source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4043

Last change on this file since 4043 was 4043, checked in by ansari, 14 years ago

Modifs texte papier pour version V3 modifee en reponse au 2eme rapport du referee, Reza 12/12/2011

File size: 107.6 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14% \documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30%% Commande pour les references
31\newcommand{\citep}[1]{(\cite{#1})}
32%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
33
34%% Definitions diverses
35\newcommand{\HI}{$\mathrm{H_I}$ }
36\newcommand{\kb}{k_B} % Constante de Boltzmann
37\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
38\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
39\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
40\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
41\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
42
43\newcommand{\dlum}{d_L}
44\newcommand{\dang}{d_A}
45\newcommand{\hub}{ h_{70} }
46\newcommand{\hubb}{ h_{100} } % h_100
47
48\newcommand{\etaHI}{ n_{\tiny HI} }
49\newcommand{\fHI}{ f_{H_I}(z)}
50\newcommand{\gHI}{ f_{H_I}}
51\newcommand{\gHIz}{ f_{H_I}(z)}
52
53\newcommand{\vis}{{\cal V}_{12} }
54
55\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
56
57\newcommand{\lgd}{\mathrm{log_{10}}}
58
59%% Definition fonction de transfer
60\newcommand{\TrF}{\mathbf{T}}
61%% Definition (u,v) , ...
62\def\uv{\mathrm{u,v}}
63\def\uvu{\mathrm{u}}
64\def\uvv{\mathrm{v}}
65\def\dudv{\mathrm{d u d v}}
66
67% Commande pour marquer les changements du papiers pour le referee
68% \def\changemark{\bf }
69\def\changemark{}
70\def\changemarkb{\bf }
71
72
73%%% Definition pour la section sur les param DE par C.Y
74\def\Mpc{\mathrm{Mpc}}
75\def\hMpcm{\,h \,\Mpc^{-1}}
76\def\hmMpc{\,h^{-1}\Mpc}
77\def\kperp{k_\perp}
78\def\kpar{k_\parallel}
79\def\koperp{k_{BAO\perp }}
80\def\kopar{k_{BAO\parallel}}
81
82%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83\usepackage{txfonts}
84%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85%
86\begin{document}
87%
88 \title{21 cm observation of LSS at z $\sim$ 1 }
89
90 \subtitle{Instrument sensitivity and foreground subtraction}
91
92 \author{
93 R. Ansari
94 \inst{1} \inst{2}
95 \and
96 J.E. Campagne \inst{2}
97 \and
98 P.Colom \inst{3}
99 \and
100 J.M. Le Goff \inst{4}
101 \and
102 C. Magneville \inst{4}
103 \and
104 J.M. Martin \inst{5}
105 \and
106 M. Moniez \inst{2}
107 \and
108 J.Rich \inst{4}
109 \and
110 C.Y\`eche \inst{4}
111 }
112
113 \institute{
114 Universit\'e Paris-Sud, LAL, UMR 8607, CNRS/IN2P3, F-91405 Orsay, France
115 \email{ansari@lal.in2p3.fr}
116 \and
117 CNRS/IN2P3, Laboratoire de l'Acc\'el\'erateur Lin\'eaire (LAL)
118 B.P. 34, 91898 Orsay Cedex, France
119 \and
120 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
121 % \thanks{The university of heaven temporarily does not
122 % accept e-mails}
123 \and
124 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
125 \and
126 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
127 }
128
129 \date{Received August 5, 2011; accepted xxxx, 2011}
130
131% \abstract{}{}{}{}{}
132% 5 {} token are mandatory
133
134 \abstract
135 % context heading (optional)
136 % {} leave it empty if necessary
137 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
138cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
139properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
140using radio interferometers with large instantaneous field of view and waveband.}
141 % aims heading (mandatory)
142 { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
143instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
144 % methods heading (mandatory)
145 { For each configuration, we determine instrument response by computing the $(\uv)$ or Fourier angular frequency
146plane coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
147hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
148separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
149 % results heading (mandatory)
150 { We have computed the noise power spectrum for different instrument configurations as well as the extracted
151 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
152 the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
153 % conclusions heading (optional), leave it empty if necessary
154 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
155 \mbox{$\sim 10000 \, \mathrm{m^2}$} will be able to detect BAO signal at redshift z $\sim 1$ and will be
156 competitive with optical surveys. }
157
158 \keywords{ large-scale structure of Universe --
159 dark energy -- Instrumentation: interferometers --
160 Radio lines; galaxies -- Radio continuum: general }
161
162 \maketitle
163%
164%________________________________________________________________
165% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
166% Toutes les figures sont provisoires }
167
168\section{Introduction}
169
170% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
171The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
172with redshift is one the major tools in observational cosmology. These structures are usually mapped through
173optical observation of galaxies which are used as a tracer of the underlying matter distribution.
174An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
175(\HI) as a tracer with intensity mapping has been proposed in recent years (\cite{peterson.06} , \cite{chang.08}).
176Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in literature
177\citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or
178MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
179
180Evidence in favor of the acceleration of the expansion of the universe have been
181accumulated over the last twelve years, thanks to the observation of distant supernovae,
182CMB anisotropies and detailed analysis of the LSS.
183A cosmological Constant ($\Lambda$) or new cosmological
184energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
185Dark Energy is considered as one of the most intriguing puzzles in Physics and Cosmology.
186% Constraining the properties of this new cosmic fluid, more precisely
187% its equation of state is central to current cosmological researches.
188Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
189more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
190of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
191and Baryon Acoustic Oscillations (BAO).
192
193BAO are features imprinted in the distribution of galaxies, due to the frozen
194sound waves which were present in the photon-baryon plasma prior to recombination
195at \mbox{$z \sim 1100$}.
196This scale can be considered as a standard ruler with a comoving
197length of \mbox{$\sim 150 \mathrm{Mpc}$}.
198These features have been first observed in the CMB anisotropies
199and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}).
200The BAO modulation has been subsequently observed in the distribution of galaxies
201at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
202\citep{eisenstein.05} \citep{percival.07} \citep{percival.10}, 2dGFRS \citep{cole.05} as well as
203WiggleZ \citep{blake.11} optical galaxy surveys.
204
205Ongoing {\changemarkb surveys such as BOSS} \citep{eisenstein.11} or future surveys
206{\changemarkb such as LSST} \citep{lsst.science}
207plan to measure precisely the BAO scale in the redshift range
208$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
209or through 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
210\citep{baolya},\citep{baolya2}.
211Radio observation of the 21 cm emission of neutral hydrogen appears as
212a very promising technique to map matter distribution up to redshift $z \sim 3$,
213complementary to optical surveys, especially in the optical redshift desert range
214$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
215
216In section 2, we discuss the intensity mapping and its potential for measurement of the
217\HI mass distribution power spectrum. The method used in this paper to characterize
218a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
219We show also the results for the 3D noise power spectrum for several instrument configurations.
220The contribution of foreground emissions due to the galactic synchrotron and radio sources
221is described in section 4, as well as a simple component separation method. The performance of this
222method using two different sky models is also presented in section 4.
223The constraints which can be obtained on the Dark Energy parameters and DETF figure
224of merit for typical 21 cm intensity mapping survey are discussed in section 5.
225
226
227%__________________________________________________________________
228
229\section{Intensity mapping and \HI power spectrum}
230
231% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
232
233\subsection{21 cm intensity mapping}
234%%%
235Most of the cosmological information in the LSS is located at large scales
236($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
237might suffer from the uncertainties on the non linear clustering effects.
238The BAO features in particular are at the degree angular scale on the sky
239and thus can be resolved easily with a rather modest size radio instrument
240(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
241can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
242or along the longitudinal (line of sight or redshift $k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
243the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
244BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
245longitudinal BAO clustering, which is a challenge for photometric optical surveys.
246
247In order to obtain a measurement of the LSS power spectrum with small enough statistical
248uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
249typically few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
250obtained when comparing the distance or Hubble parameter measurements with
251DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
252
253Radio instruments intended for BAO surveys must thus have large instantaneous field
254of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
255to explore large redshift domains.
