source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4044

Last change on this file since 4044 was 4044, checked in by ansari, 14 years ago

version quasi finale, V3, 2nd revision, soumise a A&A, Reza 20/12/2011

File size: 107.8 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14% \documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30%% Commande pour les references
31\newcommand{\citep}[1]{(\cite{#1})}
32%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
33
34%% Definitions diverses
35\newcommand{\HI}{$\mathrm{H_I}$ }
36\newcommand{\kb}{k_B} % Constante de Boltzmann
37\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
38\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
39\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
40\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
41\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
42
43\newcommand{\dlum}{d_L}
44\newcommand{\dang}{d_A}
45\newcommand{\hub}{ h_{70} }
46\newcommand{\hubb}{ h_{100} } % h_100
47
48\newcommand{\etaHI}{ n_{\tiny HI} }
49\newcommand{\fHI}{ f_{H_I}(z)}
50\newcommand{\gHI}{ f_{H_I}}
51\newcommand{\gHIz}{ f_{H_I}(z)}
52
53\newcommand{\vis}{{\cal V}_{12} }
54
55\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
56
57\newcommand{\lgd}{\mathrm{log_{10}}}
58
59%% Definition fonction de transfer
60\newcommand{\TrF}{\mathbf{T}}
61%% Definition (u,v) , ...
62\def\uv{\mathrm{u,v}}
63\def\uvu{\mathrm{u}}
64\def\uvv{\mathrm{v}}
65\def\dudv{\mathrm{d u d v}}
66
67% Commande pour marquer les changements du papiers pour le referee
68% \def\changemark{\bf }
69\def\changemark{}
70\def\changemarkb{\bf }
71
72
73%%% Definition pour la section sur les param DE par C.Y
74\def\Mpc{\mathrm{Mpc}}
75\def\hMpcm{\,h \,\Mpc^{-1}}
76\def\hmMpc{\,h^{-1}\Mpc}
77\def\kperp{k_\perp}
78\def\kpar{k_\parallel}
79\def\koperp{k_{BAO\perp }}
80\def\kopar{k_{BAO\parallel}}
81
82%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83\usepackage{txfonts}
84%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85%
86\begin{document}
87%
88 \title{21 cm observation of LSS at z $\sim$ 1 }
89
90 \subtitle{Instrument sensitivity and foreground subtraction}
91
92 \author{
93 R. Ansari
94 \inst{1} \inst{2}
95 \and
96 J.E. Campagne \inst{2}
97 \and
98 P.Colom \inst{3}
99 \and
100 J.M. Le Goff \inst{4}
101 \and
102 C. Magneville \inst{4}
103 \and
104 J.M. Martin \inst{5}
105 \and
106 M. Moniez \inst{2}
107 \and
108 J.Rich \inst{4}
109 \and
110 C.Y\`eche \inst{4}
111 }
112
113 \institute{
114 Universit\'e Paris-Sud, LAL, UMR 8607, CNRS/IN2P3, F-91405 Orsay, France
115 \email{ansari@lal.in2p3.fr}
116 \and
117 CNRS/IN2P3, Laboratoire de l'Acc\'el\'erateur Lin\'eaire (LAL)
118 B.P. 34, 91898 Orsay Cedex, France
119 \and
120 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
121 % \thanks{The university of heaven temporarily does not
122 % accept e-mails}
123 \and
124 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
125 \and
126 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
127 }
128
129 \date{Received August 5, 2011; accepted xxxx, 2011}
130
131% \abstract{}{}{}{}{}
132% 5 {} token are mandatory
133
134 \abstract
135 % context heading (optional)
136 % {} leave it empty if necessary
137 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
138cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
139properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
140using radio interferometers with large instantaneous field of view and waveband.}
141 % aims heading (mandatory)
142 { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
143instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
144 % methods heading (mandatory)
145 { For each configuration, we determine instrument response by computing the $(\uv)$ or Fourier angular frequency
146plane coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
147hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
148separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
149 % results heading (mandatory)
150 { We have computed the noise power spectrum for different instrument configurations as well as the extracted
151 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
152 the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
153 % conclusions heading (optional), leave it empty if necessary
154 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
155 \mbox{$\sim 10000 \, \mathrm{m^2}$} will be able to detect BAO signal at redshift z $\sim 1$ and will be
156 competitive with optical surveys. }
157
158 \keywords{ large-scale structure of Universe --
159 dark energy -- Instrumentation: interferometers --
160 Radio lines; galaxies -- Radio continuum: general }
161
162 \maketitle
163%
164%________________________________________________________________
165% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
166% Toutes les figures sont provisoires }
167
168\section{Introduction}
169
170% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
171The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
172with redshift is one the major tools in observational cosmology. These structures are usually mapped through
173optical observation of galaxies which are used as a tracer of the underlying matter distribution.
174An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
175(\HI) as a tracer with intensity mapping has been proposed in recent years (\cite{peterson.06} , \cite{chang.08}).
176Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in literature
177\citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or
178MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
179
180Evidence in favor of the acceleration of the expansion of the universe have been
181accumulated over the last twelve years, thanks to the observation of distant supernovae,
182CMB anisotropies and detailed analysis of the LSS.
183A cosmological Constant ($\Lambda$) or new cosmological
184energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
185Dark Energy is considered as one of the most intriguing puzzles in Physics and Cosmology.
186% Constraining the properties of this new cosmic fluid, more precisely
187% its equation of state is central to current cosmological researches.
188Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
189more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
190of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
191and Baryon Acoustic Oscillations (BAO).
192
193BAO are features imprinted in the distribution of galaxies, due to the frozen
194sound waves which were present in the photon-baryon plasma prior to recombination
195at \mbox{$z \sim 1100$}.
196This scale can be considered as a standard ruler with a comoving
197length of \mbox{$\sim 150 \mathrm{Mpc}$}.
198These features have been first observed in the CMB anisotropies
199and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}).
200The BAO modulation has been subsequently observed in the distribution of galaxies
201at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
202\citep{eisenstein.05} \citep{percival.07} \citep{percival.10}, 2dGFRS \citep{cole.05} as well as
203WiggleZ \citep{blake.11} optical galaxy surveys.
204
205Ongoing {\changemarkb surveys such as BOSS} \citep{eisenstein.11} or future surveys
206{\changemarkb such as LSST} \citep{lsst.science}
207plan to measure precisely the BAO scale in the redshift range
208$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
209or through 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
210\citep{baolya},\citep{baolya2}.
211Radio observation of the 21 cm emission of neutral hydrogen appears as
212a very promising technique to map matter distribution up to redshift $z \sim 3$,
213complementary to optical surveys, especially in the optical redshift desert range
214$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
215
216In section 2, we discuss the intensity mapping and its potential for measurement of the
217\HI mass distribution power spectrum. The method used in this paper to characterize
218a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
219We show also the results for the 3D noise power spectrum for several instrument configurations.
220The contribution of foreground emissions due to the galactic synchrotron and radio sources
221is described in section 4, as well as a simple component separation method. The performance of this
222method using two different sky models is also presented in section 4.
223The constraints which can be obtained on the Dark Energy parameters and DETF figure
224of merit for typical 21 cm intensity mapping survey are discussed in section 5.
225
226
227%__________________________________________________________________
228
229\section{Intensity mapping and \HI power spectrum}
230
231% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
232
233\subsection{21 cm intensity mapping}
234%%%
235Most of the cosmological information in the LSS is located at large scales
236($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
237might suffer from the uncertainties on the non linear clustering effects.
238The BAO features in particular are at the degree angular scale on the sky
239and thus can be resolved easily with a rather modest size radio instrument
240(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
241can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
242or along the longitudinal (line of sight or redshift $k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
243the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
244BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
245longitudinal BAO clustering, which is a challenge for photometric optical surveys.
246
247In order to obtain a measurement of the LSS power spectrum with small enough statistical
248uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
249typically few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
250obtained when comparing the distance or Hubble parameter measurements with
251DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
252
253Radio instruments intended for BAO surveys must thus have large instantaneous field
254of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
255to explore large redshift domains.
