, with $N$ independent beams on sky,
618the noise spectral density decreases by a factor $N$,
619thanks to the increase of per pointing integration time.
620
621\begin{equation}
622P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
623\label{eq:pnoiseNbeam}
624\end{equation}
625
626The expression above (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
627identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
628of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.
629
630For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
631observations provide information up to $u_{max},v_{max} \lesssim 2 \pi D / \lambda $. This value of
632$u_{max},v_{max}$ would be mapped to a maximum transverse cosmological wave number
633$k^{comov}_{\perp \, max}$:
634\begin{equation}
635k^{comov}_{\perp} = \frac{(u,v)}{(1+z) \dang} \hspace{8mm}
636k^{comov}_{\perp \, max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
637\label{kperpmax}
638\end{equation}
639
640Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
641as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
642beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
643The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
644year. The maximum comoving wave number $k^{comov}$ is also shown as a function
645of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
646to take into account the radial component of $\vec{k^{comov}}$ and the increase of
647the instrument noise level with $k^{comov}_{\perp}$, we have taken the effective $k^{comov}_{ max} $
648as half of the maximum transverse $k^{comov}_{\perp \, max} $ of \mbox{eq. \ref{kperpmax}}:
649\begin{equation}
650k^{comov}_{ max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
651\end{equation}
652
653\begin{figure}
654\vspace*{-25mm}
655\centering
656\mbox{
657\hspace*{-10mm}
658\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
659}
660\vspace*{-40mm}
661\caption{Minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
662as a function of redshift (top). Maximum $k$ value for a 100 meter diameter primary antenna (bottom) }
663\label{pnkmaxfz}
664\end{figure}
665
666
667\subsection{Instrument configurations and noise power spectrum}
668\label{instrumnoise}
669We have numerically computed the instrument response ${\cal R}(u,v,\lambda)$
670with uniform weights in the $(u,v)$ plane for several instrument configurations:
671\begin{itemize}
672\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
673a square $11 \times 11$ configuration ($q=11$). This array covers an area of
674$55 \times 55 \, \mathrm{m^2}$
675\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
676in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
677$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
678shown in figure \ref{figconfab}.
679\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
680 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
681particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
682four array corners. This array layout is also shown figure \ref{figconfab}.
683\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
684equipped with a 100 beam focal plane receiver array.
685\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
686a square $20 \times 20$ configuration ($q=20$). This array covers an area of
687$100 \times 100 \, \mathrm{m^2}$
688\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
689wide. The focal line of each cylinder is equipped with 100 receivers, each
690$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
691This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
692a total of $400$ receivers per polarisation, as in the (e) configuration.
693We have computed the noise power spectrum for {\em perfect}
694cylinders, where all receiver pair correlations are used (fp), or for
695a non perfect instrument, where only correlations between receivers
696from different cylinders are used.
697\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
698wide. The focal line of each cylinder is equipped with 120 receivers, each
699$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
700This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
701a total of 960 receivers per polarisation. As for the (f) configuration,
702we have computed the noise power spectrum for {\em perfect}
703cylinders, where all receiver pair correlations are used (gp), or for
704a non perfect instrument, where only correlations between receivers
705from different cylinders are used.
706\end{itemize}
707
708\begin{figure}
709\centering
710\vspace*{-15mm}
711\mbox{
712\hspace*{-10mm}
713\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
714}
715\vspace*{-15mm}
716\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
717diameter dishes. }
718\label{figconfab}
719\end{figure}
720
721We have used simple triangular shaped dish response in the $(u,v)$ plane.
722However, we have introduced a filling factor or illumination efficiency
723$\eta$, relating the effective dish diameter $D_{ill}$ to the
724mechanical dish size $D^{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
725as $\eta^2$ or $eta_x \eta_y$.
726\begin{eqnarray}
727{\cal L}_\circ (u,v,\lambda) & = & \bigwedge_{[\pm 2 \pi D^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\
728 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
729\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
730\end{eqnarray}
731For the multi-dish configuration studied here, we have taken the illumination efficiency factor
732{\bf $\eta = 0.9$}.
733
734For the receivers along the focal line of cylinders, we have assumed that the
735individual receiver response in the $(u,v)$ plane corresponds to one from a
736rectangular shaped antenna. The illumination efficiency factor has been taken
737equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
738along the cylinder length. It should be noted that the small angle approximation
739used here for the expression of visibilities is not valid for the receivers along
740the cylinder axis. However, some preliminary numerical checks indicate that
741the results obtained here for the noise spectral power density would not change significantly.
742The instrument responses shown here correspond to fixed pointing toward the zenith, which
743is the case for a transit type telescope.