256
257Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
258discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}),
259the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
260However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
261The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarisations
262of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
263\begin{equation}
264S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
265\end{equation}
266where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
267\ref{slims21} (left) we have computed the sensitivity for 6 different sets of instrument effective area and system
268temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
269The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
270dispersion of few 100 km/s.
271These detection limits should be compared with the expected 21 cm brightness
272$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
273\begin{equation}
274 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
275\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
276\end{equation}
277 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$
278is the source velocity dispersion.
279{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
280galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
281of an intensity mapping survey.}
282% {\color{red} Faut-il developper le calcul en annexe ? }
283
284In table \ref{slims21} (right), we show the 21 cm brightness for
285compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
286$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
287WMAP \LCDM universe \citep{komatsu.11}. $10^9 - 10^{10} M_\odot$ of neutral gas mass
288is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
289would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
290
291Intensity mapping has been suggested as an alternative and economic method to map the
2923D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} and \citep{seo.10}.
293{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
294\citep{chang.10} and at GMRT \citep{ghosh.11}}.
295In this approach, sky brightness map with angular resolution \mbox{$\sim 10-30 \, \mathrm{arc.min}$} is made for a
296wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
297would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to hundred galaxies
298and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
299the observed frequency $\nu$ would be translated to the emission redshift $z$ through
300the well known relation:
301\begin{eqnarray}
302 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
303\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
304\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
305 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
306\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
307\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
308\end{eqnarray}
309The large scale distribution of the neutral hydrogen, down to angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
310can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
311map as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
312(radiation power/unit solid angle/unit surface/unit frequency)
313can be converted to brightness temperature using the Rayleigh-Jeans approximation of black body radiation law:
314$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
315
316%%%%%%%%
317\begin{table}
318\caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
319frequency band (left). 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
320\label{slims21}
321\begin{center}
322\begin{tabular}{|c|c|c|}
323\hline
324$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
325\hline
3265000 & 50 & 66 \\
3275000 & 25 & 33 \\
328100 000 & 50 & 3.3 \\
329100 000 & 25 & 1.66 \\
330500 000 & 50 & 0.66 \\
331500 000 & 25 & 0.33 \\
332\hline
333\end{tabular}
334%%
335\hspace{3mm}
336%%
337\begin{tabular}{|c|c|c|}
338\hline
339$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
340\hline % dernier chiffre : sans le facteur (1+z)
3410.25 & 1235 & 175 \\ % 140
3420.50 & 2800 & 40 \\ % 27
3431.0 & 6600 & 9.6 \\ % 4.8
3441.5 & 10980 & 3.5 \\ % 1.74
3452.0 & 15710 & 2.5 \\ % 0.85
3462.5 & 20690 & 1.7 \\ % 0.49
347\hline
348\end{tabular}
349\end{center}
350\end{table}
351
352\subsection{ \HI power spectrum and BAO}
353In the absence of any foreground or background radiation
354{\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
355the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
356the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
357\begin{equation}
358 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
359 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
360\end{equation}
361where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
362coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
363constant and $H(z)$ is the Hubble parameter at the emission
364redshift {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}.
365For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
366can be expressed as:
367\begin{equation}
368H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
369\times 100 \, \, \mathrm{km/s/Mpc}
370\label{eq:expHz}
371\end{equation}
372Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
373neutral hydrogen number density and the corresponding 21 cm emission temperature
374can be written as a function of \HI relative density fluctuations:
375\begin{eqnarray}
376\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
377\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
378 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
379\end{eqnarray}
380where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
381and critical densities, $m_{H}$ is the hydrogen atom mass, and
382$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
383
384The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
385measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
386$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
387The neutral hydrogen fraction is expected to increase with redshift, as gas is used
388in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
389indicate a factor 3 increase in the neutral hydrogen
390fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
391compared to its present day value $\gHI(z=1.5) \sim 0.025$.
392The 21 cm brightness temperature and the corresponding power spectrum can be written as
393(\cite{madau.97}, \cite{zaldarriaga.04}), \cite{barkana.07}) :
394\begin{eqnarray}
395 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
396 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
397\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
398 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
399\label{eq:tbar21z}
400\end{eqnarray}
401
402The table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
403standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
404linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
40521 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
406($\gHI=0.02$). The matter power spectrum has been computed using the
407\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
408shown for the standard WMAP \LCDM cosmology, according to the relation:
409\begin{equation}
410\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
411\hspace{3mm}
412k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) }
413\end{equation}
414where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
415{ \changemark The matter power spectrum $P(k)$ has been measured using
416galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
417(\cite{cole.05}, \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
418shown here are comparable to the power spectrum measured from the galaxy surveys,
419once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$,
420redshift evolution and different bias factors have been accounted for. }
421% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
422% for an instrument corresponds approximately to half of its angular resolution.
423% {\color{red} Faut-il developper completement le calcul en annexe ? }
424
425\begin{table}
426\caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
427standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
428increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
429\label{tabcct21}
430% \begin{center}
431\begin{tabular}{|l|c|c|c|c|c|c|c|}
432\hline
433\hline
434 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
435\hline
436(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
437\hline
438(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
439\hline
440\hline
441\end{tabular}
442%\end{center}
443\end{table}
444
445\begin{figure}
446\vspace*{-4mm}
447\hspace{-5mm}
448\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
449\vspace*{-10mm}
450\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
451neutral gas fraction $\gHI=2\%$}
452\label{figpk21}
453\end{figure}
454
455
456\section{interferometric observations and P(k) measurement sensitivity }
457\label{pkmessens}
458\subsection{Instrument response}
459\label{instrumresp}
460We introduce briefly here the principles of interferometric observations and the definition of
461quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
462and complete presentation of observation methods and signal processing in radio astronomy.
463In astronomy we are usually interested in measuring the sky emission intensity,
464$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
465and interferometry in particular, receivers are sensitive to the sky emission complex
466amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
467length significantly smaller than the instrument resolution.
468\begin{eqnarray}
469& &
470I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
471& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '}
472\end{eqnarray}
473A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
474its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
475for each frequency can be written as a function of the electromagnetic wave vector
476$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
477\begin{equation}
478s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
479\end{equation}
480We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
481the EM wave vector is related to the wavelength $\lambda$ through the usual equation
482$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
483corresponds to the receiver intensity response:
484\begin{equation}
485L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
486\end{equation}
487The visibility signal of two receivers corresponds to the time averaged correlation between
488signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
489visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
490$\vec{r_2}$ can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
491\begin{equation}
492\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
493e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
494\end{equation}
495This expression can be simplified if we consider receivers with narrow field of view
496($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
497and coplanar in respect to their common axis.
498If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
499the common receivers axis, the visibilty would be written as the 2D Fourier transform
500of the product of the sky intensity and the receiver beam, for the angular frequency
501\mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
502\begin{equation}
503\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
504\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
505\end{equation}
506where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
507the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
508two $(\alpha, \beta)$ angular planes.
509
510Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
511of the sky intensity and the receiver beam:
512\begin{center}
513\begin{tabular}{ccc}
514$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
515$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
516$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \\
517\end{tabular}
518\end{center}
519
520The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
521wave number domain located around
522$(\uv)_{12}=( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
523given by the receiver beam Fourier transform.
524\begin{equation}
525\vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda)
526\end{equation}
527
528A single receiver instrument would measure the total power integrated in a spot centered around the
529origin in the $(\uv)$ or the angular wave mode plane. The shape of the spot depends on the receiver
530beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
531size.
532
533The correlation signal from a pair of receivers would measure the integrated signal on a similar
534spot, located around the central angular wave mode $(\uv)_{12}$ determined by the relative
535position of the two receivers (see figure \ref{figuvplane}).
536In an interferometer with multiple receivers, the area covered by different receiver pairs in the
537$(\uv)$ plane might overlap and some pairs might measure the same area (same base lines).
538Several beams can be formed using different combination of the correlations from a set of
539antenna pairs.
540
541An instrument can thus be characterized by its $(\uv)$ plane coverage or response
542${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
543the instrument response is simply the Fourier transform of the beam.
