source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4045

Last change on this file since 4045 was 4045, checked in by ansari, 14 years ago

Version papier avec correction de la legende des tables mise en conformite avec les regles A-A, Reza 30/12/2011

File size: 108.1 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14% \documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30%% Commande pour les references
31\newcommand{\citep}[1]{(\cite{#1})}
32%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
33
34%% Definitions diverses
35\newcommand{\HI}{$\mathrm{H_I}$ }
36\newcommand{\kb}{k_B} % Constante de Boltzmann
37\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
38\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
39\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
40\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
41\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
42
43\newcommand{\dlum}{d_L}
44\newcommand{\dang}{d_A}
45\newcommand{\hub}{ h_{70} }
46\newcommand{\hubb}{ h_{100} } % h_100
47
48\newcommand{\etaHI}{ n_{\tiny HI} }
49\newcommand{\fHI}{ f_{H_I}(z)}
50\newcommand{\gHI}{ f_{H_I}}
51\newcommand{\gHIz}{ f_{H_I}(z)}
52
53\newcommand{\vis}{{\cal V}_{12} }
54
55\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
56
57\newcommand{\lgd}{\mathrm{log_{10}}}
58
59%% Definition fonction de transfer
60\newcommand{\TrF}{\mathbf{T}}
61%% Definition (u,v) , ...
62\def\uv{\mathrm{u,v}}
63\def\uvu{\mathrm{u}}
64\def\uvv{\mathrm{v}}
65\def\dudv{\mathrm{d u d v}}
66
67% Commande pour marquer les changements du papiers pour le referee
68% \def\changemark{\bf }
69\def\changemark{}
70% \def\changemarkb{\bf }
71\def\changemarkb{}
72
73
74%%% Definition pour la section sur les param DE par C.Y
75\def\Mpc{\mathrm{Mpc}}
76\def\hMpcm{\,h \,\Mpc^{-1}}
77\def\hmMpc{\,h^{-1}\Mpc}
78\def\kperp{k_\perp}
79\def\kpar{k_\parallel}
80\def\koperp{k_{BAO\perp }}
81\def\kopar{k_{BAO\parallel}}
82
83%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84\usepackage{txfonts}
85%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86%
87\begin{document}
88%
89 \title{21 cm observation of LSS at z $\sim$ 1 }
90
91 \subtitle{Instrument sensitivity and foreground subtraction}
92
93 \author{
94 R. Ansari
95 \inst{1} \inst{2}
96 \and
97 J.E. Campagne \inst{2}
98 \and
99 P.Colom \inst{3}
100 \and
101 J.M. Le Goff \inst{4}
102 \and
103 C. Magneville \inst{4}
104 \and
105 J.M. Martin \inst{5}
106 \and
107 M. Moniez \inst{2}
108 \and
109 J.Rich \inst{4}
110 \and
111 C.Y\`eche \inst{4}
112 }
113
114 \institute{
115 Universit\'e Paris-Sud, LAL, UMR 8607, CNRS/IN2P3, F-91405 Orsay, France
116 \email{ansari@lal.in2p3.fr}
117 \and
118 CNRS/IN2P3, Laboratoire de l'Acc\'el\'erateur Lin\'eaire (LAL)
119 B.P. 34, 91898 Orsay Cedex, France
120 \and
121 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
122 % \thanks{The university of heaven temporarily does not
123 % accept e-mails}
124 \and
125 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
126 \and
127 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
128 }
129
130 \date{Received August 5, 2011; accepted xxxx, 2011}
131
132% \abstract{}{}{}{}{}
133% 5 {} token are mandatory
134
135 \abstract
136 % context heading (optional)
137 % {} leave it empty if necessary
138 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
139cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
140properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
141using radio interferometers with large instantaneous field of view and waveband.}
142 % aims heading (mandatory)
143 { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
144instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
145 % methods heading (mandatory)
146 { For each configuration, we determine instrument response by computing the $(\uv)$ or Fourier angular frequency
147plane coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
148hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
149separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
150 % results heading (mandatory)
151 { We have computed the noise power spectrum for different instrument configurations as well as the extracted
152 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
153 the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
154 % conclusions heading (optional), leave it empty if necessary
155 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
156 \mbox{$\sim 10000 \, \mathrm{m^2}$} will be able to detect BAO signal at redshift z $\sim 1$ and will be
157 competitive with optical surveys. }
158
159 \keywords{ large-scale structure of Universe --
160 dark energy -- Instrumentation: interferometers --
161 Radio lines; galaxies -- Radio continuum: general }
162
163 \maketitle
164%
165%________________________________________________________________
166% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
167% Toutes les figures sont provisoires }
168
169\section{Introduction}
170
171% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
172The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
173with redshift is one the major tools in observational cosmology. These structures are usually mapped through
174optical observation of galaxies which are used as a tracer of the underlying matter distribution.
175An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
176(\HI) as a tracer with intensity mapping has been proposed in recent years (\cite{peterson.06} , \cite{chang.08}).
177Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in literature
178\citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or
179MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
180
181Evidence in favor of the acceleration of the expansion of the universe have been
182accumulated over the last twelve years, thanks to the observation of distant supernovae,
183CMB anisotropies and detailed analysis of the LSS.
184A cosmological Constant ($\Lambda$) or new cosmological
185energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
186Dark Energy is considered as one of the most intriguing puzzles in Physics and Cosmology.
187% Constraining the properties of this new cosmic fluid, more precisely
188% its equation of state is central to current cosmological researches.
189Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
190more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
191of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
192and Baryon Acoustic Oscillations (BAO).
193
194BAO are features imprinted in the distribution of galaxies, due to the frozen
195sound waves which were present in the photon-baryon plasma prior to recombination
196at \mbox{$z \sim 1100$}.
197This scale can be considered as a standard ruler with a comoving
198length of \mbox{$\sim 150 \mathrm{Mpc}$}.
199These features have been first observed in the CMB anisotropies
200and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}).
201The BAO modulation has been subsequently observed in the distribution of galaxies
202at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
203\citep{eisenstein.05} \citep{percival.07} \citep{percival.10}, 2dGFRS \citep{cole.05} as well as
204WiggleZ \citep{blake.11} optical galaxy surveys.
205
206Ongoing {\changemarkb surveys such as BOSS} \citep{eisenstein.11} or future surveys
207{\changemarkb such as LSST} \citep{lsst.science}
208plan to measure precisely the BAO scale in the redshift range
209$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
210or through 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
211\citep{baolya},\citep{baolya2}.
212Radio observation of the 21 cm emission of neutral hydrogen appears as
213a very promising technique to map matter distribution up to redshift $z \sim 3$,
214complementary to optical surveys, especially in the optical redshift desert range
215$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
216
217In section 2, we discuss the intensity mapping and its potential for measurement of the
218\HI mass distribution power spectrum. The method used in this paper to characterize
219a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
220We show also the results for the 3D noise power spectrum for several instrument configurations.
221The contribution of foreground emissions due to the galactic synchrotron and radio sources
222is described in section 4, as well as a simple component separation method. The performance of this
223method using two different sky models is also presented in section 4.
224The constraints which can be obtained on the Dark Energy parameters and DETF figure
225of merit for typical 21 cm intensity mapping survey are discussed in section 5.
226
227
228%__________________________________________________________________
229
230\section{Intensity mapping and \HI power spectrum}
231
232% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
233
234\subsection{21 cm intensity mapping}
235%%%
236Most of the cosmological information in the LSS is located at large scales
237($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
238might suffer from the uncertainties on the non linear clustering effects.
239The BAO features in particular are at the degree angular scale on the sky
240and thus can be resolved easily with a rather modest size radio instrument
241(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
242can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
243or along the longitudinal (line of sight or redshift $k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
244the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
245BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
246longitudinal BAO clustering, which is a challenge for photometric optical surveys.
247
248In order to obtain a measurement of the LSS power spectrum with small enough statistical
249uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
250typically few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
251obtained when comparing the distance or Hubble parameter measurements with
252DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
253
254Radio instruments intended for BAO surveys must thus have large instantaneous field
255of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
256to explore large redshift domains.