744
745\begin{equation}
746 {\cal L}_\Box(u,v,\lambda) =
747\bigwedge_{[\pm 2 \pi D^{ill}_x / \lambda]} (u ) \times
748\bigwedge_{[\pm 2 \pi D^{ill}_y / \lambda ]} (v )
749\end{equation}
750Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(u,v,\lambda)$
751for the four configurations (a,b,c,d) with $\sim 100$ receivers per
752polarisation. The resulting projected noise spectral power density is shown in figure
753\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
754is due to the fact that we have ignored all auto-correlation measurements.
755It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
756should have enough sensitivity to map LSS in 21 cm at redshift z=1.
757
758\begin{figure*}
759\centering
760\mbox{
761\hspace*{-10mm}
762\includegraphics[width=0.90\textwidth]{Figs/uvcovabcd.pdf}
763}
764\caption{(u,v) plane coverage (non normalized instrument response ${\cal R}(u,v,\lambda)$
765for four configurations.
766(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
767of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each,
768(c) 129 dishes arranged as above, single D=65 meter diameter, with 100 beams.
769color scale : black $<1$, blue, green, yellow, red $\gtrsim 80$ }
770\label{figuvcovabcd}
771\end{figure*}
772
773\begin{figure*}
774\vspace*{-25mm}
775\centering
776\mbox{
777\hspace*{-20mm}
778\includegraphics[width=1.15\textwidth]{Figs/pkna2h.pdf}
779}
780\vspace*{-40mm}
781\caption{P(k) LSS power and noise power spectrum for several interferometer
782configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.}
783\label{figpnoisea2g}
784\end{figure*}
785
786
787\section{ Foregrounds and Component separation }
788\label{foregroundcompsep}
789Reaching the required sensitivities is not the only difficulty of observing the large
790scale structures in 21 cm. Indeed, the synchrotron emission of the
791Milky Way and the extra galactic radio sources are a thousand time brighter than the
792emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
793using Intensity Mapping, without identifying the \HI point sources is the main challenge
794for this novel observation method. Although this task might seem impossible at first,
795it has been suggested that the smooth frequency dependence of the synchrotron
796emissions can be used to separate the faint LSS signal from the Galactic and radio source
797emissions.
798However, any real radio instrument has a beam shape which changes with
799frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
800technique. The effect of frequency dependent beam shape is some time referred to as {\em
801mode mixing}. See for example \citep{morales.06}, \citep{bowman.07}.
802
803In this section, we present a short description of the foreground emissions and
804the simple models we have used for computing the sky radio emissions in the GHz frequency
805range. We present also a simple component separation method to extract the LSS signal and
806its performance. We show in particular the effect of the instrument response on the recovered
807power spectrum. The results presented in this section concern the
808total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
809corresponding to the central frequency $\nu \sim 884$ MHz.
810
811\subsection{ Synchrotron and radio sources }
812We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
813brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
814and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
815$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10:00 \, \mathrm{h} , \delta=+10 \, \mathrm{deg.}$,
816and covering 128 MHz in frequency. The sky cube characteristics (coordinate range, size, resolution)
817used in the simulations is given in the table \ref{skycubechars}.
818\begin{table}
819\begin{center}
820\begin{tabular}{|c|c|c|}
821\hline
822 & range & center \\
823\hline
824Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
825Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
826Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
827Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
828Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
829\hline
830\hline
831& resolution & N-cells \\
832\hline
833Right ascension & 3 arcmin & 1800 \\
834Declination & 3 arcmin & 600 \\
835Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
836\hline
837\end{tabular} \\[1mm]
838\end{center}
839\caption{
840Sky cube characteristics for the simulation performed in this paper.
841Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$
842$ 1800 \times 600 \times 256 \simeq 123 \, 10^6$ cells
843}
844\label{skycubechars}
845\end{table}
846%%%%
847\par
848Two different methods have been used to compute the sky temperature data cubes.
849We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
850maps of the emission temperature at different frequencies, from which we have
851extracted the brightness temperature cube for the region defined above
852(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
853As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
854difficult to have reliable results for the effect of point sources on the reconstructed
855LSS power spectrum.
856
857We have thus made also a simple sky model using the Haslam Galactic synchrotron map
858at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
859catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
860has been computed through the following steps:
861
862\begin{enumerate}
863\item The Galactic synchrotron emission is modeled as a power law with spatially
864varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
865$\beta$ has a gaussian distribution centered at -2.8 and with standard
866deviation $\sigma_\beta = 0.15$.
867The synchrotron contribution to the sky temperature for each cell is then
868obtained through the formula:
869$$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 MHz}\right)^\beta $$
870%%
871\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
872by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
873the sky cubes. The source brightness in Jansky is converted to temperature taking the
874pixel angular size into account ($ \sim 21 \mathrm{mK / mJansky}$ at 1.4 GHz and $3' \times 3'$ pixels).