544For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
545a multi-horn system, each beam (b) will have its own response
546${\cal R}_b(\uv,\lambda)$.
547For an interferometer, we can compute a raw instrument response
548${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(\uv)$ plane coverage by all
549receiver pairs with uniform weighting.
550Obviously, different weighting schemes can be used, changing
551the effective beam shape and thus the response ${\cal R}_{w}(\uv,\lambda)$
552and the noise behaviour. If the same Fourier angular frequency mode is measured
553by several receiver pairs, the raw instrument response might then be larger
554that unity. This non normalized instrument response is used to compute the projected
555noise power spectrum in the following section (\ref{instrumnoise}).
556We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as:
557\begin{equation}
558{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right]
559\end{equation}
560This normalized instrument response can be used to compute the effective instrument beam,
561in particular in section \ref{recsec}.
562
563{\changemark Detection of the reionisation at 21 cm has been an active field
564in the last decade and different groups have built
565instruments to detect reionisation signal around 100 MHz: LOFAR
566\citep{rottgering.06}, MWA (\cite{bowman.07}, \cite{lonsdale.09}) and PAPER \citep{parsons.09} .
567Several authors have studied the instrumental noise
568and statistical uncertainties when measuring the reionisation signal power spectrum;
569the methods presented here to compute the instrument response
570and sensitivities are similar to the ones developed in these publications
571(\cite{morales.04}, \cite{bowman.06}, \cite{mcquinn.06}). }
572
573\begin{figure}
574% \vspace*{-2mm}
575\centering
576\mbox{
577\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
578}
579\vspace*{-15mm}
580\caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.}
581\label{figuvplane}
582\end{figure}
583
584\subsection{Noise power spectrum computation}
585\label{instrumnoise}
586Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
587bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
588$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
589$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
590corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
591noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
592corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies
593\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
594measurement from a pair of receivers can be written as:
595\begin{eqnarray}
596P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
597P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
598\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
599\label{eq:pnoisepairD}
600\end{eqnarray}
601
602We can characterize the sky temperature measurement with a radio instrument by the noise
603spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$
604per unit area of angular frequencies $\delta \uvu \times \delta \uvv$.
605For an interferometer made of identical receiver elements, several ($n$) receiver pairs
606might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
607is then reduced by a factor $1/n$. More generally, we can write the instrument noise
608spectral power density using the instrument response defined in section \ref{instrumresp} :
609\begin{equation}
610P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) }
611\label{eq:pnoiseuv}
612\end{equation}
613
614When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
615$P(k)$ is computed, angles are translated into comoving transverse distances,
616and frequencies or wavelengths into comoving radial distance, using the following relations
617{\changemarkb (e.g. \cite{cosmo.peebles} chap. 13, \cite{cosmo.rich})} :
618{ \changemark
619\begin{eqnarray}
620\alpha , \beta & \rightarrow & \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \, \alpha,\beta \\
621\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\
622\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
623 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
624% \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\
625\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \delta k_z =
6262 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
627 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
628\end{eqnarray}
629}
630{ \changemark
631A brightness measurement at a point $(\uv,\lambda)$, covering
632the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
633to cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
634defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
635The measurement noise spectral density given by the equation \ref{eq:pnoisepairD} can then be
636translated into a 3D noise power spectrum, per unit of spatial frequencies
637$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) :
638
639\begin{eqnarray}
640(\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\
641P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv)
642 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
643 & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right)
644 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
645\label{eq:pnoisekxkz}
646\end{eqnarray}
647
648It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
649anymore on the individual measurement bandwidth.
650In the following paragraph, we will first consider an ideal instrument
651with uniform $(\uv)$ coverage
652in order to establish the general noise power spectrum behaviour for cosmological 21 cm surveys.
653The numerical method used to compute the 3D noise power spectrum is then presented in section
654\ref{pnoisemeth}.
655}
656
657\subsubsection{Uniform $(\uv)$ coverage}
658{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage (${\cal R}(\uv)=1$),
659and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
660The noise spectral power density from equation (\ref{eq:pnoisekxkz}) would then be
661constant, independent of $(k_x, k_y, \ell_\parallel(\nu)$. Such a noise power spectrum corresponds thus
662to a 3D white noise, with a uniform noise spectral density:}
663\begin{equation}
664P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
665\label{ctepnoisek}
666\end{equation}
667
668$P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
669$t_{int}$ is the integration time expressed in second,
670$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
671 $H(z)$ in $\mathrm{km/s/Mpc}$.
672
673The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
674with the number of observed Fourier modes; this number is proportional to the volume of the universe
675which is observed (sample variance). As the observed volume is proportional to the
676surveyed solid angle, we consider the survey of a fixed
677fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a given
678total observation time $t_{obs}$.
679A single dish instrument with diameter $D$ would have an instantaneous field of view
680$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
681a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
682Each sky direction or patch of size $\Omega_{FOV}$ will be observed during an integration
683time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
684for the integration time, we can compute a simple expression
685for the noise spectral power density by a single dish instrument of diameter $D$:
686\begin{equation}
687P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
688\end{equation}
689
690It is important to note that any real instrument do not have a flat
691response in the $(\uv)$ plane, and the observations provide no information above
692a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
693One has to take into account either a damping of the observed sky power
694spectrum or an increase of the noise spectral density if
695the observed power spectrum is corrected for damping. The white noise
696expressions given below should thus be considered as a lower limit or floor of the
697instrument noise spectral density.
698
699For a single dish instrument of diameter $D$ equipped with a multi-feed or
700phase array receiver system, with $N$ independent beams on sky,
701the noise spectral density decreases by a factor $N$,
702thanks to the increase of per pointing integration time:
703
704\begin{equation}
705P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
706\label{eq:pnoiseNbeam}
707\end{equation}
708
709This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
710identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
711of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.
712
713For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
714observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of
715$\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number
716$k_{\perp}^{max}$:
717\begin{equation}
718k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
719\label{kperpmax}
720\end{equation}
721
722Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
723as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
724beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
725The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
726year. The maximum comoving wave number $k^{max}$ is also shown as a function
727of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
728to take into account the radial component of $\vec{k}$ and the increase of
729the instrument noise level with $k_{\perp}$, we have taken the effective $k_{ max} $
730as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{eq. \ref{kperpmax}}:
731\begin{equation}
732k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
733\end{equation}
734
735\begin{figure}
736\vspace*{-25mm}
737\centering
738\mbox{
739\hspace*{-10mm}
740\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
741}
742\vspace*{-40mm}
743\caption{Top: minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
744as a function of redshift (top), for a one year survey of a quarter of the sky. Bottom:
745maximum $k$ value for 21 cm LSS power spectrum measurement by a 100 meter diameter
746primary antenna. }
747\label{pnkmaxfz}
748\end{figure}
749
750\subsubsection{3D noise power spectrum computation}
751\label{pnoisemeth}
752{ \changemark
753We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
754response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
755sensitivities for different instrument configurations, albeit the noise realization for a real instrument would not be
756isotropic.
757\begin{itemize}
758\item We start by a 3D Fourier coefficient grid, with the two first coordinates being the transverse angular wave modes,
759and the third being the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
760we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise},
761the grid cell size and dimensions have been chosen to represent a box in the universe
762\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
763with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
764This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
765the small angular extent, we have neglected the curvature of redshift shells.
766\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
767The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
768using equation (\ref{eq:uvkxky}), and the
769angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
770The noise variance is taken proportional to $P_{noise}$ :
771\begin{equation}
772\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
773\end{equation}
774\item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
775complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
776\begin{equation}
777\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm}
778 \sqrt{k_x^2+k_y^2+k_z^2} = k
779\end{equation}
780Noise samples corresponding to small instrument response, typically less than 1\% of the
781maximum instrument response are ignored when calculating $\tilde{P}_{noise}(k)$.
782However, we require to have a significant fraction, typically 20\% to 50\% of all possible modes
783$(k_x,k_y,k_z)$ measured for a given $k$ value.
784\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
785from random generations. The averaged computed noise power spectrum is normalized using
786equation \ref{eq:pnoisekxkz} and the instrument and survey parameters:
787{\changemarkb system temperature $\Tsys= 50 \mathrm{K}$,
788individual receiver size $D^2$ or $D_x D_y$ and the integration time $t_{int}$.
