Changeset 4044 in Sophya for trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
- Timestamp:
- Dec 20, 2011, 5:51:40 PM (14 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
r4043 r4044 354 354 {\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$}, 355 355 the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to 356 the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation: 356 the local \HI number density $\etaHI(\vec{\Theta},z)$ through the 357 relation {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}: 357 358 \begin{equation} 358 359 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times … … 362 363 coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann 363 364 constant and $H(z)$ is the Hubble parameter at the emission 364 redshift {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}.365 redshift. 365 366 For a \LCDM universe and neglecting radiation energy density, the Hubble parameter 366 367 can be expressed as: … … 659 660 and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$. 660 661 The noise spectral power density from equation (\ref{eq:pnoisekxkz}) would then be 661 constant, independent of $(k_x, k_y, \ell_\parallel(\nu) $. Such a noise power spectrum corresponds thus662 constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum corresponds thus 662 663 to a 3D white noise, with a uniform noise spectral density:} 663 664 \begin{equation} … … 789 790 This last parameter is obtained through the relation 790 791 $t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration 791 $t_{obs}=1 \mathrm{year}$ andthe instantaneous field of view792 $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, for a total surveysky coverage793 of $\pi$ srad. }792 $t_{obs}=1 \mathrm{year}$, the instantaneous field of view 793 $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage 794 $\Omega_{tot} = \pi$ srad. } 794 795 \end{itemize} 795 796 … … 1072 1073 We haven't taken into account the curvature of redshift shells when 1073 1074 converting SimLSS euclidean coordinates to angles and frequency coordinates 1074 of the sky cubes analyzed here , which introduces distortions visible at large angles $\gtrsim 10^\circ$.1075 These angular scales , corresponding to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$1075 of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$. 1076 These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and 1076 1077 are excluded for results presented in this paper. 1077 1078 } … … 1397 1398 1398 1399 \begin{table}[hbt] 1399 \caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift 1400 for instrumental setup (e), $20\times20$ packed array interferometer. } 1400 \caption{Transfer function (eq. \ref{eq:tfanalytique}) parameters 1401 $(k_A,k_B,k_C)$ at different redshifts 1402 for instrumental setup (e), $20\times20$ packed array interferometer. 1403 {\changemarkb Note that the parameters are given in 1404 $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$.} 1405 } 1401 1406 \label{tab:paramtfk} 1402 1407 \begin{center} … … 1406 1411 \hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\ 1407 1412 \hline 1408 $k_A $ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\1409 $k_B $ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\1410 $k_C $ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\1413 $k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\ 1414 $k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\ 1415 $k_C \, (\mathrm{Mpc^{-1}})$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\ 1411 1416 \hline 1412 1417 \end{tabular}
Note:
See TracChangeset
for help on using the changeset viewer.