875A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
876map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
877contribution of the radiosources to the sky temperature is computed as follow:
878$$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 MHz}\right)^{\beta_{src}} $$
879%%
880\item The sky brightness temperature data cube is obtained through the sum of
881the two contributions, Galactic synchrotron and resolved radio sources:
882$$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu) $$
883\end{enumerate}
884
885 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
886$T_{lss}(\alpha, \delta, \nu)$ has been computed using the SimLSS software package
887\footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} }.
888{\color{red}: CMV, please add few line description of SimLSS}.
889We have generated the mass fluctuations $\delta \rho/\rho$ at $z=0.6$, in cells of size
890$1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
891sky cube angular and frequency resolution defined above. The mass fluctuations has been
892converted into temperature through a factor $0.13 \, \mathrm{mK}$, corresponding to a hydrogen
893fraction $0.008 \times (1+0.6)$, using equation \ref{eq:tbar21z}.
894The total sky brightness temperature is then computed as the sum
895of foregrounds and the LSS 21 cm emission:
896$$ T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
897T_{sky} = T_{gsm}+T_{lss} $$
898
899Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
900temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
901It should be noted that the standard deviation depends on the map resolution and the values given
902in table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
903angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
904Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
905with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
906Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
907for Model-I/GSM and Model-II. There is good agreement between the two models, although
908the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
909
910\begin{table}
911\centering
912\begin{tabular}{|c|c|c|}
913\hline
914 & mean (K) & std.dev (K) \\
915\hline
916Haslam & 2.17 & 0.6 \\
917NVSS & 0.13 & 7.73 \\
918Haslam+NVSS & 2.3 & 7.75 \\
919(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
920GSM & 2.1 & 0.8 \\
921\hline
922\end{tabular}
923\caption{ Mean temperature and standard deviation for the different sky brightness
924data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
925\label{sigtsky}
926\end{table}
927
928we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
929as for the radio foreground temperature cubes obtained from the two
930models. We have also computed the power spectrum on sky brightness temperature
931cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
932The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
933The GSM model has more large scale power compared to our simple Haslam+NVSS model,
934while it lacks power at higher spatial frequencies. The mode mixing due to
935frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
936case. It can also be seen that the radio foreground power spectrum is more than
937$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
938to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
939compared to the mK LSS signal.
940
941It should also be noted that in section 3, we presented the different instrument
942configuration noise level after {\em correcting or deconvolving} the instrument response. The LSS
943power spectrum is recovered unaffected in this case, while the noise power spectrum
944increases at high k values (small scales). In practice, clean deconvolution is difficult to
945implement for real data and the power spectra presented in this section are NOT corrected
946for the instrumental response. The observed structures have thus a scale dependent damping
947according to the instrument response, while the instrument noise is flat (white noise or scale independent).
948
949\begin{figure}
950\centering
951\vspace*{-10mm}
952\mbox{
953\hspace*{-20mm}
954\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
955}
956\vspace*{-10mm}
957\caption{Comparison of GSM (black) Model-II (red) sky cube temperature distribution.
958The Model-II (Haslam+NVSS),
959has been smoothed with a 35 arcmin gaussian beam. }
960\label{compgsmhtemp}
961\end{figure}
962
963\begin{figure*}
964\centering
965\mbox{
966% \hspace*{-10mm}
967\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
968}
969\caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
970The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
971\label{compgsmmap}
972\end{figure*}
973
974\begin{figure}
975\centering
976\vspace*{-25mm}
977\mbox{
978\hspace*{-15mm}
979\includegraphics[width=0.65\textwidth]{Figs/pk_gsm_lss.pdf}
980}
981\vspace*{-40mm}
982\caption{Comparison of the 21cm LSS power spectrum (red, orange) with the radio foreground power spectrum.
983The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
984model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
985as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.}
986\label{pkgsmlss}
987\end{figure}
988
989
990
991\subsection{ Instrument response and LSS signal extraction }
992\label{recsec}
993The {\it observed} data cube is obtained from the sky brightness temperature 3D map
994$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
995${\cal R}(u,v,\lambda)$.
996we have considered the simple case where the instrument response constant throughout the survey area, or independent
997of the sky direction.
998For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
999\begin{enumerate}
1000\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1001$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(u, v, \lambda_k)$$
1002\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1003$ {\cal R}(u,v,\lambda_k) \lesssim 1$.
1004$$ {\cal T}_{sky}(u, v, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda_k) $$
1005\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
1006without instrumental (electronic/$\Tsys$) white noise:
1007$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda)
1008\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1009\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
1010the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1011We have also considered that the system temperature and thus the
1012additive white noise level was independent of the frequency or wavelength.
1013\end{enumerate}
1014The LSS signal extraction depends indeed on the white noise level.
1015The results shown here correspond to the (a) instrument configuration, a packed array of
1016$11 \times 11 = 121$ 5 meter diameter dishes, with a white noise level corresponding
1017to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1018cell.