789This last parameter is obtained through the relation
790$t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration
791$t_{obs}=1 \mathrm{year}$ and the instantaneous field of view
792$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, for a total survey sky coverage
793of $\pi$ srad. }
794\end{itemize}
795
796It should be noted that it is possible to obtain a good approximation of the noise
797power spectrum shape, neglecting the redshift or frequency dependence of the
798instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
799using a fixed instrument response ${\cal R}(\uv,\lambda(z_0))$ and
800a constant radial distance $\dang(z_0)*(1+z_0)$.
801\begin{equation}
802\tilde{P}_{noise}(k) = < | {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
803\end{equation}
804The approximate power spectrum obtained through this simplified and much faster
805method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
806configurations.
807}
808
809\subsection{Instrument configurations and noise power spectrum}
810\label{instrumnoise}
811We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$
812with uniform weights in the $(\uv)$ plane for several instrument configurations:
813\begin{itemize}
814\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
815a square $11 \times 11$ configuration ($q=11$). This array covers an area of
816$55 \times 55 \, \mathrm{m^2}$
817\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
818in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
819$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
820shown in figure \ref{figconfbc}.
821\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
822 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
823particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
824four array corners. This array layout is also shown figure \ref{figconfbc}.
825\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
826equipped with a 100 beam focal plane receiver array.
827\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
828a square $20 \times 20$ configuration ($q=20$). This array covers an area of
829$100 \times 100 \, \mathrm{m^2}$
830\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
831wide. The focal line of each cylinder is equipped with 100 receivers, each
832$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
833This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
834a total of $400$ receivers per polarisation, as in the (e) configuration.
835We have computed the noise power spectrum for {\em perfect}
836cylinders, where all receiver pair correlations are used (fp), or for
837a non perfect instrument, where only correlations between receivers
838from different cylinders are used.
839\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
840wide. The focal line of each cylinder is equipped with 120 receivers, each
841$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
842This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
843a total of 960 receivers per polarisation. As for the (f) configuration,
844we have computed the noise power spectrum for {\em perfect}
845cylinders, where all receiver pair correlations are used (gp), or for
846a non perfect instrument, where only correlations between receivers
847from different cylinders are used.
848\end{itemize}
849
850\begin{figure}
851\centering
852\vspace*{-15mm}
853\mbox{
854\hspace*{-10mm}
855\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
856}
857\vspace*{-15mm}
858\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
859diameter dishes. }
860\label{figconfbc}
861\end{figure}
862
863We have used simple triangular shaped dish response in the $(\uv)$ plane.
864However, we have introduced a filling factor or illumination efficiency
865$\eta$, relating the effective dish diameter $D_{ill}$ to the
866mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
867as $\eta^2$ or $\eta_x \eta_y$.
868\begin{eqnarray}
869{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2}) \\
870 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
871\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
872\end{eqnarray}
873For the multi-dish configuration studied here, we have taken the illumination efficiency factor
874{\bf $\eta = 0.9$}.
875
876For the receivers along the focal line of cylinders, we have assumed that the
877individual receiver response in the $(\uv)$ plane corresponds to a
878rectangular shaped antenna. The illumination efficiency factor has been taken
879equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
880along the cylinder length. {\changemark We have used double triangular shaped
881response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
882\begin{equation}
883 {\cal L}_\Box(\uv,\lambda) =
884\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
885\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
886\end{equation}
887}
888It should be noted that the small angle approximation
889used here for the expression of visibilities is not valid for the receivers along
890the cylinder axis. However, some preliminary numerical checks indicate that
891the results obtained here for the noise spectral power density would not change significantly.
892The instrument responses shown here correspond to fixed pointing toward the zenith, which
893is the case for a transit type telescope.
894
895Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
896for the four configurations (a,b,c,d) with $\sim 100$ receivers per
897polarisation.
898
899{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we have
900computed the 3D noise power spectrum for each of the eight instrument configurations presented
901here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
902of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.}
903The resulting noise spectral power densities are shown in figure
904\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
905is due to the fact that we have ignored all auto-correlation measurements.
906It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
907should have enough sensitivity to map LSS in 21 cm at redshift z=1.
908
909\begin{figure*}
910\centering
911\mbox{
912% \hspace*{-10mm}
913\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
914}
915\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
916at 710 MHz (redshift $z=1$) for four configurations.
917(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
918of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
919(c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams.
920The common color scale (1 \ldots 80) is shown on the right. }
921\label{figuvcovabcd}
922\end{figure*}
923
924\begin{figure*}
925\vspace*{-10mm}
926\centering
927\mbox{
928% \hspace*{-5mm}
929\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
930}
931\vspace*{-20mm}
932\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
933and the noise power spectrum for several interferometer configurations
934 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
935computed for all configurations assuming a survey of a quarter of the sky over one year,
936with a system temperature $\Tsys = 50 \mathrm{K}$. }
937\label{figpnoisea2g}
938\end{figure*}
939
940
941\section{ Foregrounds and Component separation }
942\label{foregroundcompsep}
943Reaching the required sensitivities is not the only difficulty of observing the large
944scale structures in 21 cm. Indeed, the synchrotron emission of the
945Milky Way and the extra galactic radio sources are a thousand times brighter than the
946emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
947using Intensity Mapping, without identifying the \HI point sources is the main challenge
948for this novel observation method. Although this task might seem impossible at first,
949it has been suggested that the smooth frequency dependence of the synchrotron
950emissions can be used to separate the faint LSS signal from the Galactic and radio source
951emissions. {\changemark Discussion of contribution of different sources
952of radio foregrounds for measurement of reionization through redshifted 21 cm,
953as well foreground subtraction using their smooth frequency dependence can
954be found in (\cite{shaver.99}, \cite{matteo.02},\cite{oh.03}).}
955However, any real radio instrument has a beam shape which changes with
956frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
957technique. The effect of frequency dependent beam shape is some time referred to as {\em
958mode mixing}. {\changemark The effect of the frequency dependent beam shape on foreground subtraction
959has been discussed for example in \cite{morales.06}.}
960
961In this section, we present a short description of the foreground emissions and
962the simple models we have used for computing the sky radio emissions in the GHz frequency
963range. We present also a simple component separation method to extract the LSS signal and
964its performance. {\changemark The analysis presented here follows a similar path to
965a detailed foreground subtraction study carried for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
966We compute in particular the effect of the instrument response on the recovered
967power spectrum. The results presented in this section concern the
968total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
969corresponding to the central frequency $\nu \sim 884$ MHz.
970
971\subsection{ Synchrotron and radio sources }
972We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
973brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
974and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
975$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
976the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
977used in the simulations are given in the table \ref{skycubechars}.
978\begin{table}
979\caption{
980Sky cube characteristics for the simulation performed in this paper.
981Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
982$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells
983}
984\label{skycubechars}
985\begin{center}
986\begin{tabular}{|c|c|c|}
987\hline
988 & range & center \\
989\hline
990Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
991Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
992Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
993Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
994Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
995\hline
996\hline
997& resolution & N-cells \\
998\hline
999Right ascension & 3 arcmin & 1800 \\
1000Declination & 3 arcmin & 600 \\
1001Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
1002\hline
1003\end{tabular} \\[1mm]
1004\end{center}
1005\end{table}
1006%%%%
1007\par
1008Two different methods have been used to compute the sky temperature data cubes.
1009We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
1010maps of the emission temperature at different frequencies, from which we have
1011extracted the brightness temperature cube for the region defined above
1012(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
1013As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
1014difficult to have reliable results for the effect of point sources on the reconstructed
1015LSS power spectrum.
1016
1017We have thus made also a simple sky model using the Haslam Galactic synchrotron map
1018at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
1019catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
1020has been computed through the following steps:
1021
1022\begin{enumerate}
1023\item The Galactic synchrotron emission is modeled as a power law with spatially
1024varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
1025$\beta$ has a gaussian distribution centered at -2.8 and with standard
1026deviation $\sigma_\beta = 0.15$. {\changemark The
1027diffuse radio background spectral index has been measured for example by
1028\cite{platania.98} or \cite{rogers.08}.}
1029The synchrotron contribution to the sky temperature for each cell is then
1030obtained through the formula:
1031\begin{equation}
1032 T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta
1033\end{equation}
1034%%
1035\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
1036by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
1037the sky cubes. The source brightness in Jansky is converted to temperature taking the
1038pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels).