257
258Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
259discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}),
260the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
261However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
262The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarisations
263of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
264\begin{equation}
265S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
266\end{equation}
267where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
268\ref{slims21} (left) we have computed the sensitivity for 6 different sets of instrument effective area and system
269temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
270The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
271dispersion of few 100 km/s.
272These detection limits should be compared with the expected 21 cm brightness
273$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
274\begin{equation}
275 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
276\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
277\end{equation}
278 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$
279is the source velocity dispersion.
280{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
281galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
282of an intensity mapping survey.}
283% {\color{red} Faut-il developper le calcul en annexe ? }
284
285In table \ref{slims21} (right), we show the 21 cm brightness for
286compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
287$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
288WMAP \LCDM universe \citep{komatsu.11}. $10^9 - 10^{10} M_\odot$ of neutral gas mass
289is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
290would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
291
292Intensity mapping has been suggested as an alternative and economic method to map the
2933D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} and \citep{seo.10}.
294{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
295\citep{chang.10} and at GMRT \citep{ghosh.11}}.
296In this approach, sky brightness map with angular resolution \mbox{$\sim 10-30 \, \mathrm{arc.min}$} is made for a
297wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
298would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to hundred galaxies
299and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
300the observed frequency $\nu$ would be translated to the emission redshift $z$ through
301the well known relation:
302\begin{eqnarray}
303 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
304\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
305\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
306 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
307\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
308\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
309\end{eqnarray}
310The large scale distribution of the neutral hydrogen, down to angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
311can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
312map as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
313(radiation power/unit solid angle/unit surface/unit frequency)
314can be converted to brightness temperature using the Rayleigh-Jeans approximation of black body radiation law:
315$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
316
317%%%%%%%%
318\begin{table}
319\caption{21 cm source brightness and detection limits. }
320\label{slims21}
321\begin{center}
322\begin{tabular}{|c|c|c|}
323\hline
324$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
325\hline
3265000 & 50 & 66 \\
3275000 & 25 & 33 \\
328100 000 & 50 & 3.3 \\
329100 000 & 25 & 1.66 \\
330500 000 & 50 & 0.66 \\
331500 000 & 25 & 0.33 \\
332\hline
333\end{tabular}
334%%
335\hspace{3mm}
336%%
337\begin{tabular}{|c|c|c|}
338\hline
339$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
340\hline % dernier chiffre : sans le facteur (1+z)
3410.25 & 1235 & 175 \\ % 140
3420.50 & 2800 & 40 \\ % 27
3431.0 & 6600 & 9.6 \\ % 4.8
3441.5 & 10980 & 3.5 \\ % 1.74
3452.0 & 15710 & 2.5 \\ % 0.85
3462.5 & 20690 & 1.7 \\ % 0.49
347\hline
348\end{tabular}
349\end{center}
350\tablefoot{The left panel shows the sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
351frequency band. The 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts is given
352in the right panel. }
353\end{table}
354
355\subsection{ \HI power spectrum and BAO}
356In the absence of any foreground or background radiation
357{\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
358the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
359the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
360relation {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}:
361\begin{equation}
362 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
363 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
364\end{equation}
365where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
366coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
367constant and $H(z)$ is the Hubble parameter at the emission
368redshift.
369For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
370can be expressed as:
371\begin{equation}
372H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
373\times 100 \, \, \mathrm{km/s/Mpc}
374\label{eq:expHz}
375\end{equation}
376Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
377neutral hydrogen number density and the corresponding 21 cm emission temperature
378can be written as a function of \HI relative density fluctuations:
379\begin{eqnarray}
380\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
381\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
382 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
383\end{eqnarray}
384where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
385and critical densities, $m_{H}$ is the hydrogen atom mass, and
386$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
387
388The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
389measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
390$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
391The neutral hydrogen fraction is expected to increase with redshift, as gas is used
392in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
393indicate a factor 3 increase in the neutral hydrogen
394fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
395compared to its present day value $\gHI(z=1.5) \sim 0.025$.
396The 21 cm brightness temperature and the corresponding power spectrum can be written as
397(\cite{madau.97}, \cite{zaldarriaga.04}), \cite{barkana.07}) :
398\begin{eqnarray}
399 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
400 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
401\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
402 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
403\label{eq:tbar21z}
404\end{eqnarray}
405
406The table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
407standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
408linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
40921 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
410($\gHI=0.02$). The matter power spectrum has been computed using the
411\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
412shown for the standard WMAP \LCDM cosmology, according to the relation:
413\begin{equation}
414\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
415\hspace{3mm}
416k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) }
417\end{equation}
418where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
419{ \changemark The matter power spectrum $P(k)$ has been measured using
420galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
421(\cite{cole.05}, \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
422shown here are comparable to the power spectrum measured from the galaxy surveys,
423once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$,
424redshift evolution and different bias factors have been accounted for. }
425% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
426% for an instrument corresponds approximately to half of its angular resolution.
427% {\color{red} Faut-il developper completement le calcul en annexe ? }
428
429\begin{table}
430\caption{21 cm brightness temperature (mK) at different redshifts. }
431\label{tabcct21}
432% \begin{center}
433\begin{tabular}{|l|c|c|c|c|c|c|c|}
434\hline
435\hline
436 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
437\hline
438(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
439\hline
440(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
441\hline
442\hline
443\end{tabular}
444%\end{center}
445\tablefoot{ Mean 21 cm brightness temperature in mK for the
446standard \LCDM cosmology as a function of redshift:
447\tablefoottext{a}{Constant \HI mass fraction \mbox{$\gHIz=0.01$}}
448\tablefoottext{b}{Linearly increasing mass fraction \mbox{$\gHIz=0.008(1+z)$} }
449}
450\end{table}
451
452\begin{figure}
453\vspace*{-5mm}
454\hspace{-5mm}
455\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
456\vspace*{-10mm}
457\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
458neutral gas fraction $\gHI=2\%$}
459\label{figpk21}
460\end{figure}
461
462
463\section{interferometric observations and P(k) measurement sensitivity }
464\label{pkmessens}
465\subsection{Instrument response}
466\label{instrumresp}
467We introduce briefly here the principles of interferometric observations and the definition of
468quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
469and complete presentation of observation methods and signal processing in radio astronomy.
470In astronomy we are usually interested in measuring the sky emission intensity,
471$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
472and interferometry in particular, receivers are sensitive to the sky emission complex
473amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
474length significantly smaller than the instrument resolution.
475\begin{eqnarray}
476& &
477I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
478& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '}
479\end{eqnarray}
480A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
481its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
482for each frequency can be written as a function of the electromagnetic wave vector
483$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
484\begin{equation}
485s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
486\end{equation}
487We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
488the EM wave vector is related to the wavelength $\lambda$ through the usual equation
489$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
490corresponds to the receiver intensity response:
491\begin{equation}
492L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
493\end{equation}
494The visibility signal of two receivers corresponds to the time averaged correlation between
495signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
496visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
497$\vec{r_2}$ can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
498\begin{equation}
499\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
500e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
501\end{equation}
502This expression can be simplified if we consider receivers with narrow field of view
503($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
504and coplanar in respect to their common axis.
505If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
506the common receivers axis, the visibilty would be written as the 2D Fourier transform
507of the product of the sky intensity and the receiver beam, for the angular frequency
508\mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
509\begin{equation}
510\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
511\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
512\end{equation}
513where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
514the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
515two $(\alpha, \beta)$ angular planes.
516
517Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
518of the sky intensity and the receiver beam:
519\begin{center}
520\begin{tabular}{ccc}
521$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
522$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
523$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \\
524\end{tabular}
525\end{center}
526
527The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
528wave number domain located around
529$(\uv)_{12}=( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
530given by the receiver beam Fourier transform.
531\begin{equation}
532\vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda)
533\end{equation}
534
535A single receiver instrument would measure the total power integrated in a spot centered around the
536origin in the $(\uv)$ or the angular wave mode plane. The shape of the spot depends on the receiver
537beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
538size.
539
540The correlation signal from a pair of receivers would measure the integrated signal on a similar
541spot, located around the central angular wave mode $(\uv)_{12}$ determined by the relative
542position of the two receivers (see figure \ref{figuvplane}).
543In an interferometer with multiple receivers, the area covered by different receiver pairs in the
544$(\uv)$ plane might overlap and some pairs might measure the same area (same base lines).