1019
1020A brief description of the simple component separation procedure that we have applied is given here:
1021\begin{enumerate}
1022\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1023beam effects through a convolution by a virtual, frequency independent beam. This {\em correction}
1024corresponds to a smearing or degradation of the angular resolution. We assume
1025that we have a perfect knowledge of the intrinsic instrument response, up to a threshold numerical level
1026of about $ \gtrsim 1 \%$ for ${\cal R}(u,v,\lambda)$. We recall that this is the normalized instrument response,
1027${\cal R}(u,v,\lambda) \lesssim 1$.
1028$$ T_{mes}(\alpha, \delta, \nu) \longrightarrow T_{mes}^{bcor}(\alpha,\delta,\nu) $$
1029The virtual target instrument has a beam width larger than the worst real instrument beam,
1030i.e at the lowest observed frequency.
1031 \item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1032 is fitted to the beam-corrected brightness temperature. The fit is done through a linear $\chi^2$ fit in
1033the $\log10 ( T ) , \log10 (\nu)$ plane and we show here the results for a pure power law (P1)
1034or modified power law (P2):
1035\begin{eqnarray*}
1036P1 & : & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) \\
1037P2 & : & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) + c \log10 ( \nu/\nu_0 ) ^2
1038\end{eqnarray*}
1039where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the
1040reference frequency $\nu_0$:
1041\item The difference between the beam-corrected sky temperature and the fitted power law
1042$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1043\end{enumerate}
1044
1045Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1046for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
104721 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1048gaussian frequency independent beam is shown in orange (solid line),
1049and the extracted power spectrum, after beam {\em correction}
1050and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
1051We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1052or with the first order polynomial fit (P1).
1053
1054Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1055with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
1056present in the original map have been correctly recovered, although the amplitude of the temperature
1057fluctuations on the recovered map is significantly smaller (factor $sim 5$) than in the original map. This is mostly
1058due to the damping of the large scale ($k \lesssim 0.04 h \mathrm{Mpc^{-1}} $) due the poor interferometer
1059response at large angle ($\theta \gtrsim 4^\circ $).
1060
1061We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
1062presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
1063However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1064or smearing procedure described here are key ingredient for recovering the 21 cm LSS power spectrum.
1065It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
1066($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1067has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
1068significantly the ripples from bright radio sources.
1069We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1070with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
1071such a smooth beam, compared to the more complex instrument response
1072${\cal R}(u,v,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1073
1074\begin{figure*}
1075\centering
1076\vspace*{-25mm}
1077\mbox{
1078\hspace*{-20mm}
1079\includegraphics[width=1.15\textwidth]{Figs/extlsspk.pdf}
1080}
1081\vspace*{-35mm}
1082\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1083continuum radio emissions at $z \sim 0.6$, for the instrument configuration (a), $11\times11$
1084packed array interferometer.
1085Left: GSM/Model-I , right: Haslam+NVSS/Model-II. black curve shows the residual after foreground subtraction,
1086corresponding to the 21 cm signal, WITHOUT applying the beam correction. Red curve shows the recovered 21 cm
1087signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange/yellow curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
1088\label{extlsspk}
1089\end{figure*}
1090
1091
1092\begin{figure*}
1093\centering
1094\vspace*{-20mm}
1095\mbox{
1096\hspace*{-25mm}
1097\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1098}
1099\vspace*{-25mm}
1100\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1101with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer.
1102Notice the difference between the temperature color scales (mK) for the top and bottom maps. }
1103\label{extlssmap}
1104\end{figure*}
1105
1106\subsection{$P_{21}(k)$ measurement transfer function}
1107\label{tfpkdef}
1108The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1109 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1110We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
1111if total power measurements (auto-correlations) are not used in the case of interferometers.
1112The sky reconstruction and the component separation introduce additional filtering and distortions.
1113Ideally, one has to define a power spectrum measurement response or {\it transfer function} in the
1114radial direction, ($\lambda$ or redshift, $TF(k_\parallel)$) and in the transverse plane ( $TF(k_\perp)$ ).
1115The real transverse plane transfer function might even be anisotropic.
1116
1117However, in the scope of the present study, we define an overall transfer function $TF(k)$ as the ratio of the
1118recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$:
1119\begin{equation}
1120TF(k) = P_{21}^{rec}(k) / P_{21}(k)
1121\end{equation}
1122
1123Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1124separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes.
1125The orange/yellow curve shows the ratio $P_{21}^{smoothed}(k)/P_{21}(k)$ of the computed to the original
1126power spectrum, if the original LSS temperature cube is smoothed by the frequency independent target beam
1127FWHM=30' for the GSM simulations (left), 36' for Model-II (right). This orange/yellow
1128curve shows the damping effect due to the finite instrument size at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1129The recovered power spectrum suffers also significant damping at large scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $ due to poor interferometer
1130response at large angles ($ \theta \gtrsim 4^\circ-5^\circ$), as well as to the filtering of radial or longitudinal Fourier modes along
1131the frequency or redshift direction ($k_\parallel$) by the component separation algorithm.