1039A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
1040map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
1041contribution of the radiosources to the sky temperature is computed as follows:
1042\begin{equation}
1043 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
1044\end{equation}
1045%%
1046\item The sky brightness temperature data cube is obtained through the sum of
1047the two contributions, Galactic synchrotron and resolved radio sources:
1048\begin{equation}
1049 T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu)
1050\end{equation}
1051\end{enumerate}
1052
1053 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
1054$T_{lss}(\alpha, \delta, \nu)$ have been computed using the
1055SimLSS \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package:
1056%
1057complex normal Gaussian fields were first generated in Fourier space.
1058The amplitude of each mode was then multiplied by the square root
1059of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
1060\citep{eisenhu.98}. We have used the standard cosmological parameters,
1061 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
1062$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
1063An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
1064in the linear regime,
1065in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved
1066to redshift $z=0.6$.
1067The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
1068$\Delta z \simeq 0.23$ in the longitudinal direction.
1069The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
1070sky cube angular and frequency resolution defined above.
1071{\changemarkb
1072We haven't taken into account the curvature of redshift shells when
1073converting SimLSS euclidean coordinates to angles and frequency coordinates
1074of the sky cubes analyzed here, which introduces distortions visible at large angles $\gtrsim 10^\circ$.
1075These angular scales, corresponding to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$
1076 are excluded for results presented in this paper.
1077}
1078
1079The mass fluctuations have been converted into temperature using equation \ref{eq:tbar21z},
1080and a neutral hydrogen fraction \mbox{$0.008 \times (1+0.6)$}, leading to a mean temperature of
1081$0.13 \, \mathrm{mK}$.
1082The total sky brightness temperature is computed as the sum
1083of foregrounds and the LSS 21 cm emission:
1084\begin{equation}
1085 T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
1086T_{sky} = T_{gsm}+T_{lss}
1087\end{equation}
1088
1089Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
1090temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
1091It should be noted that the standard deviation depends on the map resolution and the values given
1092in table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
1093angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
1094Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
1095with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
1096Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
1097for Model-I/GSM and Model-II. There is good agreement between the two models, although
1098the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
1099
1100\begin{table}
1101\caption{ Mean temperature and standard deviation for the different sky brightness
1102data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
1103\label{sigtsky}
1104\centering
1105\begin{tabular}{|c|c|c|}
1106\hline
1107 & mean (K) & std.dev (K) \\
1108\hline
1109Haslam & 2.17 & 0.6 \\
1110NVSS & 0.13 & 7.73 \\
1111Haslam+NVSS & 2.3 & 7.75 \\
1112(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
1113GSM & 2.1 & 0.8 \\
1114\hline
1115\end{tabular}
1116\end{table}
1117
1118we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
1119as for the radio foreground temperature cubes obtained from the two
1120models. We have also computed the power spectrum on sky brightness temperature
1121cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
1122The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
1123The GSM model has more large scale power compared to our simple Haslam+NVSS model,
1124while it lacks power at higher spatial frequencies. The mode mixing due to
1125frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
1126case. It can also be seen that the radio foreground power spectrum is more than
1127$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
1128to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
1129compared to the mK LSS signal.
1130
1131{ \changemark Contrary to most similar studies, where it is assumed that bright sources
1132can be nearly perfectly subtracted, our aim was to compute also their
1133effect in the foreground subtraction process.
1134The GSM model lacks the angular resolution needed to compute
1135correctly the effect of bright compact sources for 21 cm LSS observations and
1136the mode mixing due to the frequency dependence of the instrumental response,
1137while Model-II provides a reasonable description of these compact sources. Our simulated
1138sky cubes have an angular resolution $3'\times3'$, well below the typical
1139$15'$ resolution of the instrument configuration considered here.
1140However, Model-II might lack spatial structures at large scales, above a degree,
1141compared to Model-I/GSM, and the frequency variations as a simple power law
1142might not be realistic enough. The differences for the two sky models can be seen
1143in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
1144a 25' beam has negligible effect of the GSM power spectrum, as it originally lacks
1145structures below 0.5 degree. By using
1146these two models, we have explored some of the systematic uncertainties
1147related to foreground subtraction.}
1148
1149It should also be noted that in section 3, we presented the different instrument
1150configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
1151power spectrum is recovered unaffected in this case, while the noise power spectrum
1152increases at high k values (small scales). In practice, clean deconvolution is difficult to
1153implement for real data and the power spectra presented in this section are NOT corrected
1154for the instrumental response. The observed structures have thus a scale dependent damping
1155according to the instrument response, while the instrument noise is flat (white noise or scale independent).
1156
1157\begin{figure}
1158\centering
1159\vspace*{-10mm}
1160\mbox{
1161\hspace*{-20mm}
1162\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
1163}
1164\vspace*{-10mm}
1165\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
1166The Model-II (Haslam+NVSS),
1167has been smoothed with a 35 arcmin gaussian beam. }
1168\label{compgsmhtemp}
1169\end{figure}
1170
1171\begin{figure*}
1172\centering
1173\mbox{
1174% \hspace*{-10mm}
1175\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
1176}
1177\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
1178The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
1179\label{compgsmmap}
1180\end{figure*}
1181
1182\begin{figure}
1183\centering
1184% \vspace*{-25mm}
1185\mbox{
1186\hspace*{-6mm}
1187\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
1188}
1189\vspace*{-5mm}
1190\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with \mbox{$\gHI\simeq1.3\%$} (red, orange)
1191with the radio foreground power spectrum.
1192The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1193model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
1194as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam. This beam has
1195negligible effect on the GSM/Model-I power spectrum, as GSM has no structures below $\sim 0.5^\circ$.
1196}
1197\label{pkgsmlss}
1198\end{figure}
1199
1200
1201
1202\subsection{ Instrument response and LSS signal extraction }
1203\label{recsec}
1204The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1205$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
1206${\cal R}(\uv,\lambda)$.
1207We have considered the simple case where the instrument response is constant throughout the survey area, or independent
1208of the sky direction.
1209For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
1210\begin{enumerate}
1211\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1212$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k)$$
1213\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1214$ {\cal R}(\uv,\lambda_k) \lesssim 1$.
1215$$ {\cal T}_{sky}(\uv, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) $$
1216\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
1217without instrumental (electronic/$\Tsys$) white noise:
1218$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)
1219\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1220\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
1221the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1222{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
1223dependent instrumental response has already been applied.}
1224We have also considered that the system temperature and thus the
1225additive white noise level was independent of the frequency or wavelength.
1226\end{enumerate}
1227The LSS signal extraction performance depends obviously on the white noise level.
1228The results shown here correspond to the (a) instrument configuration, a packed array of
1229$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
1230to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1231cell. \\[1mm]
1232
1233The different steps of the simple component separation procedure that has been applied are
1234briefly described here.
1235\begin{enumerate}
1236\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1237beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
1238corresponds to a smearing or degradation of the angular resolution.
1239\begin{eqnarray*}
1240 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\
1241 {\cal T}_{mes}^{bcor}(u, v, \lambda_k) & = &
1242{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
1243{\cal T}_{mes}^{bcor}(u, v, \lambda_k) & \rightarrow & \mathrm{2D-FFT} \rightarrow T_{mes}^{bcor}(\alpha,\delta,\lambda)
1244\end{eqnarray*}
1245{\changemark
1246The virtual target beam ${\cal R}_f(\uv)$ has a lower resolution than the worst real instrument beam,
1247i.e at the lowest observed frequency.
1248No correction has been applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
1249attempt to represent imperfect knowledge of the instrument response.