256
257Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
258discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}),
259the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
260However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
261The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarisations
262of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
263\begin{equation}
264S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
265\end{equation}
266where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
267\ref{slims21} (left) we have computed the sensitivity for 6 different sets of instrument effective area and system
268temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
269The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
270dispersion of few 100 km/s.
271These detection limits should be compared with the expected 21 cm brightness
272$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
273\begin{equation}
274 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
275\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
276\end{equation}
277 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$
278is the source velocity dispersion.
279{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
280galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
281of an intensity mapping survey.}
282% {\color{red} Faut-il developper le calcul en annexe ? }
283
284In table \ref{slims21} (right), we show the 21 cm brightness for
285compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
286$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
287WMAP \LCDM universe \citep{komatsu.11}. $10^9 - 10^{10} M_\odot$ of neutral gas mass
288is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
289would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
290
291Intensity mapping has been suggested as an alternative and economic method to map the
2923D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} and \citep{seo.10}.
293{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
294\citep{chang.10} and at GMRT \citep{ghosh.11}}.
295In this approach, sky brightness map with angular resolution \mbox{$\sim 10-30 \, \mathrm{arc.min}$} is made for a
296wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
297would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to hundred galaxies
298and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
299the observed frequency $\nu$ would be translated to the emission redshift $z$ through
300the well known relation:
301\begin{eqnarray}
302 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
303\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
304\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
305 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
306\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
307\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
308\end{eqnarray}
309The large scale distribution of the neutral hydrogen, down to angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
310can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
311map as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
312(radiation power/unit solid angle/unit surface/unit frequency)
313can be converted to brightness temperature using the Rayleigh-Jeans approximation of black body radiation law:
314$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
315
316%%%%%%%%
317\begin{table}
318\caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
319frequency band (left). 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
320\label{slims21}
321\begin{center}
322\begin{tabular}{|c|c|c|}
323\hline
324$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
325\hline
3265000 & 50 & 66 \\
3275000 & 25 & 33 \\
328100 000 & 50 & 3.3 \\
329100 000 & 25 & 1.66 \\
330500 000 & 50 & 0.66 \\
331500 000 & 25 & 0.33 \\
332\hline
333\end{tabular}
334%%
335\hspace{3mm}
336%%
337\begin{tabular}{|c|c|c|}
338\hline
339$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
340\hline % dernier chiffre : sans le facteur (1+z)
3410.25 & 1235 & 175 \\ % 140
3420.50 & 2800 & 40 \\ % 27
3431.0 & 6600 & 9.6 \\ % 4.8
3441.5 & 10980 & 3.5 \\ % 1.74
3452.0 & 15710 & 2.5 \\ % 0.85
3462.5 & 20690 & 1.7 \\ % 0.49
347\hline
348\end{tabular}
349\end{center}
350\end{table}
351
352\subsection{ \HI power spectrum and BAO}
353In the absence of any foreground or background radiation
354{\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
355the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
356the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
357relation {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}:
358\begin{equation}
359 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
360 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
361\end{equation}
362where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
363coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
364constant and $H(z)$ is the Hubble parameter at the emission
365redshift.
366For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
367can be expressed as:
368\begin{equation}
369H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
370\times 100 \, \, \mathrm{km/s/Mpc}
371\label{eq:expHz}
372\end{equation}
373Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
374neutral hydrogen number density and the corresponding 21 cm emission temperature
375can be written as a function of \HI relative density fluctuations:
376\begin{eqnarray}
377\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
378\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
379 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
380\end{eqnarray}
381where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
382and critical densities, $m_{H}$ is the hydrogen atom mass, and
383$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
384
385The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
386measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
387$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
388The neutral hydrogen fraction is expected to increase with redshift, as gas is used
389in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
390indicate a factor 3 increase in the neutral hydrogen
391fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
392compared to its present day value $\gHI(z=1.5) \sim 0.025$.
393The 21 cm brightness temperature and the corresponding power spectrum can be written as
394(\cite{madau.97}, \cite{zaldarriaga.04}), \cite{barkana.07}) :
395\begin{eqnarray}
396 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
397 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
398\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
399 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
400\label{eq:tbar21z}
401\end{eqnarray}
402
403The table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
404standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
405linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
40621 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
407($\gHI=0.02$). The matter power spectrum has been computed using the
408\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
409shown for the standard WMAP \LCDM cosmology, according to the relation:
410\begin{equation}
411\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
412\hspace{3mm}
413k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) }
414\end{equation}
415where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
416{ \changemark The matter power spectrum $P(k)$ has been measured using
417galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
418(\cite{cole.05}, \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
419shown here are comparable to the power spectrum measured from the galaxy surveys,
420once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$,
421redshift evolution and different bias factors have been accounted for. }
422% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
423% for an instrument corresponds approximately to half of its angular resolution.
424% {\color{red} Faut-il developper completement le calcul en annexe ? }
425
426\begin{table}
427\caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
428standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
429increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
430\label{tabcct21}
431% \begin{center}
432\begin{tabular}{|l|c|c|c|c|c|c|c|}
433\hline
434\hline
435 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
436\hline
437(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
438\hline
439(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
440\hline
441\hline
442\end{tabular}
443%\end{center}
444\end{table}
445
446\begin{figure}
447\vspace*{-4mm}
448\hspace{-5mm}
449\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
450\vspace*{-10mm}
451\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
452neutral gas fraction $\gHI=2\%$}
453\label{figpk21}
454\end{figure}
455
456
457\section{interferometric observations and P(k) measurement sensitivity }
458\label{pkmessens}
459\subsection{Instrument response}
460\label{instrumresp}
461We introduce briefly here the principles of interferometric observations and the definition of
462quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
463and complete presentation of observation methods and signal processing in radio astronomy.
464In astronomy we are usually interested in measuring the sky emission intensity,
465$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
466and interferometry in particular, receivers are sensitive to the sky emission complex
467amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
468length significantly smaller than the instrument resolution.
469\begin{eqnarray}
470& &
471I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
472& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '}
473\end{eqnarray}
474A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
475its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
476for each frequency can be written as a function of the electromagnetic wave vector
477$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
478\begin{equation}
479s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
480\end{equation}
481We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
482the EM wave vector is related to the wavelength $\lambda$ through the usual equation
483$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
484corresponds to the receiver intensity response:
485\begin{equation}
486L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
487\end{equation}
488The visibility signal of two receivers corresponds to the time averaged correlation between
489signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
490visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
491$\vec{r_2}$ can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
492\begin{equation}
493\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
494e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
495\end{equation}
496This expression can be simplified if we consider receivers with narrow field of view
497($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
498and coplanar in respect to their common axis.
499If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
500the common receivers axis, the visibilty would be written as the 2D Fourier transform
501of the product of the sky intensity and the receiver beam, for the angular frequency
502\mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
503\begin{equation}
504\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
505\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
506\end{equation}
507where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
508the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
509two $(\alpha, \beta)$ angular planes.
510
511Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
512of the sky intensity and the receiver beam:
513\begin{center}
514\begin{tabular}{ccc}
515$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
516$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
517$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \\
518\end{tabular}
519\end{center}
520
521The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
522wave number domain located around
523$(\uv)_{12}=( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
524given by the receiver beam Fourier transform.
525\begin{equation}
526\vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda)
527\end{equation}
528
529A single receiver instrument would measure the total power integrated in a spot centered around the
530origin in the $(\uv)$ or the angular wave mode plane. The shape of the spot depends on the receiver
531beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
532size.
533
534The correlation signal from a pair of receivers would measure the integrated signal on a similar
535spot, located around the central angular wave mode $(\uv)_{12}$ determined by the relative
536position of the two receivers (see figure \ref{figuvplane}).
537In an interferometer with multiple receivers, the area covered by different receiver pairs in the
538$(\uv)$ plane might overlap and some pairs might measure the same area (same base lines).
539Several beams can be formed using different combination of the correlations from a set of
540antenna pairs.
541
542An instrument can thus be characterized by its $(\uv)$ plane coverage or response
543${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
544the instrument response is simply the Fourier transform of the beam.
