source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4049

Last change on this file since 4049 was 4049, checked in by ansari, 14 years ago

Version avec les corrections du language editor, Reza 13/02/2012

File size: 107.7 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14% \documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa} % version standard, utilise pour ce papier
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30%% \usepackage{natbib} Probleme - pas tente de le resoudre (Reza, Jan 2012)
31%% \bibpunct{(}{)}{;}{a}{}{,} % to follow the A&A style
32
33%% Commande pour les references
34\newcommand{\citep}[1]{(\cite{#1})}
35%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
36
37%% Definitions diverses
38\newcommand{\HI}{$\mathrm{H_I}$ }
39\newcommand{\kb}{k_B} % Constante de Boltzmann
40\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
41\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
42\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
43\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
44\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
45
46\newcommand{\dlum}{d_L}
47\newcommand{\dang}{d_A}
48\newcommand{\hub}{ h_{70} }
49\newcommand{\hubb}{ h_{100} } % h_100
50
51\newcommand{\etaHI}{ n_{\tiny HI} }
52\newcommand{\fHI}{ f_{H_I}(z)}
53\newcommand{\gHI}{ f_{H_I}}
54\newcommand{\gHIz}{ f_{H_I}(z)}
55
56\newcommand{\vis}{{\cal V}_{12} }
57
58\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
59
60\newcommand{\lgd}{\mathrm{log_{10}}}
61
62%% Definition fonction de transfer
63\newcommand{\TrF}{\mathbf{T}}
64%% Definition (u,v) , ...
65\def\uv{\mathrm{u,v}}
66\def\uvu{\mathrm{u}}
67\def\uvv{\mathrm{v}}
68\def\dudv{\mathrm{d u d v}}
69
70% Commande pour marquer les changements du papiers pour le referee
71% \def\changemark{\bf }
72\def\changemark{}
73% \def\changemarkb{\bf }
74\def\changemarkb{}
75
76
77%%% Definition pour la section sur les param DE par C.Y
78\def\Mpc{\mathrm{Mpc}}
79\def\hMpcm{\,h \,\Mpc^{-1}}
80\def\hmMpc{\,h^{-1}\Mpc}
81\def\kperp{k_\perp}
82\def\kpar{k_\parallel}
83\def\koperp{k_{BAO\perp }}
84\def\kopar{k_{BAO\parallel}}
85
86%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87\usepackage{txfonts}
88%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89%
90\begin{document}
91%
92 \title{21 cm observation of LSS at z $\sim$ 1 }
93
94 \subtitle{Instrument sensitivity and foreground subtraction}
95
96 \author{
97 R. Ansari
98 \inst{1} \inst{2}
99 \and
100 J.E. Campagne \inst{2}
101 \and
102 P.Colom \inst{3}
103 \and
104 J.M. Le Goff \inst{4}
105 \and
106 C. Magneville \inst{4}
107 \and
108 J.M. Martin \inst{5}
109 \and
110 M. Moniez \inst{2}
111 \and
112 J.Rich \inst{4}
113 \and
114 C.Y\`eche \inst{4}
115 }
116
117 \institute{
118 Universit\'e Paris-Sud, LAL, UMR 8607, CNRS/IN2P3, F-91405 Orsay, France
119 \email{ansari@lal.in2p3.fr}
120 \and
121 CNRS/IN2P3, Laboratoire de l'Acc\'el\'erateur Lin\'eaire (LAL)
122 B.P. 34, 91898 Orsay Cedex, France
123 \and
124 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
125 % \thanks{The university of heaven temporarily does not
126 % accept e-mails}
127 \and
128 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
129 \and
130 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
131 }
132
133 \date{Received August 5, 2011; accepted December 22, 2011}
134
135% \abstract{}{}{}{}{}
136% 5 {} token are mandatory
137
138 \abstract
139 % context heading (optional)
140 % {} leave it empty if necessary
141 { Large scale structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
142cm emission. Such a 3D matter distribution map can be used to test the cosmological model and to constrain the dark energy
143properties or its equation of state. A novel approach, called intensity mapping, can be used to map the \HI distribution,
144using radio interferometers with a large instantaneous field of view and waveband.}
145 % aims heading (mandatory)
146 {We study the sensitivity of different radio interferometer configurations, or multi-beam
147instruments for observing LSS and BAO oscillations in 21 cm, and we discuss the problem of foreground removal. }
148 % methods heading (mandatory)
149 { For each configuration, we determined instrument response by computing the $(\uv)$ or Fourier angular frequency
150plane coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
151hence the instrument sensitivity for LSS P(k) measurement. We also describe a simple foreground subtraction method
152of separating LSS 21 cm signal from the foreground due to the galactic synchrotron and radio source emission. }
153 % results heading (mandatory)
154 { We have computed the noise power spectrum for different instrument configurations, as well as the extracted
155 LSS power spectrum, after separating the 21cm-LSS signal from the foregrounds. We have also obtained
156 the uncertainties on the dark energy parameters for an optimized 21 cm BAO survey.}
157 % conclusions heading (optional), leave it empty if necessary
158 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
159 \mbox{$\sim 10000 \, \mathrm{m^2}$} will be able to detect BAO signal at redshift z $\sim 1$ and will be
160 competitive with optical surveys. }
161
162 \keywords{ large-scale structure of Universe --
163 dark energy -- Instrumentation: interferometers --
164 Radio lines; galaxies -- Radio continuum: general }
165
166 \maketitle
167%
168%________________________________________________________________
169% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
170% Toutes les figures sont provisoires }
171
172\section{Introduction}
173
174% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
175The study of the statistical properties of large scale structures (LSS) in the Universe and of their evolution
176with redshift is one of the major tools in observational cosmology. These structures are usually mapped through
177optical observation of galaxies that are used as tracers of the underlying matter distribution.