1132The red curve shows the ratio of $P(k)$ computed on the recovered or extracted 21 cm LSS signal, to the original
1133LSS temperature cube $P_{21}^{rec}(k)/P_{21}(k)$ and corresponds to the transfer function $TF(k)$ defined above,
1134for $z=0.6$ and instrument setup (a).
1135The black (thin line) curve shows the ratio of recovered to the smoothed
1136power spectrum $P_{21}^{rec}(k)/P_{21}^{smoothed}(k)$. This latter ratio (black curve) exceeds one for $k \gtrsim 0.2$, which is
1137due to the noise or system temperature. It should stressed that the simulations presented in this section were
1138focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
1139$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1140
1141This transfer function is well represented a the analytical form:
1142\begin{equation}
1143TF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right)
1144\label{eq:tfanalytique}
1145\end{equation}
1146
1147We have performed simulation of observations and radio foreground subtraction using
1148the procedure described here for different redshifts and instrument configurations, in particular
1149for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1150increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1151becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
1152
1153We have determined the transfer function parameters of eq. \ref{eq:tfanalytique} $k_A, k_B, k_C$
1154for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1155for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
1156and the smoothed transfer functions are shown on figure \ref{tfpkz0525}.
1157
1158\begin{table}[hbt]
1159\begin{tabular}{|c|ccccc|}
1160\hline
1161\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1162\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1163\hline
1164$k_A$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1165$k_B$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1166$k_C$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1167\hline
1168\end{tabular}
1169\caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift
1170for instrumental setup (e), $20\times20$ packed array interferometer. }
1171\label{tab:paramtfk}
1172\end{table}
1173
1174\begin{figure*}
1175\centering
1176\vspace*{-30mm}
1177\mbox{
1178\hspace*{-20mm}
1179\includegraphics[width=1.15\textwidth]{Figs/extlssratio.pdf}
1180}
1181\vspace*{-35mm}
1182\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $TF(k) = P_{21}^{rec}(k) / P_{21}(k) $, at $z \sim 0.6$, for the instrument configuration (a), $11\times11$ packed array interferometer.
1183Left: GSM/Model-I , right: Haslam+NVSS/Model-II. }
1184\label{extlssratio}
1185\end{figure*}
1186
1187
1188\begin{figure}
1189\centering
1190\vspace*{-25mm}
1191\mbox{
1192\hspace*{-10mm}
1193\includegraphics[width=0.55\textwidth]{Figs/tfpkz0525.pdf}
1194}
1195\vspace*{-30mm}
1196\caption{Fitted/smoothed transfer function obtained for the recovered 21 cm power spectrum at different redshifts,
1197$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1198\label{tfpkz0525}
1199\end{figure}
1200
1201
1202
1203%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1204%% \section{ BAO scale determination and constrain on dark energy parameters}
1205% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1206%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1207%% and determine BAO scale as a function of redshifts.
1208%% Method:
1209%% \begin{itemize}
1210%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1211%% \item Compute / guess the instrument noise level for the same redshit values
1212%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1213%% \item Compute the DETF ellipse with different priors
1214%% \end{itemize}
1215
1216%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1217%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1218%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1219
1220\section{Sensitivity to cosmological parameters}
1221\label{cosmosec}
1222
1223In section \ref{pkmessens},
1224The impact of the various telescope configurations on the sensitivity for 21 cm
1225power spectrum measurement has been discussed in section \ref{pkmessens}.
1226Fig.~\ref{powerfig} shows the noise power spectra, and allows us to rank visually the configurations
1227in terms of instrument noise contribution to P(k) measurement.
1228The differences in $P_{noise}$ will translate into differing precisions
1229in the reconstruction of the BAO peak positions and in
1230the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
1231that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
1232has also an effect on the measured 21 cm power spectrum.
1233In this paragraph, we present our method and the results for the precisions on the estimation
1234of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
1235with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1236dishes, arranged into a filled $20 \times 20$ array.
1237
1238
1239\subsection{BAO peak precision}
1240
1241In order to estimate the precision with which BAO peak positions can be
1242measured, we used a method similar to the one established in \citep{blake.03}.
1243
1244
1245
1246To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1247 slices of Universe with a quarter-sky coverage and a redshift depth,
1248 $\Delta z=0.5$ for $0.25<z<2.75$.
1249The peaks in the generated spectra were then determined by a
1250fitting procedure and the reconstructed peak positions compared with the
1251generated peak positions.
1252The reconstructed power spectrum used in the simulation is
1253the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
1254damped by the transfer function $TF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
1255and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
1256established in section \ref{instrumnoise} with $N=400$:
1257\begin{equation}
1258 P^{rec}(k) = P_{21}(k) \times TF(k) + P_{noise}
1259\end{equation}
1260where the different terms ($P_{21}(k) , TF(k), P_{noise}$depend on the slice redshift.