545For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
546a multi-horn system, each beam (b) will have its own response
547${\cal R}_b(\uv,\lambda)$.
548For an interferometer, we can compute a raw instrument response
549${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(\uv)$ plane coverage by all
550receiver pairs with uniform weighting.
551Obviously, different weighting schemes can be used, changing
552the effective beam shape and thus the response ${\cal R}_{w}(\uv,\lambda)$
553and the noise behaviour. If the same Fourier angular frequency mode is measured
554by several receiver pairs, the raw instrument response might then be larger
555that unity. This non normalized instrument response is used to compute the projected
556noise power spectrum in the following section (\ref{instrumnoise}).
557We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as:
558\begin{equation}
559{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right]
560\end{equation}
561This normalized instrument response can be used to compute the effective instrument beam,
562in particular in section \ref{recsec}.
563
564{\changemark Detection of the reionisation at 21 cm has been an active field
565in the last decade and different groups have built
566instruments to detect reionisation signal around 100 MHz: LOFAR
567\citep{rottgering.06}, MWA (\cite{bowman.07}, \cite{lonsdale.09}) and PAPER \citep{parsons.09} .
568Several authors have studied the instrumental noise
569and statistical uncertainties when measuring the reionisation signal power spectrum;
570the methods presented here to compute the instrument response
571and sensitivities are similar to the ones developed in these publications
572(\cite{morales.04}, \cite{bowman.06}, \cite{mcquinn.06}). }
573
574\begin{figure}
575% \vspace*{-2mm}
576\centering
577\mbox{
578\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
579}
580\vspace*{-15mm}
581\caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.}
582\label{figuvplane}
583\end{figure}
584
585\subsection{Noise power spectrum computation}
586\label{instrumnoise}
587Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
588bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
589$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
590$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
591corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
592noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
593corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies
594\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
595measurement from a pair of receivers can be written as:
596\begin{eqnarray}
597P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
598P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
599\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
600\label{eq:pnoisepairD}
601\end{eqnarray}
602
603We can characterize the sky temperature measurement with a radio instrument by the noise
604spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$
605per unit area of angular frequencies $\delta \uvu \times \delta \uvv$.
606For an interferometer made of identical receiver elements, several ($n$) receiver pairs
607might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
608is then reduced by a factor $1/n$. More generally, we can write the instrument noise
609spectral power density using the instrument response defined in section \ref{instrumresp} :
610\begin{equation}
611P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) }
612\label{eq:pnoiseuv}
613\end{equation}
614
615When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
616$P(k)$ is computed, angles are translated into comoving transverse distances,
617and frequencies or wavelengths into comoving radial distance, using the following relations
618{\changemarkb (e.g. \cite{cosmo.peebles} chap. 13, \cite{cosmo.rich})} :
619{ \changemark
620\begin{eqnarray}
621\alpha , \beta & \rightarrow & \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \, \alpha,\beta \\
622\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\
623\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
624 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
625% \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\
626\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \delta k_z =
6272 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
628 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
629\end{eqnarray}
630}
631{ \changemark
632A brightness measurement at a point $(\uv,\lambda)$, covering
633the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
634to cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
635defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
636The measurement noise spectral density given by the equation \ref{eq:pnoisepairD} can then be
637translated into a 3D noise power spectrum, per unit of spatial frequencies
638$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) :
639
640\begin{eqnarray}
641(\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\
642P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv)
643 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
644 & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right)
645 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
646\label{eq:pnoisekxkz}
647\end{eqnarray}
648
649It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
650anymore on the individual measurement bandwidth.
651In the following paragraph, we will first consider an ideal instrument
652with uniform $(\uv)$ coverage
653in order to establish the general noise power spectrum behaviour for cosmological 21 cm surveys.
654The numerical method used to compute the 3D noise power spectrum is then presented in section
655\ref{pnoisemeth}.
656}
657
658\subsubsection{Uniform $(\uv)$ coverage}
659{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage (${\cal R}(\uv)=1$),
660and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
661The noise spectral power density from equation (\ref{eq:pnoisekxkz}) would then be
662constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum corresponds thus
663to a 3D white noise, with a uniform noise spectral density:}
664\begin{equation}
665P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
666\label{ctepnoisek}
667\end{equation}
668
669$P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
670$t_{int}$ is the integration time expressed in second,
671$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
672 $H(z)$ in $\mathrm{km/s/Mpc}$.
673
674The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
675with the number of observed Fourier modes; this number is proportional to the volume of the universe
676which is observed (sample variance). As the observed volume is proportional to the
677surveyed solid angle, we consider the survey of a fixed
678fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a given
679total observation time $t_{obs}$.
680A single dish instrument with diameter $D$ would have an instantaneous field of view
681$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
682a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
683Each sky direction or patch of size $\Omega_{FOV}$ will be observed during an integration
684time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
685for the integration time, we can compute a simple expression
686for the noise spectral power density by a single dish instrument of diameter $D$:
687\begin{equation}
688P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
689\end{equation}
690
691It is important to note that any real instrument do not have a flat
692response in the $(\uv)$ plane, and the observations provide no information above
693a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
694One has to take into account either a damping of the observed sky power
695spectrum or an increase of the noise spectral density if
696the observed power spectrum is corrected for damping. The white noise
697expressions given below should thus be considered as a lower limit or floor of the
698instrument noise spectral density.
699
700For a single dish instrument of diameter $D$ equipped with a multi-feed or
701phase array receiver system, with $N$ independent beams on sky,
702the noise spectral density decreases by a factor $N$,
703thanks to the increase of per pointing integration time:
704
705\begin{equation}
706P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
707\label{eq:pnoiseNbeam}
708\end{equation}
709
710This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
711identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
712of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.
713
714For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
715observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of
716$\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number
717$k_{\perp}^{max}$:
718\begin{equation}
719k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
720\label{kperpmax}
721\end{equation}
722
723Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
724as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
725beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
726The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
727year. The maximum comoving wave number $k^{max}$ is also shown as a function
728of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
729to take into account the radial component of $\vec{k}$ and the increase of
730the instrument noise level with $k_{\perp}$, we have taken the effective $k_{ max} $
731as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{eq. \ref{kperpmax}}:
732\begin{equation}
733k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
734\end{equation}
735
736\begin{figure}
737\vspace*{-25mm}
738\centering
739\mbox{
740\hspace*{-10mm}
741\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
742}
743\vspace*{-40mm}
744\caption{Top: minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
745as a function of redshift (top), for a one year survey of a quarter of the sky. Bottom:
746maximum $k$ value for 21 cm LSS power spectrum measurement by a 100 meter diameter
747primary antenna. }
748\label{pnkmaxfz}
749\end{figure}
750
751\subsubsection{3D noise power spectrum computation}
752\label{pnoisemeth}
753{ \changemark
754We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
755response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
756sensitivities for different instrument configurations, albeit the noise realization for a real instrument would not be
757isotropic.
758\begin{itemize}
759\item We start by a 3D Fourier coefficient grid, with the two first coordinates being the transverse angular wave modes,
760and the third being the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
761we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise},
762the grid cell size and dimensions have been chosen to represent a box in the universe
763\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
764with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
765This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
766the small angular extent, we have neglected the curvature of redshift shells.
767\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
768The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
769using equation (\ref{eq:uvkxky}), and the
770angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
771The noise variance is taken proportional to $P_{noise}$ :
772\begin{equation}
773\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
774\end{equation}
775\item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
776complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
777\begin{equation}
778\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm}
779 \sqrt{k_x^2+k_y^2+k_z^2} = k
780\end{equation}
781Noise samples corresponding to small instrument response, typically less than 1\% of the
782maximum instrument response are ignored when calculating $\tilde{P}_{noise}(k)$.
783However, we require to have a significant fraction, typically 20\% to 50\% of all possible modes
784$(k_x,k_y,k_z)$ measured for a given $k$ value.
785\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
786from random generations. The averaged computed noise power spectrum is normalized using
787equation \ref{eq:pnoisekxkz} and the instrument and survey parameters:
788{\changemarkb system temperature $\Tsys= 50 \mathrm{K}$,
789individual receiver size $D^2$ or $D_x D_y$ and the integration time $t_{int}$.