178An alternative and elegant approach for mapping the matter distribution, which uses neutral atomic hydrogen
179(\HI) as a tracer with intensity mapping, has been proposed in recent years (\cite{peterson.06}; \cite{chang.08}).
180Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in the literature
181(\cite{furlanetto.06}; \cite{tegmark.09}) and is being used in projects such as LOFAR \citep{rottgering.06} or
182MWA \citep{bowman.07} to observe reionization at redshifts z $\sim$ 10.
183
184Evidence of the acceleration in the expansion of the universe has
185accumulated over the last twelve years, thanks to the observation of
186distant supernovae and CMB anisotropies and to detailed analysis of the LSS.
187A cosmological constant ($\Lambda$) or new cosmological
188energy density called {\em dark energy} has been advocated as the origin of this acceleration.
189dark energy is considered as one of the most intriguing puzzles in physics and cosmology.
190% Constraining the properties of this new cosmic fluid, more precisely
191% its equation of state is central to current cosmological researches.
192Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
193more precisely its equation of state: the Hubble diagram, or the luminosity distance as a function
194of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
195and baryon acoustic oscillations (BAO).
196
197BAO are features imprinted in the distribution of galaxies, due to the frozen
198sound waves that were present in the photon-baryon plasma prior to recombination
199at \mbox{$z \sim 1100$}.
200This scale can be considered as a standard ruler with a comoving
201length of \mbox{$\sim 150 \, \mathrm{Mpc}$}, and
202these features have been first observed in the CMB anisotropies
203and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}; \cite{larson.11}).
204The BAO modulation has been subsequently observed in the distribution of galaxies
205at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
206(\cite{eisenstein.05}; \cite{percival.07}; \cite{percival.10}), 2dGFRS \cite{cole.05},
207as well as WiggleZ \citep{blake.11} optical galaxy surveys.
208
209Ongoing {\changemarkb surveys, such as BOSS} \citep{eisenstein.11} or future surveys,
210{\changemarkb such as LSST} \citep{lsst.science},
211plan to measure the BAO scale precisely in the redshift range
212$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
213or 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
214(\cite{baolya}; \cite{baolya2}).
215Radio observation of the 21 cm emission of neutral hydrogen is % ?ENG? appears as
216a very promising technique for mapping matter distribution up to redshift $z \sim 3$,
217and it complements optical surveys, especially in the optical redshift desert range
218$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
219
220In section 2, we discuss the intensity mapping and its potential for measuring of the
221\HI mass distribution power spectrum. The method used in this paper to characterize
222a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
223We also show the results for the 3D noise power spectrum for several instrument configurations.
224The contribution of foreground emissions due to both the galactic synchrotron and radio sources
225is described in section 4, as is a simple component separation method. The performance of this
226method using two different sky models is also presented in section 4.
227The constraints that can be obtained on the dark energy parameters and DETF figure
228of merit for typical 21 cm intensity mapping survey are discussed in section 5.
229
230
231%__________________________________________________________________
232
233\section{Intensity mapping and \HI power spectrum}
234
235% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
236
237\subsection{21 cm intensity mapping}
238%%%
239Most of the cosmological information in the LSS is located on large scales
240($ \gtrsim 1 \mathrm{deg}$), while the interpretation on the smallest scales
241might suffer from the uncertainties on the nonlinear clustering effects.