545Several beams can be formed using different combination of the correlations from a set of
546antenna pairs.
547
548An instrument can thus be characterized by its $(\uv)$ plane coverage or response
549${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
550the instrument response is simply the Fourier transform of the beam.
551For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
552a multi-horn system, each beam (b) will have its own response
553${\cal R}_b(\uv,\lambda)$.
554For an interferometer, we can compute a raw instrument response
555${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(\uv)$ plane coverage by all
556receiver pairs with uniform weighting.
557Obviously, different weighting schemes can be used, changing
558the effective beam shape and thus the response ${\cal R}_{w}(\uv,\lambda)$
559and the noise behaviour. If the same Fourier angular frequency mode is measured
560by several receiver pairs, the raw instrument response might then be larger
561that unity. This non normalized instrument response is used to compute the projected
562noise power spectrum in the following section (\ref{instrumnoise}).
563We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as:
564\begin{equation}
565{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right]
566\end{equation}
567This normalized instrument response can be used to compute the effective instrument beam,
568in particular in section \ref{recsec}.
569
570{\changemark Detection of the reionisation at 21 cm has been an active field
571in the last decade and different groups have built
572instruments to detect reionisation signal around 100 MHz: LOFAR
573\citep{rottgering.06}, MWA (\cite{bowman.07}, \cite{lonsdale.09}) and PAPER \citep{parsons.09} .
574Several authors have studied the instrumental noise
575and statistical uncertainties when measuring the reionisation signal power spectrum;
576the methods presented here to compute the instrument response
577and sensitivities are similar to the ones developed in these publications
578(\cite{morales.04}, \cite{bowman.06}, \cite{mcquinn.06}). }
579
580\begin{figure}
581% \vspace*{-2mm}
582\centering
583\mbox{
584\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
585}
586\vspace*{-15mm}
587\caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.}
588\label{figuvplane}
589\end{figure}
590
591\subsection{Noise power spectrum computation}
592\label{instrumnoise}
593Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
594bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
595$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
596$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
597corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
598noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
599corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies
600\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
601measurement from a pair of receivers can be written as:
602\begin{eqnarray}
603P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
604P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
605\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
606\label{eq:pnoisepairD}
607\end{eqnarray}
608
609We can characterize the sky temperature measurement with a radio instrument by the noise
610spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$
611per unit area of angular frequencies $\delta \uvu \times \delta \uvv$.
612For an interferometer made of identical receiver elements, several ($n$) receiver pairs
613might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
614is then reduced by a factor $1/n$. More generally, we can write the instrument noise
615spectral power density using the instrument response defined in section \ref{instrumresp} :
616\begin{equation}
617P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) }
618\label{eq:pnoiseuv}
619\end{equation}
620
621When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
622$P(k)$ is computed, angles are translated into comoving transverse distances,
623and frequencies or wavelengths into comoving radial distance, using the following relations
624{\changemarkb (e.g. \cite{cosmo.peebles} chap. 13, \cite{cosmo.rich})} :
625{ \changemark
626\begin{eqnarray}
627\alpha , \beta & \rightarrow & \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \, \alpha,\beta \\
628\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\
629\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
630 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
631% \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\
632\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \delta k_z =
6332 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
634 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
635\end{eqnarray}
636}
637{ \changemark
638A brightness measurement at a point $(\uv,\lambda)$, covering
639the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
640to cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
641defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
642The measurement noise spectral density given by the equation \ref{eq:pnoisepairD} can then be
643translated into a 3D noise power spectrum, per unit of spatial frequencies
644$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) :
645
646\begin{eqnarray}
647(\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\
648P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv)
649 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
650 & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right)
651 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
652\label{eq:pnoisekxkz}
653\end{eqnarray}
654
655It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
656anymore on the individual measurement bandwidth.
657In the following paragraph, we will first consider an ideal instrument
658with uniform $(\uv)$ coverage
659in order to establish the general noise power spectrum behaviour for cosmological 21 cm surveys.
660The numerical method used to compute the 3D noise power spectrum is then presented in section
661\ref{pnoisemeth}.
662}
663
664\subsubsection{Uniform $(\uv)$ coverage}
665{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage (${\cal R}(\uv)=1$),
666and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
667The noise spectral power density from equation (\ref{eq:pnoisekxkz}) would then be
668constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum corresponds thus
669to a 3D white noise, with a uniform noise spectral density:}
670\begin{equation}
671P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
672\label{ctepnoisek}
673\end{equation}
674
675$P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
676$t_{int}$ is the integration time expressed in second,
677$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
678 $H(z)$ in $\mathrm{km/s/Mpc}$.
679
680The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
681with the number of observed Fourier modes; this number is proportional to the volume of the universe
682which is observed (sample variance). As the observed volume is proportional to the
683surveyed solid angle, we consider the survey of a fixed
684fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a given
685total observation time $t_{obs}$.
686A single dish instrument with diameter $D$ would have an instantaneous field of view
687$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
688a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
689Each sky direction or patch of size $\Omega_{FOV}$ will be observed during an integration
690time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
691for the integration time, we can compute a simple expression
692for the noise spectral power density by a single dish instrument of diameter $D$:
693\begin{equation}
694P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
695\end{equation}
696
697It is important to note that any real instrument do not have a flat
698response in the $(\uv)$ plane, and the observations provide no information above
699a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
700One has to take into account either a damping of the observed sky power
701spectrum or an increase of the noise spectral density if
702the observed power spectrum is corrected for damping. The white noise
703expressions given below should thus be considered as a lower limit or floor of the
704instrument noise spectral density.
705
706For a single dish instrument of diameter $D$ equipped with a multi-feed or
707phase array receiver system, with $N$ independent beams on sky,
708the noise spectral density decreases by a factor $N$,
709thanks to the increase of per pointing integration time:
710
711\begin{equation}
712P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
713\label{eq:pnoiseNbeam}
714\end{equation}
715
716This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
717identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
718of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.
719
720For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
721observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of
722$\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number
723$k_{\perp}^{max}$:
724\begin{equation}
725k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
726\label{kperpmax}
727\end{equation}
728
729Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
730as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
731beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
732The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
733year. The maximum comoving wave number $k^{max}$ is also shown as a function
734of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
735to take into account the radial component of $\vec{k}$ and the increase of
736the instrument noise level with $k_{\perp}$, we have taken the effective $k_{ max} $
737as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{eq. \ref{kperpmax}}:
738\begin{equation}
739k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
740\end{equation}
741
742\begin{figure}
743\vspace*{-25mm}
744\centering
745\mbox{
746\hspace*{-10mm}
747\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
748}
749\vspace*{-40mm}
750\caption{Top: minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
751as a function of redshift (top), for a one year survey of a quarter of the sky. Bottom:
752maximum $k$ value for 21 cm LSS power spectrum measurement by a 100 meter diameter
753primary antenna. }
754\label{pnkmaxfz}
755\end{figure}
756
757\subsubsection{3D noise power spectrum computation}
758\label{pnoisemeth}
759{ \changemark
760We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
761response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
762sensitivities for different instrument configurations, albeit the noise realization for a real instrument would not be
763isotropic.
764\begin{itemize}
765\item We start by a 3D Fourier coefficient grid, with the two first coordinates being the transverse angular wave modes,
766and the third being the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
767we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise},
768the grid cell size and dimensions have been chosen to represent a box in the universe
769\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
770with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
771This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
772the small angular extent, we have neglected the curvature of redshift shells.
773\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
774The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
775using equation (\ref{eq:uvkxky}), and the
776angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
777The noise variance is taken proportional to $P_{noise}$ :
778\begin{equation}
779\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
780\end{equation}
781\item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
782complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
783\begin{equation}
784\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm}
785 \sqrt{k_x^2+k_y^2+k_z^2} = k
786\end{equation}
787Noise samples corresponding to small instrument response, typically less than 1\% of the
788maximum instrument response are ignored when calculating $\tilde{P}_{noise}(k)$.
789However, we require to have a significant fraction, typically 20\% to 50\% of all possible modes
790$(k_x,k_y,k_z)$ measured for a given $k$ value.
791\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
792from random generations. The averaged computed noise power spectrum is normalized using
793equation \ref{eq:pnoisekxkz} and the instrument and survey parameters:
794{\changemarkb system temperature $\Tsys= 50 \mathrm{K}$,
795individual receiver size $D^2$ or $D_x D_y$ and the integration time $t_{int}$.