790This last parameter is obtained through the relation
791$t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration
792$t_{obs}=1 \mathrm{year}$, the instantaneous field of view
793$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage
794$\Omega_{tot} = \pi$ srad. }
795\end{itemize}
796
797It should be noted that it is possible to obtain a good approximation of the noise
798power spectrum shape, neglecting the redshift or frequency dependence of the
799instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
800using a fixed instrument response ${\cal R}(\uv,\lambda(z_0))$ and
801a constant radial distance $\dang(z_0)*(1+z_0)$.
802\begin{equation}
803\tilde{P}_{noise}(k) = < | {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
804\end{equation}
805The approximate power spectrum obtained through this simplified and much faster
806method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
807configurations.
808}
809
810\subsection{Instrument configurations and noise power spectrum}
811\label{instrumnoise}
812We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$
813with uniform weights in the $(\uv)$ plane for several instrument configurations:
814\begin{itemize}
815\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
816a square $11 \times 11$ configuration ($q=11$). This array covers an area of
817$55 \times 55 \, \mathrm{m^2}$
818\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
819in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
820$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
821shown in figure \ref{figconfbc}.
822\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
823 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
824particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
825four array corners. This array layout is also shown figure \ref{figconfbc}.
826\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
827equipped with a 100 beam focal plane receiver array.
828\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
829a square $20 \times 20$ configuration ($q=20$). This array covers an area of
830$100 \times 100 \, \mathrm{m^2}$
831\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
832wide. The focal line of each cylinder is equipped with 100 receivers, each
833$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
834This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
835a total of $400$ receivers per polarisation, as in the (e) configuration.
836We have computed the noise power spectrum for {\em perfect}
837cylinders, where all receiver pair correlations are used (fp), or for
838a non perfect instrument, where only correlations between receivers
839from different cylinders are used.
840\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
841wide. The focal line of each cylinder is equipped with 120 receivers, each
842$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
843This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
844a total of 960 receivers per polarisation. As for the (f) configuration,
845we have computed the noise power spectrum for {\em perfect}
846cylinders, where all receiver pair correlations are used (gp), or for
847a non perfect instrument, where only correlations between receivers
848from different cylinders are used.
849\end{itemize}
850
851\begin{figure}
852\centering
853\vspace*{-15mm}
854\mbox{
855\hspace*{-10mm}
856\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
857}
858\vspace*{-15mm}
859\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
860diameter dishes. }
861\label{figconfbc}
862\end{figure}
863
864We have used simple triangular shaped dish response in the $(\uv)$ plane.
865However, we have introduced a filling factor or illumination efficiency
866$\eta$, relating the effective dish diameter $D_{ill}$ to the
867mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
868as $\eta^2$ or $\eta_x \eta_y$.
869\begin{eqnarray}
870{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2}) \\
871 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
872\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
873\end{eqnarray}
874For the multi-dish configuration studied here, we have taken the illumination efficiency factor
875{\bf $\eta = 0.9$}.
876
877For the receivers along the focal line of cylinders, we have assumed that the
878individual receiver response in the $(\uv)$ plane corresponds to a
879rectangular shaped antenna. The illumination efficiency factor has been taken
880equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
881along the cylinder length. {\changemark We have used double triangular shaped
882response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
883\begin{equation}
884 {\cal L}_\Box(\uv,\lambda) =
885\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
886\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
887\end{equation}
888}
889It should be noted that the small angle approximation
890used here for the expression of visibilities is not valid for the receivers along
891the cylinder axis. However, some preliminary numerical checks indicate that
892the results obtained here for the noise spectral power density would not change significantly.
893The instrument responses shown here correspond to fixed pointing toward the zenith, which
894is the case for a transit type telescope.
895
896Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
897for the four configurations (a,b,c,d) with $\sim 100$ receivers per
898polarisation.
899
900{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we have
901computed the 3D noise power spectrum for each of the eight instrument configurations presented
902here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
903of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.}
904The resulting noise spectral power densities are shown in figure
905\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
906is due to the fact that we have ignored all auto-correlation measurements.
907It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
908should have enough sensitivity to map LSS in 21 cm at redshift z=1.
909
910\begin{figure*}
911\centering
912\mbox{
913% \hspace*{-10mm}
914\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
915}
916\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
917at 710 MHz (redshift $z=1$) for four configurations.
918(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
919of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
920(c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams.
921The common color scale (1 \ldots 80) is shown on the right. }
922\label{figuvcovabcd}
923\end{figure*}
924
925\begin{figure*}
926\vspace*{-10mm}
927\centering
928\mbox{
929% \hspace*{-5mm}
930\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
931}
932\vspace*{-20mm}
933\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
934and the noise power spectrum for several interferometer configurations
935 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
936computed for all configurations assuming a survey of a quarter of the sky over one year,
937with a system temperature $\Tsys = 50 \mathrm{K}$. }
938\label{figpnoisea2g}
939\end{figure*}
940
941
942\section{ Foregrounds and Component separation }
943\label{foregroundcompsep}
944Reaching the required sensitivities is not the only difficulty of observing the large
945scale structures in 21 cm. Indeed, the synchrotron emission of the
946Milky Way and the extra galactic radio sources are a thousand times brighter than the
947emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
948using Intensity Mapping, without identifying the \HI point sources is the main challenge
949for this novel observation method. Although this task might seem impossible at first,
950it has been suggested that the smooth frequency dependence of the synchrotron
951emissions can be used to separate the faint LSS signal from the Galactic and radio source
952emissions. {\changemark Discussion of contribution of different sources
953of radio foregrounds for measurement of reionization through redshifted 21 cm,
954as well foreground subtraction using their smooth frequency dependence can
955be found in (\cite{shaver.99}, \cite{matteo.02},\cite{oh.03}).}
956However, any real radio instrument has a beam shape which changes with
957frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
958technique. The effect of frequency dependent beam shape is some time referred to as {\em
959mode mixing}. {\changemark The effect of the frequency dependent beam shape on foreground subtraction
960has been discussed for example in \cite{morales.06}.}
961
962In this section, we present a short description of the foreground emissions and
963the simple models we have used for computing the sky radio emissions in the GHz frequency
964range. We present also a simple component separation method to extract the LSS signal and
965its performance. {\changemark The analysis presented here follows a similar path to
966a detailed foreground subtraction study carried for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
967We compute in particular the effect of the instrument response on the recovered
968power spectrum. The results presented in this section concern the
969total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
970corresponding to the central frequency $\nu \sim 884$ MHz.
971
972\subsection{ Synchrotron and radio sources }
973We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
974brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
975and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
976$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
977the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
978used in the simulations are given in the table \ref{skycubechars}.
979\begin{table}
980\caption{
981Sky cube characteristics for the simulation performed in this paper.
982Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
983$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells
984}
985\label{skycubechars}
986\begin{center}
987\begin{tabular}{|c|c|c|}
988\hline
989 & range & center \\
990\hline
991Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
992Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
993Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
994Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
995Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
996\hline
997\hline
998& resolution & N-cells \\
999\hline
1000Right ascension & 3 arcmin & 1800 \\
1001Declination & 3 arcmin & 600 \\
1002Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
1003\hline
1004\end{tabular} \\[1mm]
1005\end{center}
1006\end{table}
1007%%%%
1008\par
1009Two different methods have been used to compute the sky temperature data cubes.
1010We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
1011maps of the emission temperature at different frequencies, from which we have
1012extracted the brightness temperature cube for the region defined above
1013(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
1014As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
1015difficult to have reliable results for the effect of point sources on the reconstructed
1016LSS power spectrum.
1017
1018We have thus made also a simple sky model using the Haslam Galactic synchrotron map
1019at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
1020catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
1021has been computed through the following steps:
1022
1023\begin{enumerate}
1024\item The Galactic synchrotron emission is modeled as a power law with spatially
1025varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
1026$\beta$ has a gaussian distribution centered at -2.8 and with standard
1027deviation $\sigma_\beta = 0.15$. {\changemark The
1028diffuse radio background spectral index has been measured for example by
1029\cite{platania.98} or \cite{rogers.08}.}
1030The synchrotron contribution to the sky temperature for each cell is then
1031obtained through the formula:
1032\begin{equation}
1033 T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta
1034\end{equation}
1035%%
1036\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
1037by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
1038the sky cubes. The source brightness in Jansky is converted to temperature taking the
1039pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels).
