Ignore:
Timestamp:
Dec 20, 2011, 5:51:40 PM (14 years ago)
Author:
ansari
Message:

version quasi finale, V3, 2nd revision, soumise a A&A, Reza 20/12/2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r4043 r4044  
    354354{\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
    355355the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
    356 the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
     356the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
     357relation {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}:
    357358\begin{equation}
    358359  \TTlamz  =   \frac{3}{32 \pi}  \, \frac{h}{\kb} \,  A_{21}  \, \lambda_{21}^2 \times
     
    362363coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
    363364constant and $H(z)$ is the Hubble parameter at the emission
    364 redshift {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}.
     365redshift.
    365366For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
    366367can be expressed as:
     
    659660and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
    660661The noise spectral power  density from equation (\ref{eq:pnoisekxkz}) would then be 
    661 constant, independent of $(k_x, k_y, \ell_\parallel(\nu)$. Such a noise power spectrum corresponds thus
     662constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum corresponds thus
    662663to a 3D white noise, with a uniform noise spectral density:}
    663664\begin{equation}
     
    789790This last parameter is obtained through the relation
    790791$t_{int} = t_{obs} \Omega_{FOV}  / \Omega_{tot}$ using the total survey duration
    791 $t_{obs}=1 \mathrm{year}$ and the instantaneous field of view
    792 $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, for a total survey sky coverage
    793 of $\pi$ srad. }
     792$t_{obs}=1 \mathrm{year}$, the instantaneous field of view
     793$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage
     794$\Omega_{tot} = \pi$ srad. }
    794795\end{itemize}
    795796
     
    10721073We haven't taken into account the curvature of redshift shells when
    10731074converting SimLSS euclidean coordinates to angles and frequency coordinates
    1074 of the sky cubes analyzed here, which introduces distortions visible at large angles $\gtrsim 10^\circ$.
    1075 These angular scales, corresponding to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$
     1075of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
     1076These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and
    10761077 are excluded for results presented in this paper.
    10771078
     
    13971398
    13981399\begin{table}[hbt]
    1399 \caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift
    1400 for instrumental setup (e), $20\times20$ packed array interferometer.  }
     1400\caption{Transfer function (eq. \ref{eq:tfanalytique}) parameters
     1401  $(k_A,k_B,k_C)$  at different redshifts
     1402for instrumental setup (e), $20\times20$ packed array interferometer.
     1403{\changemarkb Note that the parameters are given in
     1404  $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$.}
     1405}
    14011406\label{tab:paramtfk}
    14021407\begin{center}
     
    14061411\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm}  & \hspace{2mm} 2.5 \hspace{2mm} \\
    14071412\hline
    1408 $k_A$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
    1409 $k_B$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
    1410 $k_C$ & 0.16   & 0.08   & 0.05   & 0.038   & 0.032 \\
     1413$k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
     1414$k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
     1415$k_C \, (\mathrm{Mpc^{-1}})$ & 0.16   & 0.08   & 0.05   & 0.038   & 0.032 \\
    14111416\hline
    14121417\end{tabular}
Note: See TracChangeset for help on using the changeset viewer.