796This last parameter is obtained through the relation
797$t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration
798$t_{obs}=1 \mathrm{year}$, the instantaneous field of view
799$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage
800$\Omega_{tot} = \pi$ srad. }
801\end{itemize}
802
803It should be noted that it is possible to obtain a good approximation of the noise
804power spectrum shape, neglecting the redshift or frequency dependence of the
805instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
806using a fixed instrument response ${\cal R}(\uv,\lambda(z_0))$ and
807a constant radial distance $\dang(z_0)*(1+z_0)$.
808\begin{equation}
809\tilde{P}_{noise}(k) = < | {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
810\end{equation}
811The approximate power spectrum obtained through this simplified and much faster
812method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
813configurations.
814}
815
816\subsection{Instrument configurations and noise power spectrum}
817\label{instrumnoise}
818We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$
819with uniform weights in the $(\uv)$ plane for several instrument configurations:
820\begin{itemize}
821\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
822a square $11 \times 11$ configuration ($q=11$). This array covers an area of
823$55 \times 55 \, \mathrm{m^2}$
824\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
825in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
826$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
827shown in figure \ref{figconfbc}.
828\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
829 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
830particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
831four array corners. This array layout is also shown figure \ref{figconfbc}.
832\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
833equipped with a 100 beam focal plane receiver array.
834\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
835a square $20 \times 20$ configuration ($q=20$). This array covers an area of
836$100 \times 100 \, \mathrm{m^2}$
837\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
838wide. The focal line of each cylinder is equipped with 100 receivers, each
839$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
840This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
841a total of $400$ receivers per polarisation, as in the (e) configuration.
842We have computed the noise power spectrum for {\em perfect}
843cylinders, where all receiver pair correlations are used (fp), or for
844a non perfect instrument, where only correlations between receivers
845from different cylinders are used.
846\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
847wide. The focal line of each cylinder is equipped with 120 receivers, each
848$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
849This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
850a total of 960 receivers per polarisation. As for the (f) configuration,
851we have computed the noise power spectrum for {\em perfect}
852cylinders, where all receiver pair correlations are used (gp), or for
853a non perfect instrument, where only correlations between receivers
854from different cylinders are used.
855\end{itemize}
856
857\begin{figure}
858\centering
859\vspace*{-15mm}
860\mbox{
861\hspace*{-10mm}
862\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
863}
864\vspace*{-15mm}
865\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
866diameter dishes. }
867\label{figconfbc}
868\end{figure}
869
870We have used simple triangular shaped dish response in the $(\uv)$ plane.
871However, we have introduced a filling factor or illumination efficiency
872$\eta$, relating the effective dish diameter $D_{ill}$ to the
873mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
874as $\eta^2$ or $\eta_x \eta_y$.
875\begin{eqnarray}
876{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2}) \\
877 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
878\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
879\end{eqnarray}
880For the multi-dish configuration studied here, we have taken the illumination efficiency factor
881{\bf $\eta = 0.9$}.
882
883For the receivers along the focal line of cylinders, we have assumed that the
884individual receiver response in the $(\uv)$ plane corresponds to a
885rectangular shaped antenna. The illumination efficiency factor has been taken
886equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
887along the cylinder length. {\changemark We have used double triangular shaped
888response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
889\begin{equation}
890 {\cal L}_\Box(\uv,\lambda) =
891\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
892\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
893\end{equation}
894}
895It should be noted that the small angle approximation
896used here for the expression of visibilities is not valid for the receivers along
897the cylinder axis. However, some preliminary numerical checks indicate that
898the results obtained here for the noise spectral power density would not change significantly.
899The instrument responses shown here correspond to fixed pointing toward the zenith, which
900is the case for a transit type telescope.
901
902Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
903for the four configurations (a,b,c,d) with $\sim 100$ receivers per
904polarisation.
905
906{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we have
907computed the 3D noise power spectrum for each of the eight instrument configurations presented
908here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
909of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.}
910The resulting noise spectral power densities are shown in figure
911\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
912is due to the fact that we have ignored all auto-correlation measurements.
913It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
914should have enough sensitivity to map LSS in 21 cm at redshift z=1.
915
916\begin{figure*}
917\centering
918\mbox{
919% \hspace*{-10mm}
920\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
921}
922\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
923at 710 MHz (redshift $z=1$) for four configurations.
924(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
925of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
926(c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams.
927The common color scale (1 \ldots 80) is shown on the right. }
928\label{figuvcovabcd}
929\end{figure*}
930
931\begin{figure*}
932\vspace*{-10mm}
933\centering
934\mbox{
935% \hspace*{-5mm}
936\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
937}
938\vspace*{-20mm}
939\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
940and the noise power spectrum for several interferometer configurations
941 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
942computed for all configurations assuming a survey of a quarter of the sky over one year,
943with a system temperature $\Tsys = 50 \mathrm{K}$. }
944\label{figpnoisea2g}
945\end{figure*}
946
947
948\section{ Foregrounds and Component separation }
949\label{foregroundcompsep}
950Reaching the required sensitivities is not the only difficulty of observing the large
951scale structures in 21 cm. Indeed, the synchrotron emission of the
952Milky Way and the extra galactic radio sources are a thousand times brighter than the
953emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
954using Intensity Mapping, without identifying the \HI point sources is the main challenge
955for this novel observation method. Although this task might seem impossible at first,
956it has been suggested that the smooth frequency dependence of the synchrotron
957emissions can be used to separate the faint LSS signal from the Galactic and radio source
958emissions. {\changemark Discussion of contribution of different sources
959of radio foregrounds for measurement of reionization through redshifted 21 cm,
960as well foreground subtraction using their smooth frequency dependence can
961be found in (\cite{shaver.99}, \cite{matteo.02},\cite{oh.03}).}
962However, any real radio instrument has a beam shape which changes with
963frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
964technique. The effect of frequency dependent beam shape is some time referred to as {\em
965mode mixing}. {\changemark The effect of the frequency dependent beam shape on foreground subtraction
966has been discussed for example in \cite{morales.06}.}
967
968In this section, we present a short description of the foreground emissions and
969the simple models we have used for computing the sky radio emissions in the GHz frequency
970range. We present also a simple component separation method to extract the LSS signal and
971its performance. {\changemark The analysis presented here follows a similar path to
972a detailed foreground subtraction study carried for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
973We compute in particular the effect of the instrument response on the recovered
974power spectrum. The results presented in this section concern the
975total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
976corresponding to the central frequency $\nu \sim 884$ MHz.
977
978\subsection{ Synchrotron and radio sources }
979We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
980brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
981and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
982$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
983the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
984used in the simulations are given in the table \ref{skycubechars}.
985\begin{table}
986\caption{
987Sky cube characteristics for the simulations described in this paper. }
988\label{skycubechars}
989\begin{center}
990\begin{tabular}{|c|c|c|}
991\hline
992 & range & center \\
993\hline
994Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
995Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
996Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
997Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
998Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
999\hline
1000\hline
1001& resolution & N-cells \\
1002\hline
1003Right ascension & 3 arcmin & 1800 \\
1004Declination & 3 arcmin & 600 \\
1005Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
1006\hline
1007\end{tabular}
1008\end{center}
1009\tablefoot{ Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
1010$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells }
1011\end{table}
1012%%%%
1013\par
1014Two different methods have been used to compute the sky temperature data cubes.
1015We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
1016maps of the emission temperature at different frequencies, from which we have
1017extracted the brightness temperature cube for the region defined above
1018(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
1019As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
1020difficult to have reliable results for the effect of point sources on the reconstructed
1021LSS power spectrum.
1022
1023We have thus made also a simple sky model using the Haslam Galactic synchrotron map
1024at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
1025catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
1026has been computed through the following steps:
1027
1028\begin{enumerate}
1029\item The Galactic synchrotron emission is modeled as a power law with spatially
1030varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
1031$\beta$ has a gaussian distribution centered at -2.8 and with standard
1032deviation $\sigma_\beta = 0.15$. {\changemark The
1033diffuse radio background spectral index has been measured for example by
1034\cite{platania.98} or \cite{rogers.08}.}
1035The synchrotron contribution to the sky temperature for each cell is then
1036obtained through the formula:
1037\begin{equation}
1038 T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta
1039\end{equation}
1040%%
1041\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
1042by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
1043the sky cubes. The source brightness in Jansky is converted to temperature taking the
1044pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels).