1040A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
1041map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
1042contribution of the radiosources to the sky temperature is computed as follows:
1043\begin{equation}
1044 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
1045\end{equation}
1046%%
1047\item The sky brightness temperature data cube is obtained through the sum of
1048the two contributions, Galactic synchrotron and resolved radio sources:
1049\begin{equation}
1050 T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu)
1051\end{equation}
1052\end{enumerate}
1053
1054 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
1055$T_{lss}(\alpha, \delta, \nu)$ have been computed using the
1056SimLSS \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package:
1057%
1058complex normal Gaussian fields were first generated in Fourier space.
1059The amplitude of each mode was then multiplied by the square root
1060of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
1061\citep{eisenhu.98}. We have used the standard cosmological parameters,
1062 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
1063$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
1064An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
1065in the linear regime,
1066in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved
1067to redshift $z=0.6$.
1068The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
1069$\Delta z \simeq 0.23$ in the longitudinal direction.
1070The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
1071sky cube angular and frequency resolution defined above.
1072{\changemarkb
1073We haven't taken into account the curvature of redshift shells when
1074converting SimLSS euclidean coordinates to angles and frequency coordinates
1075of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
1076These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and
1077 are excluded for results presented in this paper.
1078}
1079
1080The mass fluctuations have been converted into temperature using equation \ref{eq:tbar21z},
1081and a neutral hydrogen fraction \mbox{$0.008 \times (1+0.6)$}, leading to a mean temperature of
1082$0.13 \, \mathrm{mK}$.
1083The total sky brightness temperature is computed as the sum
1084of foregrounds and the LSS 21 cm emission:
1085\begin{equation}
1086 T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
1087T_{sky} = T_{gsm}+T_{lss}
1088\end{equation}
1089
1090Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
1091temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
1092It should be noted that the standard deviation depends on the map resolution and the values given
1093in table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
1094angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
1095Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
1096with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
1097Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
1098for Model-I/GSM and Model-II. There is good agreement between the two models, although
1099the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
1100
1101\begin{table}
1102\caption{ Mean temperature and standard deviation for the different sky brightness
1103data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
1104\label{sigtsky}
1105\centering
1106\begin{tabular}{|c|c|c|}
1107\hline
1108 & mean (K) & std.dev (K) \\
1109\hline
1110Haslam & 2.17 & 0.6 \\
1111NVSS & 0.13 & 7.73 \\
1112Haslam+NVSS & 2.3 & 7.75 \\
1113(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
1114GSM & 2.1 & 0.8 \\
1115\hline
1116\end{tabular}
1117\end{table}
1118
1119we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
1120as for the radio foreground temperature cubes obtained from the two
1121models. We have also computed the power spectrum on sky brightness temperature
1122cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
1123The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
1124The GSM model has more large scale power compared to our simple Haslam+NVSS model,
1125while it lacks power at higher spatial frequencies. The mode mixing due to
1126frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
1127case. It can also be seen that the radio foreground power spectrum is more than
1128$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
1129to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
1130compared to the mK LSS signal.
1131
1132{ \changemark Contrary to most similar studies, where it is assumed that bright sources
1133can be nearly perfectly subtracted, our aim was to compute also their
1134effect in the foreground subtraction process.
1135The GSM model lacks the angular resolution needed to compute
1136correctly the effect of bright compact sources for 21 cm LSS observations and
1137the mode mixing due to the frequency dependence of the instrumental response,
1138while Model-II provides a reasonable description of these compact sources. Our simulated
1139sky cubes have an angular resolution $3'\times3'$, well below the typical
1140$15'$ resolution of the instrument configuration considered here.
1141However, Model-II might lack spatial structures at large scales, above a degree,
1142compared to Model-I/GSM, and the frequency variations as a simple power law
1143might not be realistic enough. The differences for the two sky models can be seen
1144in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
1145a 25' beam has negligible effect of the GSM power spectrum, as it originally lacks
1146structures below 0.5 degree. By using
1147these two models, we have explored some of the systematic uncertainties
1148related to foreground subtraction.}
1149
1150It should also be noted that in section 3, we presented the different instrument
1151configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
1152power spectrum is recovered unaffected in this case, while the noise power spectrum
1153increases at high k values (small scales). In practice, clean deconvolution is difficult to
1154implement for real data and the power spectra presented in this section are NOT corrected
1155for the instrumental response. The observed structures have thus a scale dependent damping
1156according to the instrument response, while the instrument noise is flat (white noise or scale independent).
1157
1158\begin{figure}
1159\centering
1160\vspace*{-10mm}
1161\mbox{
1162\hspace*{-20mm}
1163\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
1164}
1165\vspace*{-10mm}
1166\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
1167The Model-II (Haslam+NVSS),
1168has been smoothed with a 35 arcmin gaussian beam. }
1169\label{compgsmhtemp}
1170\end{figure}
1171
1172\begin{figure*}
1173\centering
1174\mbox{
1175% \hspace*{-10mm}
1176\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
1177}
1178\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
1179The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
1180\label{compgsmmap}
1181\end{figure*}
1182
1183\begin{figure}
1184\centering
1185% \vspace*{-25mm}
1186\mbox{
1187\hspace*{-6mm}
1188\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
1189}
1190\vspace*{-5mm}
1191\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with \mbox{$\gHI\simeq1.3\%$} (red, orange)
1192with the radio foreground power spectrum.
1193The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1194model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
1195as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam. This beam has
1196negligible effect on the GSM/Model-I power spectrum, as GSM has no structures below $\sim 0.5^\circ$.
1197}
1198\label{pkgsmlss}
1199\end{figure}
1200
1201
1202
1203\subsection{ Instrument response and LSS signal extraction }
1204\label{recsec}
1205The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1206$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
1207${\cal R}(\uv,\lambda)$.
1208We have considered the simple case where the instrument response is constant throughout the survey area, or independent
1209of the sky direction.
1210For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
1211\begin{enumerate}
1212\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1213$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k)$$
1214\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1215$ {\cal R}(\uv,\lambda_k) \lesssim 1$.
1216$$ {\cal T}_{sky}(\uv, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) $$
1217\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
1218without instrumental (electronic/$\Tsys$) white noise:
1219$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)
1220\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1221\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
1222the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1223{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
1224dependent instrumental response has already been applied.}
1225We have also considered that the system temperature and thus the
1226additive white noise level was independent of the frequency or wavelength.
1227\end{enumerate}
1228The LSS signal extraction performance depends obviously on the white noise level.
1229The results shown here correspond to the (a) instrument configuration, a packed array of
1230$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
1231to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1232cell. \\[1mm]
1233
1234The different steps of the simple component separation procedure that has been applied are
1235briefly described here.
1236\begin{enumerate}
1237\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1238beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
1239corresponds to a smearing or degradation of the angular resolution.
1240\begin{eqnarray*}
1241 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\
1242 {\cal T}_{mes}^{bcor}(u, v, \lambda_k) & = &
1243{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
1244{\cal T}_{mes}^{bcor}(u, v, \lambda_k) & \rightarrow & \mathrm{2D-FFT} \rightarrow T_{mes}^{bcor}(\alpha,\delta,\lambda)
1245\end{eqnarray*}
1246{\changemark
1247The virtual target beam ${\cal R}_f(\uv)$ has a lower resolution than the worst real instrument beam,
1248i.e at the lowest observed frequency.
1249No correction has been applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
1250attempt to represent imperfect knowledge of the instrument response.
1251We recall that this is the normalized instrument response,
1252${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$ has also a numerical upper bound $\sim 100$. }
1253\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1254 is fitted to the beam-corrected brightness temperature. The parameters have been obtained
1255using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
1256We show here the results for a pure power law (P1), as well as a modified power law (P2):
1257\begin{eqnarray*}
1258P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1259P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
1260\end{eqnarray*}
1261where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the
1262reference frequency $\nu_0$.