1261The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
1262%\begin{equation}
1263\begin{eqnarray}
1264\label{eq:signal}
1265\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
12661\; +
1267\hspace*{40mm}
1268\nonumber
1269\\ \hspace*{20mm}
1270A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1271\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1272\frac{\kpar^2}{\kopar^2}}\;\right)
1273\end{eqnarray}
1274%\end{equation}
1275where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
1276are adjusted to the formula presented in
1277\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
1278envelop curve of the HI power spectrum without baryonic oscillations.
1279The parameters $\koperp$ and $\kopar$
1280are the inverses of the oscillation periods in k-space.
1281The following values have been used for these
1282parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1283$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
1284
1285Each simulation is performed for a given set of parameters
1286which are: the system temperature,$\Tsys$, an observation time,
1287$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
1288Then, each simulated power spectrum is fitted with a two dimensional
1289normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
1290the sum of the signal power spectrum damped by the transfer function and the
1291noise power spectrum multiplied by a
1292linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1293corresponds to the approximate position of the linear/non-linear transition.
1294This limit is established on the basis of the criterion discussed in
1295\citep{blake.03}.
1296In practice, we used for the redshifts
1297$z=0.5,\,\, 1.0$ and $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
1298and $0.23 \hMpcm$.
1299
1300Figure \ref{fig:fitOscill} shows the result of the fit for
1301one of theses simulations.
1302Figure \ref{fig:McV2} histograms the recovered values of $\koperp$ and $\kopar$
1303for 100 simulations.
1304The widths of the two distributions give an estimate
1305the statistical errors.
1306
1307In addition, in the fitting procedure, both the parameters modeling the
1308signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
1309spectrum $(a_0,a_1)$ are floated to take into account the possible
1310ignorance of the signal shape and the uncertainties in the
1311computation of the noise power spectrum.
1312In this way, we can correct possible imperfections and the
1313systematic uncertainties are directly propagated to statistical errors
1314on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1315fitted noise contribution to each simulation, the baryonic oscillations
1316are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
1317
1318
1319\begin{figure}[htbp]
1320\begin{center}
1321\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1322\caption{1D projection of the power spectrum for one simulation.
1323The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1324corresponding to the power spectrum without baryonic oscillations.
1325The dots represents one simulation for a "packed" array of cylinders
1326with a system temperature,$T_{sys}=50$K, an observation time,
1327$T_{obs}=$ 1 year,
1328a solid angle of $1\pi sr$,
1329an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1330The solid line is the result of the fit to the data.}
1331\label{fig:fitOscill}
1332\end{center}
1333\end{figure}
1334
1335\begin{figure}[htbp]
1336\begin{center}
1337%\includegraphics[width=\textwidth]{McV2.eps}
1338\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1339\caption{ Distributions of the reconstructed
1340wavelength $\koperp$ and $\kopar$
1341respectively, perpendicular and parallel to the line of sight
1342for simulations as in Fig. \ref{fig:fitOscill}.
1343The fit by a Gaussian of the distribution (solid line) gives the
1344width of the distribution which represents the statistical error
1345expected on these parameters.}
1346\label{fig:McV2}
1347\end{center}
1348\end{figure}
1349
1350
1351\begin{figure}[htbp]
1352\begin{center}
1353\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1354\caption{1D projection of the power spectrum averaged over 100 simulations
1355of the packed cylinder array $b$.
1356The simulations are performed for the following conditions: a system
1357temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
1358a solid angle of $1 \pi sr$,
1359an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1360The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1361corresponding to the power spectrum without baryonic oscillations
1362and the background estimated by a fit is subtracted. The errors are
1363the RMS of the 100 distributions for each $k$ bin and the dots are
1364the mean of the distribution for each $k$ bin. }
1365\label{fig:AverPk}
1366\end{center}
1367\end{figure}
1368
1369
1370
1371
1372%\subsection{Results}
1373
1374In our comparison of the various configurations, we have considered
1375the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1376\begin{itemize}
1377\item {\it Simulation without electronics noise}: the statistical errors on the power
1378spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1379 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1380The number of mode $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
1381\begin{equation}
1382V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1383N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k
1384\end{equation}
1385\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1386\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
1387$\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1388\item {\it Noise with transfer function}: we take into account of the interferometer and radio foreground
1389subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1390well as instrument noise $P_{noise}$.