1045A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
1046map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
1047contribution of the radiosources to the sky temperature is computed as follows:
1048\begin{equation}
1049 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
1050\end{equation}
1051%%
1052\item The sky brightness temperature data cube is obtained through the sum of
1053the two contributions, Galactic synchrotron and resolved radio sources:
1054\begin{equation}
1055 T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu)
1056\end{equation}
1057\end{enumerate}
1058
1059 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
1060$T_{lss}(\alpha, \delta, \nu)$ have been computed using the
1061SimLSS \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package:
1062%
1063complex normal Gaussian fields were first generated in Fourier space.
1064The amplitude of each mode was then multiplied by the square root
1065of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
1066\citep{eisenhu.98}. We have used the standard cosmological parameters,
1067 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
1068$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
1069An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
1070in the linear regime,
1071in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved
1072to redshift $z=0.6$.
1073The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
1074$\Delta z \simeq 0.23$ in the longitudinal direction.
1075The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
1076sky cube angular and frequency resolution defined above.
1077{\changemarkb
1078We haven't taken into account the curvature of redshift shells when
1079converting SimLSS euclidean coordinates to angles and frequency coordinates
1080of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
1081These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and
1082 are excluded for results presented in this paper.
1083}
1084
1085The mass fluctuations have been converted into temperature using equation \ref{eq:tbar21z},
1086and a neutral hydrogen fraction \mbox{$0.008 \times (1+0.6)$}, leading to a mean temperature of
1087$0.13 \, \mathrm{mK}$.
1088The total sky brightness temperature is computed as the sum
1089of foregrounds and the LSS 21 cm emission:
1090\begin{equation}
1091 T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
1092T_{sky} = T_{gsm}+T_{lss}
1093\end{equation}
1094
1095Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
1096temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
1097It should be noted that the standard deviation depends on the map resolution and the values given
1098in table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
1099angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
1100Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
1101with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
1102Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
1103for Model-I/GSM and Model-II. There is good agreement between the two models, although
1104the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
1105
1106\begin{table}
1107\caption{Mean temperature and standard deviation for different sky cubes.}
1108\label{sigtsky}
1109\centering
1110\begin{tabular}{|c|c|c|}
1111\hline
1112 & mean (K) & std.dev (K) \\
1113\hline
1114Haslam & 2.17 & 0.6 \\
1115NVSS & 0.13 & 7.73 \\
1116Haslam+NVSS & 2.3 & 7.75 \\
1117(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
1118GSM & 2.1 & 0.8 \\
1119\hline
1120\end{tabular}
1121% \tablefoot{See table \ref{skycubechars} for sky cube resolution and size.}
1122\end{table}
1123
1124we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
1125as for the radio foreground temperature cubes obtained from the two
1126models. We have also computed the power spectrum on sky brightness temperature
1127cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
1128The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
1129The GSM model has more large scale power compared to our simple Haslam+NVSS model,
1130while it lacks power at higher spatial frequencies. The mode mixing due to
1131frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
1132case. It can also be seen that the radio foreground power spectrum is more than
1133$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
1134to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
1135compared to the mK LSS signal.
1136
1137{ \changemark Contrary to most similar studies, where it is assumed that bright sources
1138can be nearly perfectly subtracted, our aim was to compute also their
1139effect in the foreground subtraction process.
1140The GSM model lacks the angular resolution needed to compute
1141correctly the effect of bright compact sources for 21 cm LSS observations and
1142the mode mixing due to the frequency dependence of the instrumental response,
1143while Model-II provides a reasonable description of these compact sources. Our simulated
1144sky cubes have an angular resolution $3'\times3'$, well below the typical
1145$15'$ resolution of the instrument configuration considered here.
1146However, Model-II might lack spatial structures at large scales, above a degree,
1147compared to Model-I/GSM, and the frequency variations as a simple power law
1148might not be realistic enough. The differences for the two sky models can be seen
1149in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
1150a 25' beam has negligible effect of the GSM power spectrum, as it originally lacks
1151structures below 0.5 degree. By using
1152these two models, we have explored some of the systematic uncertainties
1153related to foreground subtraction.}
1154
1155It should also be noted that in section 3, we presented the different instrument
1156configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
1157power spectrum is recovered unaffected in this case, while the noise power spectrum
1158increases at high k values (small scales). In practice, clean deconvolution is difficult to
1159implement for real data and the power spectra presented in this section are NOT corrected
1160for the instrumental response. The observed structures have thus a scale dependent damping
1161according to the instrument response, while the instrument noise is flat (white noise or scale independent).
1162
1163\begin{figure}
1164\centering
1165\vspace*{-10mm}
1166\mbox{
1167\hspace*{-20mm}
1168\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
1169}
1170\vspace*{-10mm}
1171\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
1172The Model-II (Haslam+NVSS),
1173has been smoothed with a 35 arcmin gaussian beam. }
1174\label{compgsmhtemp}
1175\end{figure}
1176
1177\begin{figure*}
1178\centering
1179\mbox{
1180% \hspace*{-10mm}
1181\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
1182}
1183\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
1184The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
1185\label{compgsmmap}
1186\end{figure*}
1187
1188\begin{figure}
1189\centering
1190% \vspace*{-25mm}
1191\mbox{
1192\hspace*{-6mm}
1193\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
1194}
1195\vspace*{-5mm}
1196\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with \mbox{$\gHI\simeq1.3\%$} (red, orange)
1197with the radio foreground power spectrum.
1198The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1199model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
1200as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam. This beam has
1201negligible effect on the GSM/Model-I power spectrum, as GSM has no structures below $\sim 0.5^\circ$.
1202}
1203\label{pkgsmlss}
1204\end{figure}
1205
1206
1207
1208\subsection{ Instrument response and LSS signal extraction }
1209\label{recsec}
1210The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1211$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
1212${\cal R}(\uv,\lambda)$.
1213We have considered the simple case where the instrument response is constant throughout the survey area, or independent
1214of the sky direction.
1215For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
1216\begin{enumerate}
1217\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1218$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k)$$
1219\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1220$ {\cal R}(\uv,\lambda_k) \lesssim 1$.
1221$$ {\cal T}_{sky}(\uv, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) $$
1222\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
1223without instrumental (electronic/$\Tsys$) white noise:
1224$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)
1225\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1226\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
1227the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1228{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
1229dependent instrumental response has already been applied.}
1230We have also considered that the system temperature and thus the
1231additive white noise level was independent of the frequency or wavelength.
1232\end{enumerate}
1233The LSS signal extraction performance depends obviously on the white noise level.
1234The results shown here correspond to the (a) instrument configuration, a packed array of
1235$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
1236to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1237cell. \\[1mm]
1238
1239The different steps of the simple component separation procedure that has been applied are
1240briefly described here.
1241\begin{enumerate}
1242\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1243beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
1244corresponds to a smearing or degradation of the angular resolution.
1245\begin{eqnarray*}
1246 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\
1247 {\cal T}_{mes}^{bcor}(u, v, \lambda_k) & = &
1248{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
1249{\cal T}_{mes}^{bcor}(u, v, \lambda_k) & \rightarrow & \mathrm{2D-FFT} \rightarrow T_{mes}^{bcor}(\alpha,\delta,\lambda)
1250\end{eqnarray*}
1251{\changemark
1252The virtual target beam ${\cal R}_f(\uv)$ has a lower resolution than the worst real instrument beam,
1253i.e at the lowest observed frequency.
1254No correction has been applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
1255attempt to represent imperfect knowledge of the instrument response.
1256We recall that this is the normalized instrument response,
1257${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$ has also a numerical upper bound $\sim 100$. }
1258\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1259 is fitted to the beam-corrected brightness temperature. The parameters have been obtained
1260using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
1261We show here the results for a pure power law (P1), as well as a modified power law (P2):
1262\begin{eqnarray*}
1263P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1264P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
1265\end{eqnarray*}
1266where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the
1267reference frequency $\nu_0$.