1263
1264{\changemark Interferometers have poor response at small $(\uv)$ corresponding to baselines
1265smaller than interferometer element size. The zero spacing baseline, the $(\uv)=(0,0)$ mode, represents
1266the mean temperature for a given frequency plane and can not be measured with interferometers.
1267We have used a simple trick to make the power law fitting procedure applicable:
1268we have set the mean value of the temperature for
1269each frequency plane according to a power law with an index close to the synchrotron index
1270($\beta\sim-2.8$) and we have checked that the results are not too sensitive to the
1271arbitrarily fixed mean temperature power law parameters. }
1272
1273\item The difference between the beam-corrected sky temperature and the fitted power law
1274$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1275\end{enumerate}
1276
1277Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1278for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
127921 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1280gaussian frequency independent beam is shown in orange (solid line),
1281and the extracted power spectrum, after beam {\em correction}
1282and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
1283We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1284or with the first order polynomial fit (P1).
1285
1286Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1287with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
1288present in the original map have been correctly recovered, although the amplitude of the temperature
1289fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
1290{\changemark This is mostly due to the damping of the large scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
1291due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
1292
1293We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
1294presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
1295However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1296or smearing procedure described here are key ingredient for recovering the 21 cm LSS power spectrum.
1297It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
1298($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1299has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
1300significantly the ripples from bright radio sources.
1301We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1302with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
1303such a smooth beam, compared to the more complex instrument response
1304${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1305
1306\begin{figure*}
1307\centering
1308% \vspace*{-25mm}
1309\mbox{
1310% \hspace*{-20mm}
1311\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
1312}
1313% \vspace*{-10mm}
1314\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1315continuum radio emissions at $z \sim 0.6$, \mbox{$\gHI\simeq1.3\%$}, for the instrument configuration (a), $11\times11$
1316packed array interferometer.
1317Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
1318corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
1319signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
1320\label{extlsspk}
1321\end{figure*}
1322
1323
1324\begin{figure*}
1325\centering
1326\vspace*{-20mm}
1327\mbox{
1328\hspace*{-25mm}
1329\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1330}
1331\vspace*{-25mm}
1332\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1333with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer.
1334Notice the difference between the temperature color scales (mK) for the top and bottom maps. }
1335\label{extlssmap}
1336\end{figure*}
1337
1338\subsection{$P_{21}(k)$ measurement transfer function}
1339\label{tfpkdef}
1340The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1341 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1342{\changemarkb
1343We remind that we have neglected the curvature of redshift or frequency shells
1344in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
1345The results presented here and our conclusions are thus restricted to wave mode range
1346$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
1347}
1348We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
1349if total power measurements (auto-correlations) are not used in the case of interferometers.
1350The sky reconstruction and the component separation introduce additional filtering and distortions.
1351The real transverse plane transfer function might even be anisotropic.
1352
1353However, in the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
1354recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
1355{\changemarkb , similar to the one defined by \cite{bowman.09} , equation (23):}
1356\begin{equation}
1357\TrF(k) = P_{21}^{rec}(k) / P_{21}(k)
1358\end{equation}
1359
1360Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1361separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed
1362$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
1363The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
1364power spectrum, if the original LSS temperature cube is smoothed by the frequency independent
1365target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
1366small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1367The red curve shows the transfer function for the GSM foreground model (Model-I) and the $11\times11$ filled array
1368interferometer (setup (a)), while the dashed red curve represents the transfer function for a D=55 meter
1369diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
1370array is also shown (orange curve). The recovered power spectrum suffers also significant damping at large
1371scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $, mostly due to the filtering of radial or
1372longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
1373by the component separation algorithm. We have been able to remove the ripples on the reconstructed
1374power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
1375target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
1376obtained for Model-II at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
1377
1378 It should be stressed that the simulations presented in this section were
1379focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
1380$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1381
1382This transfer function is well represented by the analytical form:
1383\begin{equation}
1384\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right)
1385\label{eq:tfanalytique}
1386\end{equation}
1387
1388We have performed simulation of observations and radio foreground subtraction using
1389the procedure described here for different redshifts and instrument configurations, in particular
1390for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1391increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1392becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
1393
1394We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
1395for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1396for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
1397and the corresponding transfer functions are shown on figure \ref{tfpkz0525}.
1398
1399\begin{table}[hbt]
1400\caption{Transfer function (eq. \ref{eq:tfanalytique}) parameters
1401 $(k_A,k_B,k_C)$ at different redshifts
1402for instrumental setup (e), $20\times20$ packed array interferometer.
1403{\changemarkb Note that the parameters are given in
1404 $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$.}
1405}
1406\label{tab:paramtfk}
1407\begin{center}
1408\begin{tabular}{|c|ccccc|}
1409\hline
1410\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1411\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1412\hline
1413$k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1414$k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1415$k_C \, (\mathrm{Mpc^{-1}})$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1416\hline
1417\end{tabular}
1418\end{center}
1419\end{table}
1420
1421\begin{figure}
1422\centering
1423% \vspace*{-25mm}
1424\mbox{
1425% \hspace*{-10mm}
1426\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
1427}
1428% \vspace*{-30mm}
1429\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$. for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of a frequency independent
1430gaussian beam of $\sim 30'$ is shown in black.
1431The transfer function $\TrF(k)$ for the instrument configuration (a), $11\times11$ packed array interferometer,
1432for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
1433for a D=55 meter diameter dish for the GSM model is also shown as the dashed red curve. }
1434\label{extlssratio}
1435\end{figure}
1436
1437
1438\begin{figure}
1439\centering
1440% \vspace*{-25mm}
1441\mbox{
1442% \hspace*{-10mm}
1443\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
1444}
1445%\vspace*{-30mm}
1446\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
1447$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1448\label{tfpkz0525}
1449\end{figure}
1450
1451
1452
1453%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1454%% \section{ BAO scale determination and constrain on dark energy parameters}
1455% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1456%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1457%% and determine BAO scale as a function of redshifts.
1458%% Method:
1459%% \begin{itemize}
1460%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1461%% \item Compute / guess the instrument noise level for the same redshit values
1462%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1463%% \item Compute the DETF ellipse with different priors
1464%% \end{itemize}
1465
1466%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1467%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1468%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1469
1470\section{Sensitivity to cosmological parameters}
1471\label{cosmosec}
1472
1473The impact of the various telescope configurations on the sensitivity for 21 cm
1474power spectrum measurement has been discussed in section \ref{pkmessens}.
1475Fig. \ref{figpnoisea2g} shows the noise power spectra, and allows us to rank visually the configurations
1476in terms of instrument noise contribution to P(k) measurement.
1477The differences in $P_{noise}$ will translate into differing precisions
1478in the reconstruction of the BAO peak positions and in
1479the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
1480that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
1481has also an effect on the measured 21 cm power spectrum.
1482In this paragraph, we present our method and the results for the precisions on the estimation
1483of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
1484with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1485dishes, arranged into a filled $20 \times 20$ array.
1486
1487
1488\subsection{BAO peak precision}
1489
1490In order to estimate the precision with which BAO peak positions can be
1491measured, we used a method similar to the one established in
1492\citep{blake.03} and \citep{glazebrook.05}.
1493
1494
1495
1496To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1497 slices of Universe with a quarter-sky coverage and a redshift depth,
1498 $\Delta z=0.5$ for $0.25<z<2.75$.
1499The peaks in the generated spectra were then determined by a
1500fitting procedure and the reconstructed peak positions compared with the
1501generated peak positions.
1502The reconstructed power spectrum used in the simulation is
1503the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
1504damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
1505and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
1506established in section \ref{instrumnoise} with $N=400$:
1507\begin{equation}
1508 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
1509\end{equation}
1510where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
1511The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
1512%\begin{equation}
1513\begin{eqnarray}
1514\label{eq:signal}
1515\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
15161\; +
1517\hspace*{40mm}
1518\nonumber
1519\\ \hspace*{20mm}
1520A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1521\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1522\frac{\kpar^2}{\kopar^2}}\;\right)
1523\end{eqnarray}
1524%\end{equation}
1525where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
1526are adjusted to the formula presented in
1527\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
1528envelop curve of the HI power spectrum without baryonic oscillations.