242The BAO features in particular are at the degree angular scale on the sky
243and thus can be resolved easily with a rather modest size radio instrument
244(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
245can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
246or along the longitudinal (line of sight or redshift $k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
247the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
248BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
249longitudinal BAO clustering, which is a challenge for photometric optical surveys.
250
251To obtain a measurement of the LSS power spectrum with small enough statistical
252uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
253typically a few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
254obtained when comparing the distance or Hubble parameter measurements with
255DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
256Radio instruments intended for BAO surveys must thus have large instantaneous field
257of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
258to explore large redshift domains.
259
260Although the application of 21 cm radio survey to cosmology, in particular LSS mapping, has been
261discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}; \cite{abdalla.05}),
262the method envisaged has mostly been through the detection of galaxies as \HI compact sources.
263However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
264The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarizations
265of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
266\begin{equation}
267S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
268\end{equation}
269where $t_{int}$ is the total integration time and $\delta \nu$ the detection frequency band. In Table
270\ref{slims21} (left) we computed the sensitivity for six different sets of instrument effective area and system
271temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
272The width of this frequency band is well adapted to detecting an \HI source with an intrinsic velocity
273dispersion of a few 100 km/s.
274These detection limits should be compared with the expected 21 cm brightness
275$S_{21}$ of compact sources, which can be computed using the expression below (e.g. \cite{binney.98}):
276\begin{equation}
277 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
278\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
279\end{equation}
280 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ the luminosity distance, and $\sigma_v$
281the source velocity dispersion.
282{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
283galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
284of an intensity mapping survey.}
285% {\color{red} Faut-il developper le calcul en annexe ? }
286
287In Table \ref{slims21} (right), we show the 21 cm brightness for
288compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
289$200 \, \mathrm{km/s}$. The luminosity distance was computed for the standard
290WMAP \LCDM universe \citep{komatsu.11}. From $10^9$ to $10^{10} M_\odot$ of neutral gas mass
291is typical of large galaxies \citep{lah.09}. It is clear that detecting \HI sources at cosmological distances
292would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
293
294Intensity mapping has been suggested as an alternative and economic method of mapping the
2953D distribution of neutral hydrogen by (\cite{chang.08}; \cite{ansari.08}; \citep{seo.10}).
296{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
297\citep{chang.10} and at GMRT \citep{ghosh.11}}.
298In this approach, a sky brightness map with angular resolution
299\mbox{$\sim 10-30 \, \mathrm{arc.min}$} is created for a %% ?ENG? was created ?
300wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$, or wavelength $\lambda$)
301would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to a hundred galaxies
302and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
303the observed frequency $\nu$ would be translated into the emission redshift $z$ through
304the well known relation
305\begin{eqnarray}
306 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
307\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
308\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
309 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
310\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
311\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m.}
312\end{eqnarray}
313The large-scale distribution of the neutral hydrogen, down to an angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
314can then be observed without detecting individual compact \HI sources, using the set of sky-brightness
315maps as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
316(radiation power/unit solid angle/unit surface/unit frequency)
317can be converted to brightness temperature using the Rayleigh-Jeans approximation of black body radiation law:
318$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} .$$
319
320%%%%%%%%
321\begin{table}
322\caption{21 cm source brightness and detection limits. }
323\label{slims21}
324\begin{center}
325\begin{tabular}{|c|c|c|}
326\hline
327$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
328\hline
3295000 & 50 & 66 \\
3305000 & 25 & 33 \\
331100 000 & 50 & 3.3 \\
332100 000 & 25 & 1.66 \\
333500 000 & 50 & 0.66 \\
334500 000 & 25 & 0.33 \\
335\hline
336\end{tabular}
337%%
338\hspace{3mm}
339%%
340\begin{tabular}{|c|c|c|}
341\hline
342$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
343\hline % dernier chiffre : sans le facteur (1+z)
3440.25 & 1235 & 175 \\ % 140
3450.50 & 2800 & 40 \\ % 27
3461.0 & 6600 & 9.6 \\ % 4.8
3471.5 & 10980 & 3.5 \\ % 1.74
3482.0 & 15710 & 2.5 \\ % 0.85
3492.5 & 20690 & 1.7 \\ % 0.49
350\hline
351\end{tabular}
352\end{center}
353\tablefoot{Left panel: sensitivity or source detection limit for 1-day integration time (86400 s) and 1-MHz
354frequency band. Right panel: 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts.}
355\end{table}
356
357\subsection{ \HI power spectrum and BAO}
358In the absence of any foreground or background radiation
359{\changemark and assuming a high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
360the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
361the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
362relation {\changemarkb (\cite{field.59}; \cite{zaldarriaga.04})}:
363\begin{equation}
364 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
365 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
366\end{equation}
367where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
368coefficient, $h$ the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
369constant, and $H(z)$ the Hubble parameter at the emission
370redshift.