1268
1269{\changemark Interferometers have poor response at small $(\uv)$ corresponding to baselines
1270smaller than interferometer element size. The zero spacing baseline, the $(\uv)=(0,0)$ mode, represents
1271the mean temperature for a given frequency plane and can not be measured with interferometers.
1272We have used a simple trick to make the power law fitting procedure applicable:
1273we have set the mean value of the temperature for
1274each frequency plane according to a power law with an index close to the synchrotron index
1275($\beta\sim-2.8$) and we have checked that the results are not too sensitive to the
1276arbitrarily fixed mean temperature power law parameters. }
1277
1278\item The difference between the beam-corrected sky temperature and the fitted power law
1279$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1280\end{enumerate}
1281
1282Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1283for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
128421 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1285gaussian frequency independent beam is shown in orange (solid line),
1286and the extracted power spectrum, after beam {\em correction}
1287and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
1288We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1289or with the first order polynomial fit (P1).
1290
1291Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1292with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
1293present in the original map have been correctly recovered, although the amplitude of the temperature
1294fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
1295{\changemark This is mostly due to the damping of the large scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
1296due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
1297
1298We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
1299presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
1300However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1301or smearing procedure described here are key ingredient for recovering the 21 cm LSS power spectrum.
1302It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
1303($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1304has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
1305significantly the ripples from bright radio sources.
1306We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1307with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
1308such a smooth beam, compared to the more complex instrument response
1309${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1310
1311\begin{figure*}
1312\centering
1313% \vspace*{-25mm}
1314\mbox{
1315% \hspace*{-20mm}
1316\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
1317}
1318% \vspace*{-10mm}
1319\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1320continuum radio emissions at $z \sim 0.6$, \mbox{$\gHI\simeq1.3\%$}, for the instrument configuration (a), $11\times11$
1321packed array interferometer.
1322Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
1323corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
1324signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
1325\label{extlsspk}
1326\end{figure*}
1327
1328
1329\begin{figure*}
1330\centering
1331\vspace*{-20mm}
1332\mbox{
1333\hspace*{-25mm}
1334\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1335}
1336\vspace*{-25mm}
1337\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1338with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer.
1339Notice the difference between the temperature color scales (mK) for the top and bottom maps. }
1340\label{extlssmap}
1341\end{figure*}
1342
1343\subsection{$P_{21}(k)$ measurement transfer function}
1344\label{tfpkdef}
1345The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1346 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1347{\changemarkb
1348We remind that we have neglected the curvature of redshift or frequency shells
1349in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
1350The results presented here and our conclusions are thus restricted to wave mode range
1351$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
1352}
1353We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
1354if total power measurements (auto-correlations) are not used in the case of interferometers.
1355The sky reconstruction and the component separation introduce additional filtering and distortions.
1356The real transverse plane transfer function might even be anisotropic.
1357
1358However, in the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
1359recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
1360{\changemarkb , similar to the one defined by \cite{bowman.09} , equation (23):}
1361\begin{equation}
1362\TrF(k) = P_{21}^{rec}(k) / P_{21}(k)
1363\end{equation}
1364
1365Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1366separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed
1367$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
1368The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
1369power spectrum, if the original LSS temperature cube is smoothed by the frequency independent
1370target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
1371small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1372The red curve shows the transfer function for the GSM foreground model (Model-I) and the $11\times11$ filled array
1373interferometer (setup (a)), while the dashed red curve represents the transfer function for a D=55 meter
1374diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
1375array is also shown (orange curve). The recovered power spectrum suffers also significant damping at large
1376scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $, mostly due to the filtering of radial or
1377longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
1378by the component separation algorithm. We have been able to remove the ripples on the reconstructed
1379power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
1380target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
1381obtained for Model-II at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
1382
1383 It should be stressed that the simulations presented in this section were
1384focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
1385$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1386
1387This transfer function is well represented by the analytical form:
1388\begin{equation}
1389\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right)
1390\label{eq:tfanalytique}
1391\end{equation}
1392
1393We have performed simulation of observations and radio foreground subtraction using
1394the procedure described here for different redshifts and instrument configurations, in particular
1395for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1396increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1397becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
1398
1399We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
1400for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1401for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
1402and the corresponding transfer functions are shown on figure \ref{tfpkz0525}.
1403
1404\begin{table}[hbt]
1405\caption{Transfer function parameters.}
1406\label{tab:paramtfk}
1407\begin{center}
1408\begin{tabular}{|c|ccccc|}
1409\hline
1410\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1411\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1412\hline
1413$k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1414$k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1415$k_C \, (\mathrm{Mpc^{-1}})$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1416\hline
1417\end{tabular}
1418\end{center}
1419\tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$ (eq. \ref{eq:tfanalytique})
1420at different redshifts and for instrumental setup (e), $20\times20$ packed array interferometer,
1421are given in $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$. }
1422\end{table}
1423
1424\begin{figure}
1425\centering
1426% \vspace*{-25mm}
1427\mbox{
1428% \hspace*{-10mm}
1429\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
1430}
1431% \vspace*{-30mm}
1432\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$. for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of a frequency independent
1433gaussian beam of $\sim 30'$ is shown in black.
1434The transfer function $\TrF(k)$ for the instrument configuration (a), $11\times11$ packed array interferometer,
1435for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
1436for a D=55 meter diameter dish for the GSM model is also shown as the dashed red curve. }
1437\label{extlssratio}
1438\end{figure}
1439
1440
1441\begin{figure}
1442\centering
1443% \vspace*{-25mm}
1444\mbox{
1445% \hspace*{-10mm}
1446\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
1447}
1448%\vspace*{-30mm}
1449\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
1450$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1451\label{tfpkz0525}
1452\end{figure}
1453
1454
1455
1456%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1457%% \section{ BAO scale determination and constrain on dark energy parameters}
1458% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1459%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1460%% and determine BAO scale as a function of redshifts.
1461%% Method:
1462%% \begin{itemize}
1463%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1464%% \item Compute / guess the instrument noise level for the same redshit values
1465%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1466%% \item Compute the DETF ellipse with different priors
1467%% \end{itemize}
1468
1469%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1470%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1471%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1472
1473\section{Sensitivity to cosmological parameters}
1474\label{cosmosec}
1475
1476The impact of the various telescope configurations on the sensitivity for 21 cm
1477power spectrum measurement has been discussed in section \ref{pkmessens}.
1478Fig. \ref{figpnoisea2g} shows the noise power spectra, and allows us to rank visually the configurations
1479in terms of instrument noise contribution to P(k) measurement.
1480The differences in $P_{noise}$ will translate into differing precisions
1481in the reconstruction of the BAO peak positions and in
1482the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
1483that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
1484has also an effect on the measured 21 cm power spectrum.
1485In this paragraph, we present our method and the results for the precisions on the estimation
1486of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
1487with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1488dishes, arranged into a filled $20 \times 20$ array.
1489
1490
1491\subsection{BAO peak precision}
1492
1493In order to estimate the precision with which BAO peak positions can be
1494measured, we used a method similar to the one established in
1495\citep{blake.03} and \citep{glazebrook.05}.
1496
1497
1498
1499To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1500 slices of Universe with a quarter-sky coverage and a redshift depth,
1501 $\Delta z=0.5$ for $0.25<z<2.75$.
1502The peaks in the generated spectra were then determined by a
1503fitting procedure and the reconstructed peak positions compared with the
1504generated peak positions.
1505The reconstructed power spectrum used in the simulation is
1506the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
1507damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
1508and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
1509established in section \ref{instrumnoise} with $N=400$:
1510\begin{equation}
1511 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
1512\end{equation}
1513where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
1514The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
1515%\begin{equation}
1516\begin{eqnarray}
1517\label{eq:signal}
1518\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
15191\; +
1520\hspace*{40mm}
1521\nonumber
1522\\ \hspace*{20mm}
1523A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1524\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1525\frac{\kpar^2}{\kopar^2}}\;\right)
1526\end{eqnarray}
1527%\end{equation}
1528where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
1529are adjusted to the formula presented in
1530\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
1531envelop curve of the HI power spectrum without baryonic oscillations.
1532The parameters $\koperp$ and $\kopar$
1533are the inverses of the oscillation periods in k-space.