1529The parameters $\koperp$ and $\kopar$
1530are the inverses of the oscillation periods in k-space.
1531The following values have been used for these
1532parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1533$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
1534
1535Each simulation is performed for a given set of parameters
1536which are: the system temperature,$\Tsys$, an observation time,
1537$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
1538Then, each simulated power spectrum is fitted with a two dimensional
1539normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
1540the sum of the signal power spectrum damped by the transfer function and the
1541noise power spectrum multiplied by a
1542linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1543corresponds to the approximate position of the linear/non-linear transition.
1544This limit is established on the basis of the criterion discussed in
1545\citep{blake.03}.
1546In practice, we used for the redshifts
1547$z=0.5,\,\, 1.0$ and $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
1548and $0.23 \hMpcm$.
1549
1550Figure \ref{fig:fitOscill} shows the result of the fit for
1551one of these simulations.
1552Figure \ref{fig:McV2} histograms the recovered values of $\koperp$ and $\kopar$
1553for 100 simulations.
1554The widths of the two distributions give an estimate
1555of the statistical errors.
1556
1557In addition, in the fitting procedure, both the parameters modeling the
1558signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
1559spectrum $(a_0,a_1)$ are floated to take into account the possible
1560ignorance of the signal shape and the uncertainties in the
1561computation of the noise power spectrum.
1562In this way, we can correct possible imperfections and the
1563systematic uncertainties are directly propagated to statistical errors
1564on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1565fitted noise contribution to each simulation, the baryonic oscillations
1566are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
1567
1568
1569\begin{figure}[htbp]
1570\begin{center}
1571\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1572\caption{1D projection of the power spectrum for one simulation.
1573The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1574corresponding to the power spectrum without baryonic oscillations.
1575The dots represents one simulation for a "packed" array of cylinders
1576with a system temperature,$T_{sys}=50$K, an observation time,
1577$T_{obs}=$ 1 year,
1578a solid angle of $1\pi sr$,
1579an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1580The solid line is the result of the fit to the data.}
1581\label{fig:fitOscill}
1582\end{center}
1583\end{figure}
1584
1585\begin{figure}[htbp]
1586\begin{center}
1587%\includegraphics[width=\textwidth]{McV2.eps}
1588\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1589\caption{ Distributions of the reconstructed
1590wavelength $\koperp$ and $\kopar$
1591respectively, perpendicular and parallel to the line of sight
1592for simulations as in Fig. \ref{fig:fitOscill}.
1593The fit by a Gaussian of the distribution (solid line) gives the
1594width of the distribution which represents the statistical error
1595expected on these parameters.}
1596\label{fig:McV2}
1597\end{center}
1598\end{figure}
1599
1600
1601\begin{figure}[htbp]
1602\begin{center}
1603\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1604\caption{1D projection of the power spectrum averaged over 100 simulations
1605of the packed cylinder array $b$.
1606The simulations are performed for the following conditions: a system
1607temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
1608a solid angle of $1 \pi sr$,
1609an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1610The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1611corresponding to the power spectrum without baryonic oscillations
1612and the background estimated by a fit is subtracted. The errors are
1613the RMS of the 100 distributions for each $k$ bin and the dots are
1614the mean of the distribution for each $k$ bin. }
1615\label{fig:AverPk}
1616\end{center}
1617\end{figure}
1618
1619
1620
1621
1622%\subsection{Results}
1623
1624In our comparison of the various configurations, we have considered
1625the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1626\begin{itemize}
1627\item {\it Simulation without electronics noise}: the statistical errors on the power
1628spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1629 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1630The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
1631\begin{equation}
1632V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1633N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k
1634\end{equation}
1635\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1636\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
1637$\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1638\item {\it Noise with transfer function}: we take into account the interferometer response and radio foreground
1639subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1640well as the instrument noise $P_{noise}$.
1641\end{itemize}
1642
1643\begin{table}
1644\caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
1645\label{tab:pnoiselevel}
1646\begin{tabular}{|l|ccccc|}
1647\hline
1648z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1649\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1650\hline
1651$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1652\hline
1653\end{tabular}
1654\end{table}
1655
1656Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1657decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results. Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
1658
1659\begin{table*}[ht]
1660\caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
1661function of the redshift $z$ for various simulation configuration.
1662$1^{\rm st}$ row: simulations without noise with pure cosmic variance;
1663$2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes;
1664$3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function ;
1665$4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
1666\label{tab:ErrorOnK}
1667\begin{center}
1668\begin{tabular}{lc|c c c c c }
1669\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1670\hline\hline
1671\bf No Noise & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1672 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1673 \hline
1674 \bf Noise without Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1675 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1676 \hline
1677 \bf Noise with Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1678 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1679 \hline
1680 \bf Optimized survey & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1681 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1682 \hline
1683\end{tabular}
1684\end{center}
1685\end{table*}%
1686
1687
1688
1689\subsection{Expected sensitivity on $w_0$ and $w_a$}
1690
1691\begin{figure}
1692\begin{center}
1693\includegraphics[width=8.5cm]{Figs/dist.pdf}
1694\caption{
1695The two ``Hubble diagrams'' for BAO experiments.
1696The four falling curves give the angular size of the acoustic horizon
1697(left scale) and the four
1698rising curves give the redshift interval of the acoustic horizon (right scale).
1699The solid lines are for
1700$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1701the dashed for
1702$(1,0,-1)$
1703the dotted for
1704$(0.27,0,-1)$, and
1705the dash-dotted for
1706$(0.27,0.73,-0.9)$,
1707The error bars on the solid curve correspond to the four-month run
1708(packed array)
1709of Table \ref{tab:ErrorOnK}.
1710 }
1711\label{fig:hubble}
1712\end{center}
1713\end{figure}
1714
1715
1716The observations give the \HI power spectrum in
1717angle-angle-redshift space rather than in real space.
1718The inverse of the peak positions in the observed power spectrum therefore
1719gives the angular and redshift intervals corresponding to the
1720sonic horizon.
1721The peaks in the angular spectrum are proportional to
1722$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
1723$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1724$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
1725(see Eq. \ref{eq:expHz}):
1726\begin{equation}
1727d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1728d_T = \int_0^z d_H(z) dz
1729\label{eq:dTdH}
1730\end{equation}
1731The quantities $d_T$, $d_H$ and $a_s$ all depend on
1732the cosmological parameters.
1733Figure \ref{fig:hubble} gives the angular and redshift intervals
1734as a function of redshift for four cosmological models.
1735The error bars on the lines for
1736$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1737correspond to the expected errors
1738on the peak positions
1739taken from Table \ref{tab:ErrorOnK}
1740for the four-month runs with the packed array.
1741We see that with these uncertainties, the data would be able to
1742measure $w$ at better than the 10\% level.
1743
1744
1745To estimate the sensitivity
1746to parameters describing dark energy equation of
1747state, we follow the procedure explained in
1748\citep{blake.03}. We can introduce the equation of
1749state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
1750replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1751(Eq. \ref{eq:dTdH}) by:
1752\begin{equation}
1753\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
1754\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1755\end{equation}
1756where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1757respect to the critical density.
1758Using the relative errors on $\koperp$ and $\kopar$ given in
1759Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1760five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1761Then, the combination of this BAO Fisher
1762matrix with the Fisher matrix obtained for Planck mission, allows us to
1763compute the errors on dark energy parameters.
1764{\changemark We have used the Planck Fisher matrix, computed for the
1765Euclid proposal \citep{laureijs.09}, for the 8 parameters:
1766$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1767$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1768$\tau$ (optical depth to the last-scatter surface),
1769assuming a flat universe. }
1770
1771For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1772observation time of 3 years, the packed 400-dish interferometer array has a
1773precision of 12\% on $w_0$ and 48\% on $w_a$.
1774The Figure of Merit, the inverse of the area in the 95\% confidence level
1775contours is 38.