1250We recall that this is the normalized instrument response,
1251${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$ has also a numerical upper bound $\sim 100$. }
1252\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1253 is fitted to the beam-corrected brightness temperature. The parameters have been obtained
1254using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
1255We show here the results for a pure power law (P1), as well as a modified power law (P2):
1256\begin{eqnarray*}
1257P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1258P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
1259\end{eqnarray*}
1260where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the
1261reference frequency $\nu_0$.
1262
1263{\changemark Interferometers have poor response at small $(\uv)$ corresponding to baselines
1264smaller than interferometer element size. The zero spacing baseline, the $(\uv)=(0,0)$ mode, represents
1265the mean temperature for a given frequency plane and can not be measured with interferometers.
1266We have used a simple trick to make the power law fitting procedure applicable:
1267we have set the mean value of the temperature for
1268each frequency plane according to a power law with an index close to the synchrotron index
1269($\beta\sim-2.8$) and we have checked that the results are not too sensitive to the
1270arbitrarily fixed mean temperature power law parameters. }
1271
1272\item The difference between the beam-corrected sky temperature and the fitted power law
1273$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1274\end{enumerate}
1275
1276Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1277for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
127821 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1279gaussian frequency independent beam is shown in orange (solid line),
1280and the extracted power spectrum, after beam {\em correction}
1281and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
1282We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1283or with the first order polynomial fit (P1).
1284
1285Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1286with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
1287present in the original map have been correctly recovered, although the amplitude of the temperature
1288fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
1289{\changemark This is mostly due to the damping of the large scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
1290due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
1291
1292We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
1293presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
1294However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1295or smearing procedure described here are key ingredient for recovering the 21 cm LSS power spectrum.
1296It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
1297($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1298has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
1299significantly the ripples from bright radio sources.
1300We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1301with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
1302such a smooth beam, compared to the more complex instrument response
1303${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1304
1305\begin{figure*}
1306\centering
1307% \vspace*{-25mm}
1308\mbox{
1309% \hspace*{-20mm}
1310\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
1311}
1312% \vspace*{-10mm}
1313\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1314continuum radio emissions at $z \sim 0.6$, \mbox{$\gHI\simeq1.3\%$}, for the instrument configuration (a), $11\times11$
1315packed array interferometer.
1316Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
1317corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
1318signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
1319\label{extlsspk}
1320\end{figure*}
1321
1322
1323\begin{figure*}
1324\centering
1325\vspace*{-20mm}
1326\mbox{
1327\hspace*{-25mm}
1328\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1329}
1330\vspace*{-25mm}
1331\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1332with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer.
1333Notice the difference between the temperature color scales (mK) for the top and bottom maps. }
1334\label{extlssmap}
1335\end{figure*}
1336
1337\subsection{$P_{21}(k)$ measurement transfer function}
1338\label{tfpkdef}
1339The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1340 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1341{\changemarkb
1342We remind that we have neglected the curvature of redshift or frequency shells
1343in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
1344The results presented here and our conclusions are thus restricted to wave mode range
1345$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
1346}
1347We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
1348if total power measurements (auto-correlations) are not used in the case of interferometers.
1349The sky reconstruction and the component separation introduce additional filtering and distortions.
1350The real transverse plane transfer function might even be anisotropic.
1351
1352However, in the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
1353recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
1354{\changemarkb , similar to the one defined by \cite{bowman.09} , equation (23):}
1355\begin{equation}
1356\TrF(k) = P_{21}^{rec}(k) / P_{21}(k)
1357\end{equation}
1358
1359Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1360separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed
1361$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
1362The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
1363power spectrum, if the original LSS temperature cube is smoothed by the frequency independent
1364target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
1365small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1366The red curve shows the transfer function for the GSM foreground model (Model-I) and the $11\times11$ filled array
1367interferometer (setup (a)), while the dashed red curve represents the transfer function for a D=55 meter
1368diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
1369array is also shown (orange curve). The recovered power spectrum suffers also significant damping at large
1370scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $, mostly due to the filtering of radial or
1371longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
1372by the component separation algorithm. We have been able to remove the ripples on the reconstructed
1373power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
1374target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
1375obtained for Model-II at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
1376
1377 It should be stressed that the simulations presented in this section were
1378focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
1379$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1380
1381This transfer function is well represented by the analytical form:
1382\begin{equation}
1383\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right)
1384\label{eq:tfanalytique}
1385\end{equation}
1386
1387We have performed simulation of observations and radio foreground subtraction using
1388the procedure described here for different redshifts and instrument configurations, in particular
1389for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1390increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1391becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
1392
1393We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
1394for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1395for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
1396and the corresponding transfer functions are shown on figure \ref{tfpkz0525}.
1397
1398\begin{table}[hbt]
1399\caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift
1400for instrumental setup (e), $20\times20$ packed array interferometer. }
1401\label{tab:paramtfk}
1402\begin{center}
1403\begin{tabular}{|c|ccccc|}
1404\hline
1405\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1406\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1407\hline
1408$k_A$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1409$k_B$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1410$k_C$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1411\hline
1412\end{tabular}
1413\end{center}
1414\end{table}
1415
1416\begin{figure}
1417\centering
1418% \vspace*{-25mm}
1419\mbox{
1420% \hspace*{-10mm}
1421\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
1422}
1423% \vspace*{-30mm}
1424\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$. for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of a frequency independent
1425gaussian beam of $\sim 30'$ is shown in black.
1426The transfer function $\TrF(k)$ for the instrument configuration (a), $11\times11$ packed array interferometer,
1427for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
1428for a D=55 meter diameter dish for the GSM model is also shown as the dashed red curve. }
1429\label{extlssratio}
1430\end{figure}
1431
1432
1433\begin{figure}
1434\centering
1435% \vspace*{-25mm}
1436\mbox{
1437% \hspace*{-10mm}
1438\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
1439}
1440%\vspace*{-30mm}
1441\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
1442$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1443\label{tfpkz0525}
1444\end{figure}
1445
1446
1447
1448%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1449%% \section{ BAO scale determination and constrain on dark energy parameters}
1450% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1451%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1452%% and determine BAO scale as a function of redshifts.
1453%% Method:
1454%% \begin{itemize}
1455%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1456%% \item Compute / guess the instrument noise level for the same redshit values
1457%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1458%% \item Compute the DETF ellipse with different priors
1459%% \end{itemize}
1460
1461%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1462%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1463%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1464
1465\section{Sensitivity to cosmological parameters}
1466\label{cosmosec}
1467
1468The impact of the various telescope configurations on the sensitivity for 21 cm
1469power spectrum measurement has been discussed in section \ref{pkmessens}.
1470Fig. \ref{figpnoisea2g} shows the noise power spectra, and allows us to rank visually the configurations
1471in terms of instrument noise contribution to P(k) measurement.
1472The differences in $P_{noise}$ will translate into differing precisions
1473in the reconstruction of the BAO peak positions and in
1474the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
1475that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
1476has also an effect on the measured 21 cm power spectrum.
1477In this paragraph, we present our method and the results for the precisions on the estimation
1478of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
1479with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1480dishes, arranged into a filled $20 \times 20$ array.
1481
1482
1483\subsection{BAO peak precision}
1484
1485In order to estimate the precision with which BAO peak positions can be
1486measured, we used a method similar to the one established in
1487\citep{blake.03} and \citep{glazebrook.05}.
1488
1489
1490
1491To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1492 slices of Universe with a quarter-sky coverage and a redshift depth,
1493 $\Delta z=0.5$ for $0.25<z<2.75$.
1494The peaks in the generated spectra were then determined by a
1495fitting procedure and the reconstructed peak positions compared with the
1496generated peak positions.
1497The reconstructed power spectrum used in the simulation is
1498the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
1499damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
1500and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
1501established in section \ref{instrumnoise} with $N=400$:
1502\begin{equation}
1503 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
1504\end{equation}
1505where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
1506The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
1507%\begin{equation}
1508\begin{eqnarray}
1509\label{eq:signal}
1510\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
15111\; +
1512\hspace*{40mm}
1513\nonumber
1514\\ \hspace*{20mm}
1515A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1516\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1517\frac{\kpar^2}{\kopar^2}}\;\right)
1518\end{eqnarray}
1519%\end{equation}
1520where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
1521are adjusted to the formula presented in
1522\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
1523envelop curve of the HI power spectrum without baryonic oscillations.