1391\end{itemize}
1392
1393\begin{table}
1394\begin{tabular}{|l|ccccc|}
1395\hline
1396z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1397\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1398\hline
1399$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1400\hline
1401\end{tabular}
1402\caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
1403\label{tab:pnoiselevel}
1404\end{table}
1405
1406Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1407decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results. Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
1408
1409\begin{table*}[ht]
1410\begin{center}
1411\begin{tabular}{lc|c c c c c }
1412\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1413\hline\hline
1414\bf No Noise & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1415 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1416 \hline
1417 \bf Noise without Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1418 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1419 \hline
1420 \bf Noise with Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1421 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1422 \hline
1423 \bf Optimized survey & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1424 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1425 \hline
1426\end{tabular}
1427\end{center}
1428\caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
1429function of the redshift $z$ for various simulation configuration.
1430$1^{\rm st}$ row: simulations without noise with pure cosmic variance;
1431$2^{\rm nd}$
1432row: simulations with electronics noise for a telescope with dishes;
1433$3^{\rm th}$ row: simulations
1434with same electronics noise and with correction with the transfer function ;
1435$4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
1436\label{tab:ErrorOnK}
1437\end{table*}%
1438
1439
1440
1441\subsection{Expected sensitivity on $w_0$ and $w_a$}
1442
1443\begin{figure}
1444\begin{center}
1445\includegraphics[width=8.5cm]{Figs/dist.pdf}
1446\caption{
1447The two ``Hubble diagrams'' for BAO experiments.
1448The four falling curves give the angular size of the acoustic horizon
1449(left scale) and the four
1450rising curves give the redshift interval of the acoustic horizon (right scale).
1451The solid lines are for
1452$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1453the dashed for
1454$(1,0,-1)$
1455the dotted for
1456$(0.27,0,-1)$, and
1457the dash-dotted for
1458$(0.27,0.73,-0.9)$,
1459The error bars on the solid curve correspond to the four-month run
1460(packed array)
1461of Table \ref{tab:ErrorOnK}.
1462 }
1463\label{fig:hubble}
1464\end{center}
1465\end{figure}
1466
1467
1468The observations give the \HI power spectrum in
1469angle-angle-redshift space rather than in real space.
1470The inverse of the peak positions in the observed power spectrum therefore
1471gives the angular and redshift intervals corresponding to the
1472sonic horizon.
1473The peaks in the angular spectrum are proportional to
1474$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
1475$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1476$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
1477(see Eq. \ref{eq:expHz}):
1478\begin{equation}
1479d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1480d_T = \int_0^z d_H(z) dz
1481\label{eq:dTdH}
1482\end{equation}
1483The quantities $d_T$, $d_H$ and $a_s$ all depend on
1484the cosmological parameters.
1485Figure \ref{fig:hubble} gives the angular and redshift intervals
1486as a function of redshift for four cosmological models.
1487The error bars on the lines for
1488$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1489correspond to the expected errors
1490on the peak positions
1491taken from Table \ref{tab:ErrorOnK}
1492for the four-month runs with the packed array.
1493We see that with these uncertainties, the data would be able to
1494measure $w$ at better than the 10\% level.
1495
1496
1497To estimate the sensitivity
1498to parameters describing dark energy equation of
1499state, we follow the procedure explained in
1500\citep{blake.03}. We can introduce the equation of
1501state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
1502replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1503(Eq. \ref{eq:dTdH}) by:
1504\begin{equation}
1505\Omega_\Lambda = \Omega_{\Lambda}^0 \exp \left[ 3 \int_0^z
1506\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1507\end{equation}
1508where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1509respect to the critical density.
1510Using the relative errors on $\koperp$ and $\kopar$ given in
1511Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1512five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1513Then, the combination of this BAO Fisher
1514matrix with the Fisher matrix obtained for Planck mission, allows us to
1515compute the errors on dark energy parameters.
1516The Planck Fisher matrix is
1517obtained for the 8 parameters (assuming a flat universe):
1518$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1519$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1520$\tau$ (optical depth to the last-scatter surface).
1521
1522
1523For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1524observation time of 3 years, the packed 400-dish interferometer array has a
1525precision of 12\% on $w_0$ and 48\% on $w_a$.
1526The Figure of Merit, the inverse of the area in the 95\% confidence level
1527contours is 38.
1528 Finally, Fig.~\ref{fig:Compw0wa}
1529shows a comparison of different BAO projects, with a set of priors on
1530$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1531these parameters in early 2010's. This BAO project based on \HI intensity
1532mapping is clearly competitive with the current generation of optical
1533surveys such as SDSS-III \citep{sdss3}.
1534
1535
1536\begin{figure}[htbp]
1537\begin{center}
1538\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1539\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1540parameter plane $(w_0,w_a)$ for two BAO projects: SDSS-III (LRG) project
1541(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1542\label{fig:Compw0wa}
1543\end{center}
1544\end{figure}
1545
1546\section{Conclusions}
1547The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
1548approach to optical surveys to study the statistical properties of the large scale structures in the universe
1549up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
1550(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1551to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1552a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
1553focal plane array with a $\sim 100$ meter primary reflector will have the required sensitivity to measure
1554the 21 cm power spectrum. A method to compute the instrument response for interferometers
1555has been developed and we have computed the noise power spectrum for various telescope configurations.