1776Finally, Fig.~\ref{fig:Compw0wa}
1777shows a comparison of different BAO projects, with a set of priors on
1778$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1779these parameters in early 2010's. {\changemark The confidence contour
1780level in the plane $(w_0,w_a)$ have been obtained by marginalizing
1781over all the other parameters.} This BAO project based on \HI intensity
1782mapping is clearly competitive with the current generation of optical
1783surveys such as SDSS-III \citep{sdss3}.
1784
1785
1786\begin{figure}[htbp]
1787\begin{center}
1788\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1789\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1790parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
1791for two BAO projects: SDSS-III (LRG) project
1792(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1793\label{fig:Compw0wa}
1794\end{center}
1795\end{figure}
1796
1797\section{Conclusions}
1798The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
1799approach to optical surveys to study the statistical properties of the large scale structures in the universe
1800up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
1801(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1802to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1803a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
1804focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
1805the 21 cm power spectrum. A method to compute the instrument response for interferometers
1806has been developed and we have computed the noise power spectrum for various telescope configurations.
1807The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
1808making the measurement of this latter signal a major scientific and technical challenge. We have also studied the performance of a simple foreground subtraction method through realistic models of the sky
1809emissions in the GHz domain and simulation of interferometric observations.
1810We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
1811requires a very good knowledge of the instrument response. Our method has allowed us to define and
1812compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1813power spectrum.
1814Finally, we have used the computed noise power spectrum and $P(k)$
1815measurement response function to estimate
1816the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
1817could be carried using the current technology and would be competitive with the ongoing or planned
1818optical surveys for dark energy, with a fraction of their cost.
1819
1820% \begin{acknowledgements}
1821% \end{acknowledgements}
1822
1823\bibliographystyle{aa}
1824
1825\begin{thebibliography}{}
1826
1827%%%
1828%%%% LSST Science book
1829\bibitem[Abell et al. (2009)]{lsst.science}
1830{\it LSST Science book}, LSST Science Collaborations, Abell, P.A. {\it et al.} 2009, arXiv:0912.0201
1831
1832%% reference SKA - BAO / DE en radio avec les sources
1833\bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1834
1835% reference DETF - DE eq.state parameter figure of merit
1836\bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
1837
1838% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
1839\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1840 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
1841
1842%% Temperature HI 21 cm (Valeur pour la reionisation)
1843\bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
1844
1845%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
1846\bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1847\bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1848
1849% WiggleZ BAO observation
1850\bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, (accepted, arXiv/1105.2862)
1851
1852% Galactic astronomy, emission HI d'une galaxie
1853\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1854% 21cm reionisation P(k) estimation and sensitivities
1855\bibitem[Bowman et al. (2006)]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
1856% MWA description
1857\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
1858
1859%% Soustraction avant plans ds MWA
1860\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1861
1862%%% SKA-Science
1863\bibitem[Carilli et al. (2004)]{ska.science}
1864{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
1865New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
1866{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
1867
1868% Intensity mapping/HSHS
1869\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P., 2008, \prl, 100, 091303
1870
1871% Mesure 21 cm avec le GBT (papier Nature )
1872\bibitem[Chang et al. (2010)]{chang.10} Chang T-C, Pen U-L, Bandura K., Peterson J.B., 2010, \nat, 466, 463-465
1873
1874% 2dFRS BAO observation
1875\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
1876
1877% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1878\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1879Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1880
1881% Effet des radio-sources sur le signal 21 cm reionisation
1882\bibitem[Di Matteo et al. (2002)]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
1883
1884% Parametrisation P(k) - (astro-ph/9709112)
1885\bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj 496, 605-614
1886
1887% SDSS first BAO observation
1888\bibitem[Eisenstein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1889
1890% SDSS-III description
1891\bibitem[Eisenstein et al. (2011)]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
1892
1893% Papier de Field sur la profondeur optique HI en 1959
1894\bibitem[Field (1959)]{field.59} Field G.B., 1959, \apj, 129, 155
1895% 21 cm emission for mapping matter distribution
1896\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1897
1898% Mesure 21 cm a 610 MHz par GMRT
1899\bibitem[Ghosh et al. (2011)]{ghosh.11} Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur J. N., 2011, \mnras, 411, 2426-2438
1900
1901
1902% Haslam 400 MHz synchrotron map
1903\bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1904Astron. \& Astrophys. Supp. Vol 47, \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
1905
1906
1907% Distribution des radio sources
1908\bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1909
1910% WMAP 7 years cosmological parameters
1911\bibitem[Komatsu et al. (2011)]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley {\it et al.} 2011, \apjs, 192, p. 18 \\
1912\mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
1913
1914% HI mass in galaxies
1915\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.} 2009, \mnras, 399, 1447
1916% ( astro-ph/0907.1416)
1917
1918% Livre Astrophysical Formulae de Lang
1919\bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
1920
1921% WMAP CMB 7 years power spectrum 2011
1922% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1923\bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16
1924
1925%% Description MWA
1926\bibitem[Lonsdale et al. (2009)]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. {\it et al.} 2009, arXiv:0903.1828
1927
1928% Planck Fischer matrix, computed for EUCLID
1929\bibitem[Laureijs (2009)]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
1930
1931% Temperature du 21 cm
1932\bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
1933
1934% Foret Ly alpha - 1
1935\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1936
1937% Foret Ly alpha - 2 , BAO from Ly-a
1938\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1939
1940% Boomerang 2000, Acoustic pics
1941\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1942
1943%% PNoise and cosmological parameters with reionization
1944\bibitem[McQuinn et al. (2006)]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R.
19452006, \apj 653, 815-834
1946
1947% Papier sur la mesure de sensibilite P(k)_reionisation
1948\bibitem[Morales \& Hewitt (2004)]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7-18
1949
1950% Papier sur le traitement des observations radio / mode mixing
1951\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1952
1953%% Foreground removal using smooth frequency dependence
1954\bibitem[Oh \& Mack (2003)]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
1955
1956% Global Sky Model Paper
1957\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1958\mnras, 388, 247-260
1959
1960%% Description+ resultats PAPER
1961\bibitem[Parsons et al. (2009)]{parsons.09} Parsons A.R.,Backer D.C.,Bradley R.F. {\it et al.} 2009, arXiv:0904.2334
1962
1963% Livre Cosmo de Peebles
1964\bibitem[Peebles (1993)]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
1965Princeton University Press (1993)
1966
1967% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
1968\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
1969
1970% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
1971\bibitem[Platania et al. (1998)]{platania.98} Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998, \apj 505, 473-483
1972
1973% SDSS BAO 2007
1974\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
1975
1976% SDSS BAO 2010 - arXiv:0907.1660
1977\bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168
1978
1979% Livre Cosmo de Jim Rich
1980\bibitem[Rich (2001)]{cosmo.rich} James Rich, {\it Fundamentals of Cosmology}, Springer (2001)
1981
1982% Radio spectral index between 100-200 MHz
1983\bibitem[Rogers \& Bowman (2008)]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
1984
1985%% LOFAR description
1986\bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
1987%%%%
1988
1989%% SDSS-3
1990\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
1991
1992% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
1993\bibitem[Shaver et al. (1999))]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
1994
1995% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
1996
1997% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
1998\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173
1999
2000% Mesure P(k) par SDSS
2001\bibitem[Tegmark et al. (2004)]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. et al. 2004, \apj, 606, 702-740
2002
2003% FFT telescope
2004\bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
2005
2006% Thomson-Morane livre interferometry
2007\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
2008Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
2009
2010% Lyman-alpha, HI fraction
2011\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
2012
2013% BAO à 21 cm et reionisation
2014\bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955,
2015
2016%% Papier fluctuations 21 cm par Zaldarriaga et al
2017\bibitem[Zaldarriaga et al.(2004)]{zaldarriaga.04} Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
2018\apj, 608, 622-635
2019
2020%% Today HI cosmological density
2021\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
2022
2023\end{thebibliography}
2024
2025\end{document}
2026
2027%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2028% Examples for figures using graphicx
2029% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
2030% is available on a lot of LaTeX public servers or ctan mirrors.
2031% The file is : epslatex.pdf
2032%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2033
2034
2035\end{document}
Note: See TracBrowser for help on using the repository browser.