1534The following values have been used for these
1535parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1536$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
1537
1538Each simulation is performed for a given set of parameters
1539which are: the system temperature,$\Tsys$, an observation time,
1540$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
1541Then, each simulated power spectrum is fitted with a two dimensional
1542normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
1543the sum of the signal power spectrum damped by the transfer function and the
1544noise power spectrum multiplied by a
1545linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1546corresponds to the approximate position of the linear/non-linear transition.
1547This limit is established on the basis of the criterion discussed in
1548\citep{blake.03}.
1549In practice, we used for the redshifts
1550$z=0.5,\,\, 1.0$ and $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
1551and $0.23 \hMpcm$.
1552
1553Figure \ref{fig:fitOscill} shows the result of the fit for
1554one of these simulations.
1555Figure \ref{fig:McV2} histograms the recovered values of $\koperp$ and $\kopar$
1556for 100 simulations.
1557The widths of the two distributions give an estimate
1558of the statistical errors.
1559
1560In addition, in the fitting procedure, both the parameters modeling the
1561signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
1562spectrum $(a_0,a_1)$ are floated to take into account the possible
1563ignorance of the signal shape and the uncertainties in the
1564computation of the noise power spectrum.
1565In this way, we can correct possible imperfections and the
1566systematic uncertainties are directly propagated to statistical errors
1567on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1568fitted noise contribution to each simulation, the baryonic oscillations
1569are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
1570
1571
1572\begin{figure}[htbp]
1573\begin{center}
1574\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1575\caption{1D projection of the power spectrum for one simulation.
1576The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1577corresponding to the power spectrum without baryonic oscillations.
1578The dots represents one simulation for a "packed" array of cylinders
1579with a system temperature,$T_{sys}=50$K, an observation time,
1580$T_{obs}=$ 1 year,
1581a solid angle of $1\pi sr$,
1582an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1583The solid line is the result of the fit to the data.}
1584\label{fig:fitOscill}
1585\end{center}
1586\end{figure}
1587
1588\begin{figure}[htbp]
1589\begin{center}
1590%\includegraphics[width=\textwidth]{McV2.eps}
1591\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1592\caption{ Distributions of the reconstructed
1593wavelength $\koperp$ and $\kopar$
1594respectively, perpendicular and parallel to the line of sight
1595for simulations as in Fig. \ref{fig:fitOscill}.
1596The fit by a Gaussian of the distribution (solid line) gives the
1597width of the distribution which represents the statistical error
1598expected on these parameters.}
1599\label{fig:McV2}
1600\end{center}
1601\end{figure}
1602
1603
1604\begin{figure}[htbp]
1605\begin{center}
1606\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1607\caption{1D projection of the power spectrum averaged over 100 simulations
1608of the packed cylinder array $b$.
1609The simulations are performed for the following conditions: a system
1610temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
1611a solid angle of $1 \pi sr$,
1612an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1613The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1614corresponding to the power spectrum without baryonic oscillations
1615and the background estimated by a fit is subtracted. The errors are
1616the RMS of the 100 distributions for each $k$ bin and the dots are
1617the mean of the distribution for each $k$ bin. }
1618\label{fig:AverPk}
1619\end{center}
1620\end{figure}
1621
1622
1623
1624
1625%\subsection{Results}
1626
1627In our comparison of the various configurations, we have considered
1628the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1629\begin{itemize}
1630\item {\it Simulation without electronics noise}: the statistical errors on the power
1631spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1632 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1633The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
1634\begin{equation}
1635V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1636N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k
1637\end{equation}
1638\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1639\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for a $N=400$ dish interferometer
1640with $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1641\item {\it Noise with transfer function}: we take into account the interferometer response and radio foreground
1642subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1643well as the instrument noise $P_{noise}$.
1644\end{itemize}
1645
1646\begin{table}
1647\caption{Noise spectral power.}
1648\label{tab:pnoiselevel}
1649\begin{tabular}{|l|ccccc|}
1650\hline
1651z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1652\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1653\hline
1654$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1655\hline
1656\end{tabular}
1657\end{table}
1658
1659Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1660decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results. Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
1661
1662\begin{table*}[ht]
1663\caption{Sensitivity on $\mathbf{k}_{BAO}$ measurement.}
1664\label{tab:ErrorOnK}
1665\begin{center}
1666\begin{tabular}{lc|c c c c c }
1667\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1668\hline\hline
1669\bf No Noise (a) & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1670 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1671 \hline
1672 \bf Noise without Transfer Function (b) & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1673 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1674 \hline
1675 \bf Noise with Transfer Function (c) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1676 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1677 \hline
1678 \bf Optimized survey (d) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1679 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1680 \hline
1681\end{tabular}
1682\end{center}
1683\tablefoot{Relative errors on $\koperp$ and $\kopar$ measurements are given
1684as a function of the redshift $z$ for various simulation configurations: \\
1685\tablefoottext{a}{$1^{\rm st}$ row: simulations without noise with pure cosmic variance; } \\
1686\tablefoottext{b}{$2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes; } \\
1687\tablefoottext{c}{$3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function; } \\
1688\tablefoottext{d}{$4^{\rm th}$ row: optimized survey with a total observation time of 3 years: 3 months, 3 months,
16896 months, 1 year and 1 year respectively for \\ redshifts 0.5, 1.0, 1.5, 2.0 and 2.5.}
1690}
1691\end{table*}%
1692
1693
1694
1695\subsection{Expected sensitivity on $w_0$ and $w_a$}
1696
1697\begin{figure}
1698\begin{center}
1699\includegraphics[width=8.5cm]{Figs/dist.pdf}
1700\caption{
1701The two ``Hubble diagrams'' for BAO experiments.
1702The four falling curves give the angular size of the acoustic horizon
1703(left scale) and the four
1704rising curves give the redshift interval of the acoustic horizon (right scale).
1705The solid lines are for
1706$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1707the dashed for
1708$(1,0,-1)$
1709the dotted for
1710$(0.27,0,-1)$, and
1711the dash-dotted for
1712$(0.27,0.73,-0.9)$,
1713The error bars on the solid curve correspond to the four-month run
1714(packed array)
1715of Table \ref{tab:ErrorOnK}.
1716 }
1717\label{fig:hubble}
1718\end{center}
1719\end{figure}
1720
1721
1722The observations give the \HI power spectrum in
1723angle-angle-redshift space rather than in real space.
1724The inverse of the peak positions in the observed power spectrum therefore
1725gives the angular and redshift intervals corresponding to the
1726sonic horizon.
1727The peaks in the angular spectrum are proportional to
1728$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
1729$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1730$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
1731(see Eq. \ref{eq:expHz}):
1732\begin{equation}
1733d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1734d_T = \int_0^z d_H(z) dz
1735\label{eq:dTdH}
1736\end{equation}
1737The quantities $d_T$, $d_H$ and $a_s$ all depend on
1738the cosmological parameters.
1739Figure \ref{fig:hubble} gives the angular and redshift intervals
1740as a function of redshift for four cosmological models.
1741The error bars on the lines for
1742$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1743correspond to the expected errors
1744on the peak positions
1745taken from Table \ref{tab:ErrorOnK}
1746for the four-month runs with the packed array.
1747We see that with these uncertainties, the data would be able to
1748measure $w$ at better than the 10\% level.
1749
1750
1751To estimate the sensitivity
1752to parameters describing dark energy equation of
1753state, we follow the procedure explained in
1754\citep{blake.03}. We can introduce the equation of
1755state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
1756replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1757(Eq. \ref{eq:dTdH}) by:
1758\begin{equation}
1759\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
1760\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1761\end{equation}
1762where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1763respect to the critical density.
1764Using the relative errors on $\koperp$ and $\kopar$ given in
1765Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1766five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1767Then, the combination of this BAO Fisher
1768matrix with the Fisher matrix obtained for Planck mission, allows us to
1769compute the errors on dark energy parameters.
1770{\changemark We have used the Planck Fisher matrix, computed for the
1771Euclid proposal \citep{laureijs.09}, for the 8 parameters:
1772$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1773$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1774$\tau$ (optical depth to the last-scatter surface),
1775assuming a flat universe. }
1776
1777For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1778observation time of 3 years, the packed 400-dish interferometer array has a
1779precision of 12\% on $w_0$ and 48\% on $w_a$.
1780The Figure of Merit, the inverse of the area in the 95\% confidence level
1781contours is 38.