371For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
372can be expressed as
373\begin{equation}
374H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
375\times 100 \, \, \mathrm{km/s/Mpc.}
376\label{eq:expHz}
377\end{equation}
378After introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
379neutral hydrogen number density and the corresponding 21 cm emission temperature
380can be written as a function of \HI relative density fluctuations:
381\begin{eqnarray}
382\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
383\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
384 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
385\end{eqnarray}
386where $\Omega_B$ and $\rho_{crit}$ are the present-day mean baryon cosmological
387and critical densities, respectively, $m_{H}$ the hydrogen atom mass, and
388$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ the \HI density fluctuations.
389
390The present-day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
391measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}
392$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B .$$
393The neutral hydrogen fraction is expected to increase with redshift, as gas is used
394in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
395indicates a factor 3 increase in the neutral hydrogen
396fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
397compared to its current value $\gHI(z=1.5) \sim 0.025$.
398The 21 cm brightness temperature and the corresponding power spectrum can be written as
399(\cite{madau.97}; \cite{zaldarriaga.04}); \cite{barkana.07})
400\begin{eqnarray}
401 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
402 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
403\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
404 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01} \, .
405\label{eq:tbar21z}
406\end{eqnarray}
407
408Table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
409standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
410linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
41121 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
412($\gHI=0.02$). The matter power spectrum has been computed using the
413\cite{eisenhu.98} parametrization. The correspondence with the angular scales is also
414shown for the standard WMAP \LCDM cosmology, according to the relation
415\begin{equation}
416\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
417\hspace{3mm} , \hspace{3mm}
418k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) } \hspace{5mm} ,
419\end{equation}
420where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
421{ \changemark The matter power spectrum $P(k)$ has been measured using
422galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
423(\cite{cole.05}; \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
424shown here are comparable to the power spectrum measured from the galaxy surveys,
425once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$,
426redshift evolution, and different bias factors have been accounted for. }
427% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
428% for an instrument corresponds approximately to half of its angular resolution.
429% {\color{red} Faut-il developper completement le calcul en annexe ? }
430
431\begin{table}
432\caption{21 cm brightness temperature (mK) at different redshifts. }
433\label{tabcct21}
434% \begin{center}
435\begin{tabular}{|l|c|c|c|c|c|c|c|}
436\hline
437\hline
438 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
439\hline
440(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
441\hline
442(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
443\hline
444\hline
445\end{tabular}
446%\end{center}
447\tablefoot{ Mean 21 cm brightness temperature in mK for the
448standard \LCDM cosmology as a function of redshift:
449\tablefoottext{a}{Constant \HI mass fraction \mbox{$\gHIz=0.01$}}
450\tablefoottext{b}{Linearly increasing mass fraction \mbox{$\gHIz=0.008(1+z)$} }
451}
452\end{table}
453
454\begin{figure}
455\vspace*{-5mm}
456\hspace{-5mm}
457\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
458\vspace*{-10mm}
459\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
460neutral gas fraction $\gHI=2\%$}
461\label{figpk21}
462\end{figure}
463
464
465\section{interferometric observations and P(k) measurement sensitivity }
466\label{pkmessens}
467\subsection{Instrument response}
468\label{instrumresp}
469We briefly introduce here the principles of interferometric observations and the definition of
470quantities useful for our calculations. The interested reader may refer to \cite{radastron} for a detailed
471and complete presentation of observation methods and signal processing in radio astronomy.
472In astronomy we are usually interested in measuring the sky emission intensity,
473$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
474and interferometry in particular, receivers are sensitive to the sky emission complex
475amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
476length significantly smaller than the instrument resolution,
477\begin{eqnarray}
478& &
479I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
480& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta ' \, .}
481\end{eqnarray}
482A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
483its position $\vec{r}$ in a reference frame. The waveform complex amplitude $s$ measured by the receiver,
484for each frequency can be written as a function of the electromagnetic wave vector
485$\vec{k}_{EM}(\vec{\Theta}, \lambda) $:
486\begin{equation}
487s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
488\end{equation}
489We set the electromagnetic (EM) phase origin at the center of the coordinate frame, and
490the EM wave vector is related to the wavelength $\lambda$ through the usual equation
491$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
492corresponds to the receiver intensity response:
493\begin{equation}
494L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda) \, .