1524The parameters $\koperp$ and $\kopar$
1525are the inverses of the oscillation periods in k-space.
1526The following values have been used for these
1527parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1528$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
1529
1530Each simulation is performed for a given set of parameters
1531which are: the system temperature,$\Tsys$, an observation time,
1532$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
1533Then, each simulated power spectrum is fitted with a two dimensional
1534normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
1535the sum of the signal power spectrum damped by the transfer function and the
1536noise power spectrum multiplied by a
1537linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1538corresponds to the approximate position of the linear/non-linear transition.
1539This limit is established on the basis of the criterion discussed in
1540\citep{blake.03}.
1541In practice, we used for the redshifts
1542$z=0.5,\,\, 1.0$ and $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
1543and $0.23 \hMpcm$.
1544
1545Figure \ref{fig:fitOscill} shows the result of the fit for
1546one of these simulations.
1547Figure \ref{fig:McV2} histograms the recovered values of $\koperp$ and $\kopar$
1548for 100 simulations.
1549The widths of the two distributions give an estimate
1550of the statistical errors.
1551
1552In addition, in the fitting procedure, both the parameters modeling the
1553signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
1554spectrum $(a_0,a_1)$ are floated to take into account the possible
1555ignorance of the signal shape and the uncertainties in the
1556computation of the noise power spectrum.
1557In this way, we can correct possible imperfections and the
1558systematic uncertainties are directly propagated to statistical errors
1559on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1560fitted noise contribution to each simulation, the baryonic oscillations
1561are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
1562
1563
1564\begin{figure}[htbp]
1565\begin{center}
1566\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1567\caption{1D projection of the power spectrum for one simulation.
1568The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1569corresponding to the power spectrum without baryonic oscillations.
1570The dots represents one simulation for a "packed" array of cylinders
1571with a system temperature,$T_{sys}=50$K, an observation time,
1572$T_{obs}=$ 1 year,
1573a solid angle of $1\pi sr$,
1574an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1575The solid line is the result of the fit to the data.}
1576\label{fig:fitOscill}
1577\end{center}
1578\end{figure}
1579
1580\begin{figure}[htbp]
1581\begin{center}
1582%\includegraphics[width=\textwidth]{McV2.eps}
1583\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1584\caption{ Distributions of the reconstructed
1585wavelength $\koperp$ and $\kopar$
1586respectively, perpendicular and parallel to the line of sight
1587for simulations as in Fig. \ref{fig:fitOscill}.
1588The fit by a Gaussian of the distribution (solid line) gives the
1589width of the distribution which represents the statistical error
1590expected on these parameters.}
1591\label{fig:McV2}
1592\end{center}
1593\end{figure}
1594
1595
1596\begin{figure}[htbp]
1597\begin{center}
1598\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1599\caption{1D projection of the power spectrum averaged over 100 simulations
1600of the packed cylinder array $b$.
1601The simulations are performed for the following conditions: a system
1602temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
1603a solid angle of $1 \pi sr$,
1604an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1605The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1606corresponding to the power spectrum without baryonic oscillations
1607and the background estimated by a fit is subtracted. The errors are
1608the RMS of the 100 distributions for each $k$ bin and the dots are
1609the mean of the distribution for each $k$ bin. }
1610\label{fig:AverPk}
1611\end{center}
1612\end{figure}
1613
1614
1615
1616
1617%\subsection{Results}
1618
1619In our comparison of the various configurations, we have considered
1620the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1621\begin{itemize}
1622\item {\it Simulation without electronics noise}: the statistical errors on the power
1623spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1624 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1625The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
1626\begin{equation}
1627V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1628N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k
1629\end{equation}
1630\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1631\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
1632$\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1633\item {\it Noise with transfer function}: we take into account the interferometer response and radio foreground
1634subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1635well as the instrument noise $P_{noise}$.
1636\end{itemize}
1637
1638\begin{table}
1639\caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
1640\label{tab:pnoiselevel}
1641\begin{tabular}{|l|ccccc|}
1642\hline
1643z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1644\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1645\hline
1646$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1647\hline
1648\end{tabular}
1649\end{table}
1650
1651Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1652decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results. Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
1653
1654\begin{table*}[ht]
1655\caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
1656function of the redshift $z$ for various simulation configuration.
1657$1^{\rm st}$ row: simulations without noise with pure cosmic variance;
1658$2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes;
1659$3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function ;
1660$4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
1661\label{tab:ErrorOnK}
1662\begin{center}
1663\begin{tabular}{lc|c c c c c }
1664\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1665\hline\hline
1666\bf No Noise & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1667 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1668 \hline
1669 \bf Noise without Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1670 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1671 \hline
1672 \bf Noise with Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1673 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1674 \hline
1675 \bf Optimized survey & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1676 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1677 \hline
1678\end{tabular}
1679\end{center}
1680\end{table*}%
1681
1682
1683
1684\subsection{Expected sensitivity on $w_0$ and $w_a$}
1685
1686\begin{figure}
1687\begin{center}
1688\includegraphics[width=8.5cm]{Figs/dist.pdf}
1689\caption{
1690The two ``Hubble diagrams'' for BAO experiments.
1691The four falling curves give the angular size of the acoustic horizon
1692(left scale) and the four
1693rising curves give the redshift interval of the acoustic horizon (right scale).
1694The solid lines are for
1695$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1696the dashed for
1697$(1,0,-1)$
1698the dotted for
1699$(0.27,0,-1)$, and
1700the dash-dotted for
1701$(0.27,0.73,-0.9)$,
1702The error bars on the solid curve correspond to the four-month run
1703(packed array)
1704of Table \ref{tab:ErrorOnK}.
1705 }
1706\label{fig:hubble}
1707\end{center}
1708\end{figure}
1709
1710
1711The observations give the \HI power spectrum in
1712angle-angle-redshift space rather than in real space.
1713The inverse of the peak positions in the observed power spectrum therefore
1714gives the angular and redshift intervals corresponding to the
1715sonic horizon.
1716The peaks in the angular spectrum are proportional to
1717$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
1718$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1719$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
1720(see Eq. \ref{eq:expHz}):
1721\begin{equation}
1722d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1723d_T = \int_0^z d_H(z) dz
1724\label{eq:dTdH}
1725\end{equation}
1726The quantities $d_T$, $d_H$ and $a_s$ all depend on
1727the cosmological parameters.
1728Figure \ref{fig:hubble} gives the angular and redshift intervals
1729as a function of redshift for four cosmological models.
1730The error bars on the lines for
1731$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1732correspond to the expected errors
1733on the peak positions
1734taken from Table \ref{tab:ErrorOnK}
1735for the four-month runs with the packed array.
1736We see that with these uncertainties, the data would be able to
1737measure $w$ at better than the 10\% level.
1738
1739
1740To estimate the sensitivity
1741to parameters describing dark energy equation of
1742state, we follow the procedure explained in
1743\citep{blake.03}. We can introduce the equation of
1744state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
1745replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1746(Eq. \ref{eq:dTdH}) by:
1747\begin{equation}
1748\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
1749\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1750\end{equation}
1751where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1752respect to the critical density.
1753Using the relative errors on $\koperp$ and $\kopar$ given in
1754Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1755five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1756Then, the combination of this BAO Fisher
1757matrix with the Fisher matrix obtained for Planck mission, allows us to
1758compute the errors on dark energy parameters.
1759{\changemark We have used the Planck Fisher matrix, computed for the
1760Euclid proposal \citep{laureijs.09}, for the 8 parameters:
1761$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1762$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1763$\tau$ (optical depth to the last-scatter surface),
1764assuming a flat universe. }
1765
1766For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1767observation time of 3 years, the packed 400-dish interferometer array has a
1768precision of 12\% on $w_0$ and 48\% on $w_a$.
1769The Figure of Merit, the inverse of the area in the 95\% confidence level
1770contours is 38.