1782Finally, Fig.~\ref{fig:Compw0wa}
1783shows a comparison of different BAO projects, with a set of priors on
1784$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1785these parameters in early 2010's. {\changemark The confidence contour
1786level in the plane $(w_0,w_a)$ have been obtained by marginalizing
1787over all the other parameters.} This BAO project based on \HI intensity
1788mapping is clearly competitive with the current generation of optical
1789surveys such as SDSS-III \citep{sdss3}.
1790
1791
1792\begin{figure}[htbp]
1793\begin{center}
1794\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1795\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1796parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
1797for two BAO projects: SDSS-III (LRG) project
1798(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1799\label{fig:Compw0wa}
1800\end{center}
1801\end{figure}
1802
1803\section{Conclusions}
1804The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
1805approach to optical surveys to study the statistical properties of the large scale structures in the universe
1806up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
1807(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1808to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1809a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
1810focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
1811the 21 cm power spectrum. A method to compute the instrument response for interferometers
1812has been developed and we have computed the noise power spectrum for various telescope configurations.
1813The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
1814making the measurement of this latter signal a major scientific and technical challenge. We have also studied the performance of a simple foreground subtraction method through realistic models of the sky
1815emissions in the GHz domain and simulation of interferometric observations.
1816We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
1817requires a very good knowledge of the instrument response. Our method has allowed us to define and
1818compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1819power spectrum.
1820Finally, we have used the computed noise power spectrum and $P(k)$
1821measurement response function to estimate
1822the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
1823could be carried using the current technology and would be competitive with the ongoing or planned
1824optical surveys for dark energy, with a fraction of their cost.
1825
1826% \begin{acknowledgements}
1827% \end{acknowledgements}
1828
1829\bibliographystyle{aa}
1830
1831\begin{thebibliography}{}
1832
1833%%%
1834%%%% LSST Science book
1835\bibitem[Abell et al. (2009)]{lsst.science}
1836{\it LSST Science book}, LSST Science Collaborations, Abell, P.A. {\it et al.} 2009, arXiv:0912.0201
1837
1838%% reference SKA - BAO / DE en radio avec les sources
1839\bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1840
1841% reference DETF - DE eq.state parameter figure of merit
1842\bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
1843
1844% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
1845\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1846 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
1847
1848%% Temperature HI 21 cm (Valeur pour la reionisation)
1849\bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
1850
1851%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
1852\bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1853\bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1854
1855% WiggleZ BAO observation
1856\bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, (accepted, arXiv/1105.2862)
1857
1858% Galactic astronomy, emission HI d'une galaxie
1859\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1860% 21cm reionisation P(k) estimation and sensitivities
1861\bibitem[Bowman et al. (2006)]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
1862% MWA description
1863\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
1864
1865%% Soustraction avant plans ds MWA
1866\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1867
1868%%% SKA-Science
1869\bibitem[Carilli et al. (2004)]{ska.science}
1870{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
1871New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
1872{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
1873
1874% Intensity mapping/HSHS
1875\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P., 2008, \prl, 100, 091303
1876
1877% Mesure 21 cm avec le GBT (papier Nature )
1878\bibitem[Chang et al. (2010)]{chang.10} Chang T-C, Pen U-L, Bandura K., Peterson J.B., 2010, \nat, 466, 463-465
1879
1880% 2dFRS BAO observation
1881\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
1882
1883% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1884\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1885Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1886
1887% Effet des radio-sources sur le signal 21 cm reionisation
1888\bibitem[Di Matteo et al. (2002)]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
1889
1890% Parametrisation P(k) - (astro-ph/9709112)
1891\bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj 496, 605-614
1892
1893% SDSS first BAO observation
1894\bibitem[Eisenstein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1895
1896% SDSS-III description
1897\bibitem[Eisenstein et al. (2011)]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
1898
1899% Papier de Field sur la profondeur optique HI en 1959
1900\bibitem[Field (1959)]{field.59} Field G.B., 1959, \apj, 129, 155
1901% 21 cm emission for mapping matter distribution
1902\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1903
1904% Mesure 21 cm a 610 MHz par GMRT
1905\bibitem[Ghosh et al. (2011)]{ghosh.11} Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur J. N., 2011, \mnras, 411, 2426-2438
1906
1907
1908% Haslam 400 MHz synchrotron map
1909\bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1910Astron. \& Astrophys. Supp. Vol 47, \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
1911
1912
1913% Distribution des radio sources
1914\bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1915
1916% WMAP 7 years cosmological parameters
1917\bibitem[Komatsu et al. (2011)]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley {\it et al.} 2011, \apjs, 192, p. 18 \\
1918\mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
1919
1920% HI mass in galaxies
1921\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.} 2009, \mnras, 399, 1447
1922% ( astro-ph/0907.1416)
1923
1924% Livre Astrophysical Formulae de Lang
1925\bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
1926
1927% WMAP CMB 7 years power spectrum 2011
1928% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1929\bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16
1930
1931%% Description MWA
1932\bibitem[Lonsdale et al. (2009)]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. {\it et al.} 2009, arXiv:0903.1828
1933
1934% Planck Fischer matrix, computed for EUCLID
1935\bibitem[Laureijs (2009)]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
1936
1937% Temperature du 21 cm
1938\bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
1939
1940% Foret Ly alpha - 1
1941\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1942
1943% Foret Ly alpha - 2 , BAO from Ly-a
1944\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1945
1946% Boomerang 2000, Acoustic pics
1947\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1948
1949%% PNoise and cosmological parameters with reionization
1950\bibitem[McQuinn et al. (2006)]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R.
19512006, \apj 653, 815-834
1952
1953% Papier sur la mesure de sensibilite P(k)_reionisation
1954\bibitem[Morales \& Hewitt (2004)]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7-18
1955
1956% Papier sur le traitement des observations radio / mode mixing
1957\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1958
1959%% Foreground removal using smooth frequency dependence
1960\bibitem[Oh \& Mack (2003)]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
1961
1962% Global Sky Model Paper
1963\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1964\mnras, 388, 247-260
1965
1966%% Description+ resultats PAPER
1967\bibitem[Parsons et al. (2009)]{parsons.09} Parsons A.R.,Backer D.C.,Bradley R.F. {\it et al.} 2009, arXiv:0904.2334
1968
1969% Livre Cosmo de Peebles
1970\bibitem[Peebles (1993)]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
1971Princeton University Press (1993)
1972
1973% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
1974\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
1975
1976% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
1977\bibitem[Platania et al. (1998)]{platania.98} Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998, \apj 505, 473-483
1978
1979% SDSS BAO 2007
1980\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
1981
1982% SDSS BAO 2010 - arXiv:0907.1660
1983\bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168
1984
1985% Livre Cosmo de Jim Rich
1986\bibitem[Rich (2001)]{cosmo.rich} James Rich, {\it Fundamentals of Cosmology}, Springer (2001)
1987
1988% Radio spectral index between 100-200 MHz
1989\bibitem[Rogers \& Bowman (2008)]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
1990
1991%% LOFAR description
1992\bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
1993%%%%
1994
1995%% SDSS-3
1996\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
1997
1998% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
1999\bibitem[Shaver et al. (1999))]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
2000
2001% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
2002
2003% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
2004\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173
2005
2006% Mesure P(k) par SDSS
2007\bibitem[Tegmark et al. (2004)]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. et al. 2004, \apj, 606, 702-740
2008
2009% FFT telescope
2010\bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
2011
2012% Thomson-Morane livre interferometry
2013\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
2014Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
2015
2016% Lyman-alpha, HI fraction
2017\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
2018
2019% BAO à 21 cm et reionisation
2020\bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955,
2021
2022%% Papier fluctuations 21 cm par Zaldarriaga et al
2023\bibitem[Zaldarriaga et al.(2004)]{zaldarriaga.04} Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
2024\apj, 608, 622-635
2025
2026%% Today HI cosmological density
2027\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
2028
2029\end{thebibliography}
2030
2031\end{document}
2032
2033%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2034% Examples for figures using graphicx
2035% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
2036% is available on a lot of LaTeX public servers or ctan mirrors.
2037% The file is : epslatex.pdf
2038%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2039
2040
2041\end{document}
Note: See TracBrowser for help on using the repository browser.