1556The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
1557making the measurement of this latter signal a major scientific and technical challenge. We have also studied the performance of a simple foreground subtraction method through realistic models of the sky
1558emissions in the GHz domain and simulation of interferometric observations.
1559We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
1560requires a very good knowledge of the instrument response. Our method has allowed to define and
1561compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1562power spectrum.
1563Finally, we have used the computed noise power spectrum and P(k)
1564measurement response function to estimate
1565the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
1566could be carried using the current technology and would be comptetitive with the ongoing or planned
1567optical surveys for dark energy, with a fraction of their cost.
1568
1569% \begin{acknowledgements}
1570% \end{acknowledgements}
1571
1572\bibliographystyle{aa}
1573
1574\begin{thebibliography}{}
1575
1576%%%
1577\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1578 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
1579
1580%%%% References extraites de la section fournie par C. Yeche
1581\bibitem[Abdala \& Rawlings(2005)]{SKA} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1582
1583\bibitem[Albrecht et al.(2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
1584
1585\bibitem[Barkana \& Loeb(2007)]{h1temp} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70 627
1586
1587\bibitem[Binney \& Merrifield(1998)]{binneymerrifield} Binney, J. \& Merrifield, M. 1998, Galactic Astronomy.
1588(Princeton Univ. Press, Princeton)
1589
1590\bibitem[Blake and Glazebrook(2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665;
1591Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1592
1593% Galactic astronomy, emission HI d'une galaxie
1594\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1595% MWA description
1596\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
1597
1598%% Soustraction avant plans ds MWA
1599\bibitem[Bowman et al. (2009)]{bowman.07} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1600
1601% Intensity mapping/HSHS
1602\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P. 2008, \prl, 100, 091303
1603
1604% 2dFRS BAO observation
1605\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
1606
1607% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1608\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1609Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1610
1611% Parametrisation P(k)
1612\bibitem[Eisentein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112)
1613
1614% SDSS first BAO observation
1615\bibitem[Eisentein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1616
1617% SDSS-III description
1618\bibitem[Eisentein et al. (2011)]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
1619
1620% 21 cm emission for mapping matter distribution
1621\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1622
1623% Haslam 400 MHz synchrotron map
1624\bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1625Astron. \& Astrophys. Supp. Vol 47, {\tt (http://lambda.gsfc.nasa.gov/product/foreground/haslam\_408.cfm)}
1626
1627% WMAP CMB anisotropies 2008
1628\bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1629
1630% Distribution des radio sources
1631\bibitem[Jackson(2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1632
1633% HI mass in galaxies
1634\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras
1635( astro-ph/0907.1416)
1636
1637% LSST Science book
1638\bibitem[LSST.Science]{lsst.science}
1639{\it LSST Science book}, LSST Science Collaborations, 2009, arXiv:0912.0201
1640
1641% Foret Ly alpha - 1
1642\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1643
1644% Foret Ly alpha - 2 , BAO from Ly-a
1645\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1646
1647% Boomerang 2000, Acoustic pics
1648\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1649
1650% Papier sur le traitement des observations radio / mode mixing
1651\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1652
1653% Global Sky Model Paper
1654\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1655\mnras, 388, 247-260
1656
1657% Original CRT HSHS paper
1658\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:astro-ph/0606104
1659
1660% SDSS BAO 2007
1661\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
1662
1663% SDSS BAO 2010 - arXiv:0907.1660
1664\bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras 401, 2148-2168
1665
1666%% LOFAR description
1667\bibitem[Rottering et a,. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
1668%%%%
1669
1670%% SDSS-3
1671\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
1672
1673% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
1674
1675\bibitem[SKA.Science]{ska.science}
1676{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
1677New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
1678{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
1679
1680% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
1681\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173
1682
1683% FFT telescope
1684\bibitem[Tegmark \& Zaldarriaga (2008)]{tegmark.08} Tegmark, M. \& Zaldarriaga, M. 2008, arXiv:0802.1710
1685
1686% Thomson-Morane livre interferometry
1687\bibitem[Radio Astronomy (1998)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
1688Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
1689
1690% Lyman-alpha, HI fraction
1691\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
1692
1693% 21 cm temperature
1694\bibitem[Wyithe et al.(2007)]{wyithe.07} Wyithe, S., Loeb, A. \& Geil, P. 2007 http://fr.arxiv.org/abs/0709.2955, submitted to \mnras
1695
1696%% Today HI cosmological density
1697\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
1698
1699\end{thebibliography}
1700
1701\end{document}
1702
1703%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1704% Examples for figures using graphicx
1705% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
1706% is available on a lot of LaTeX public servers or ctan mirrors.
1707% The file is : epslatex.pdf
1708%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1709
1710
1711\end{document}
Note: See TracBrowser for help on using the repository browser.