1771Finally, Fig.~\ref{fig:Compw0wa}
1772shows a comparison of different BAO projects, with a set of priors on
1773$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1774these parameters in early 2010's. {\changemark The confidence contour
1775level in the plane $(w_0,w_a)$ have been obtained by marginalizing
1776over all the other parameters.} This BAO project based on \HI intensity
1777mapping is clearly competitive with the current generation of optical
1778surveys such as SDSS-III \citep{sdss3}.
1779
1780
1781\begin{figure}[htbp]
1782\begin{center}
1783\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1784\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1785parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
1786for two BAO projects: SDSS-III (LRG) project
1787(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1788\label{fig:Compw0wa}
1789\end{center}
1790\end{figure}
1791
1792\section{Conclusions}
1793The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
1794approach to optical surveys to study the statistical properties of the large scale structures in the universe
1795up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
1796(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1797to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1798a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
1799focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
1800the 21 cm power spectrum. A method to compute the instrument response for interferometers
1801has been developed and we have computed the noise power spectrum for various telescope configurations.
1802The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
1803making the measurement of this latter signal a major scientific and technical challenge. We have also studied the performance of a simple foreground subtraction method through realistic models of the sky
1804emissions in the GHz domain and simulation of interferometric observations.
1805We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
1806requires a very good knowledge of the instrument response. Our method has allowed us to define and
1807compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1808power spectrum.
1809Finally, we have used the computed noise power spectrum and $P(k)$
1810measurement response function to estimate
1811the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
1812could be carried using the current technology and would be competitive with the ongoing or planned
1813optical surveys for dark energy, with a fraction of their cost.
1814
1815% \begin{acknowledgements}
1816% \end{acknowledgements}
1817
1818\bibliographystyle{aa}
1819
1820\begin{thebibliography}{}
1821
1822%%%
1823%%%% LSST Science book
1824\bibitem[Abell et al. (2009)]{lsst.science}
1825{\it LSST Science book}, LSST Science Collaborations, Abell, P.A. {\it et al.} 2009, arXiv:0912.0201
1826
1827%% reference SKA - BAO / DE en radio avec les sources
1828\bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1829
1830% reference DETF - DE eq.state parameter figure of merit
1831\bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
1832
1833% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
1834\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1835 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
1836
1837%% Temperature HI 21 cm (Valeur pour la reionisation)
1838\bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
1839
1840%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
1841\bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1842\bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1843
1844% WiggleZ BAO observation
1845\bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, (accepted, arXiv/1105.2862)
1846
1847% Galactic astronomy, emission HI d'une galaxie
1848\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1849% 21cm reionisation P(k) estimation and sensitivities
1850\bibitem[Bowman et al. (2006)]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
1851% MWA description
1852\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
1853
1854%% Soustraction avant plans ds MWA
1855\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1856
1857%%% SKA-Science
1858\bibitem[Carilli et al. (2004)]{ska.science}
1859{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
1860New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
1861{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
1862
1863% Intensity mapping/HSHS
1864\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P., 2008, \prl, 100, 091303
1865
1866% Mesure 21 cm avec le GBT (papier Nature )
1867\bibitem[Chang et al. (2010)]{chang.10} Chang T-C, Pen U-L, Bandura K., Peterson J.B., 2010, \nat, 466, 463-465
1868
1869% 2dFRS BAO observation
1870\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
1871
1872% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1873\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1874Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1875
1876% Effet des radio-sources sur le signal 21 cm reionisation
1877\bibitem[Di Matteo et al. (2002)]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
1878
1879% Parametrisation P(k) - (astro-ph/9709112)
1880\bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj 496, 605-614
1881
1882% SDSS first BAO observation
1883\bibitem[Eisenstein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1884
1885% SDSS-III description
1886\bibitem[Eisenstein et al. (2011)]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
1887
1888% Papier de Field sur la profondeur optique HI en 1959
1889\bibitem[Field (1959)]{field.59} Field G.B., 1959, \apj, 129, 155
1890% 21 cm emission for mapping matter distribution
1891\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1892
1893% Mesure 21 cm a 610 MHz par GMRT
1894\bibitem[Ghosh et al. (2011)]{ghosh.11} Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur J. N., 2011, \mnras, 411, 2426-2438
1895
1896
1897% Haslam 400 MHz synchrotron map
1898\bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1899Astron. \& Astrophys. Supp. Vol 47, \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
1900
1901
1902% Distribution des radio sources
1903\bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1904
1905% WMAP 7 years cosmological parameters
1906\bibitem[Komatsu et al. (2011)]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley {\it et al.} 2011, \apjs, 192, p. 18 \\
1907\mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
1908
1909% HI mass in galaxies
1910\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.} 2009, \mnras, 399, 1447
1911% ( astro-ph/0907.1416)
1912
1913% Livre Astrophysical Formulae de Lang
1914\bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
1915
1916% WMAP CMB 7 years power spectrum 2011
1917% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1918\bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16
1919
1920%% Description MWA
1921\bibitem[Lonsdale et al. (2009)]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. {\it et al.} 2009, arXiv:0903.1828
1922
1923% Planck Fischer matrix, computed for EUCLID
1924\bibitem[Laureijs (2009)]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
1925
1926% Temperature du 21 cm
1927\bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
1928
1929% Foret Ly alpha - 1
1930\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1931
1932% Foret Ly alpha - 2 , BAO from Ly-a
1933\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1934
1935% Boomerang 2000, Acoustic pics
1936\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1937
1938%% PNoise and cosmological parameters with reionization
1939\bibitem[McQuinn et al. (2006)]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R.
19402006, \apj 653, 815-834
1941
1942% Papier sur la mesure de sensibilite P(k)_reionisation
1943\bibitem[Morales \& Hewitt (2004)]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7-18
1944
1945% Papier sur le traitement des observations radio / mode mixing
1946\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1947
1948%% Foreground removal using smooth frequency dependence
1949\bibitem[Oh \& Mack (2003)]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
1950
1951% Global Sky Model Paper
1952\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1953\mnras, 388, 247-260
1954
1955%% Description+ resultats PAPER
1956\bibitem[Parsons et al. (2009)]{parsons.09} Parsons A.R.,Backer D.C.,Bradley R.F. {\it et al.} 2009, arXiv:0904.2334
1957
1958% Livre Cosmo de Peebles
1959\bibitem[Peebles (1993)]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
1960Princeton University Press (1993)
1961
1962% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
1963\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
1964
1965% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
1966\bibitem[Platania et al. (1998)]{platania.98} Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998, \apj 505, 473-483
1967
1968% SDSS BAO 2007
1969\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
1970
1971% SDSS BAO 2010 - arXiv:0907.1660
1972\bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168
1973
1974% Livre Cosmo de Jim Rich
1975\bibitem[Rich (2001)]{cosmo.rich} James Rich, {\it Fundamentals of Cosmology}, Springer (2001)
1976
1977% Radio spectral index between 100-200 MHz
1978\bibitem[Rogers \& Bowman (2008)]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
1979
1980%% LOFAR description
1981\bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
1982%%%%
1983
1984%% SDSS-3
1985\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
1986
1987% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
1988\bibitem[Shaver et al. (1999))]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
1989
1990% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
1991
1992% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
1993\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173
1994
1995% Mesure P(k) par SDSS
1996\bibitem[Tegmark et al. (2004)]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. et al. 2004, \apj, 606, 702-740
1997
1998% FFT telescope
1999\bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
2000
2001% Thomson-Morane livre interferometry
2002\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
2003Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
2004
2005% Lyman-alpha, HI fraction
2006\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
2007
2008% BAO à 21 cm et reionisation
2009\bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955,
2010
2011%% Papier fluctuations 21 cm par Zaldarriaga et al
2012\bibitem[Zaldarriaga et al.(2004)]{zaldarriaga.04} Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
2013\apj, 608, 622-635
2014
2015%% Today HI cosmological density
2016\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
2017
2018\end{thebibliography}
2019
2020\end{document}
2021
2022%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2023% Examples for figures using graphicx
2024% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
2025% is available on a lot of LaTeX public servers or ctan mirrors.
2026% The file is : epslatex.pdf
2027%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2028
2029
2030\end{document}
Note: See TracBrowser for help on using the repository browser.