495\end{equation}
496The visibility signal of two receivers corresponds to the time-averaged correlation between
497signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
498visibility $\vis$ signal from two identical receivers, located at the positions $\vec{r_1}$ and
499$\vec{r_2}$, can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
500\begin{equation}
501\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
502e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
503\end{equation}
504This expression can be simplified if we consider receivers with a narrow field of view
505($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
506and coplanar with respect to their common axis.
507If we introduce two cartesian-like angular coordinates $(\alpha,\beta)$ centered on
508the common receivers axis, the visibilty would be written as the 2D Fourier transform
509of the product of the sky intensity and the receiver beam, for the angular frequency
510\mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
511\begin{equation}
512\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
513\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
514\end{equation}
515where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
516the receiver axis. The $x$ and $y$ axes in the receiver plane are taken parallel to the
517two $(\alpha, \beta)$ angular planes.
518Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
519of the sky intensity and the receiver beam:
520\begin{center}
521\begin{tabular}{ccc}
522$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
523$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
524$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \, .\\
525\end{tabular}
526\end{center}
527
528The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
529wave number domain located around
530$(\uv)_{12}=( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
531given by the receiver-beam Fourier transform
532\begin{equation}
533\vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda) \, .
534\end{equation}
535
536\noindent A single receiver instrument would measure the total power integrated in a spot centered on the
537origin in the $(\uv)$ or the angular wave-mode plane. The shape of the spot depends on the receiver
538beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
539size.
540
541The correlation signal from a pair of receivers would measure the integrated signal on a similar
542spot, located around the central angular wave-mode $(\uv)_{12}$, determined by the relative
543position of the two receivers (see figure \ref{figuvplane}).
544In an interferometer with multiple receivers, the area covered by different receiver pairs in the
545$(\uv)$ plane might overlap, and some pairs might measure the same area (same base lines).
546Several beams can be formed using different combinations of the correlations from a set of
547antenna pairs.
548
549An instrument can thus be characterized by its $(\uv)$ plane coverage or response
550${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
551the instrument response is simply the Fourier transform of the beam.
552For a single dish with multiple receivers, either as a focal plane array (FPA) or
553a multi-horn system, each beam (b) will have its own response
554${\cal R}_b(\uv,\lambda)$.
555For an interferometer, we can compute a raw instrument response
556${\cal R}_{raw}(\uv,\lambda)$, which corresponds to $(\uv)$ plane coverage by all
557receiver pairs with uniform weighting.
558Obviously, different weighting schemes can be used, changing
559the effective beam shape, hence the response ${\cal R}_{w}(\uv,\lambda)$
560and the noise behavior. If the same Fourier angular frequency mode is measured
561by several receiver pairs, the raw instrument response might then be larger
562that unity. This non-normalized instrument response is used to compute the projected
563noise power spectrum in the following section (\ref{instrumnoise}).
564We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as
565\begin{equation}
566{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right] \, .
567\end{equation}
568This normalized instrument response is the basic ingredient for computing the effective
569instrument beam, in particular in section \ref{recsec}.
570
571{\changemark Detection of the reionization at 21 cm has been an active field
572in the last decade, and different groups have built
573instruments to detect a reionization signal around 100 MHz: LOFAR
574\citep{rottgering.06}, MWA (\cite{bowman.07}; \cite{lonsdale.09}), and PAPER \citep{parsons.10}.
575Several authors have studied the instrumental noise
576and statistical uncertainties when measuring the reionization signal power spectrum, and
577the methods presented here to compute the instrument response
578and sensitivities are similar to the ones developed in these publications
579(\cite{morales.04}; \cite{bowman.06}; \cite{mcquinn.06}). }
580
581\begin{figure}
582% \vspace*{-2mm}
583\centering
584\mbox{
585\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
586}
587\vspace*{-15mm}
588\caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.}
589\label{figuvplane}
590\end{figure}
591
592\subsection{Noise power spectrum computation}
593\label{instrumnoise}
594We consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
595bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
596$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
597$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term also
598corresponds to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
599noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
600corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
601The noise's spectral density, in the angular frequency plane (per unit area of angular frequency
602\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
603measurement from a pair of receivers can be written as
604\begin{eqnarray}
605P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
606P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
607\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \, .
608\label{eq:pnoisepairD}
609\end{eqnarray}
610
611We can characterize the sky temperature measurement with a radio instrument by the noise's
612spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$
613per unit area of angular frequencies $\delta \uvu \times \delta \uvv$.
614For an interferometer made of identical receiver elements, several ($n$) receiver pairs
615might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
616is then reduced by a factor $1/n$. More generally, we can write the instrument noise
617spectral power density using the instrument response defined in section \ref{instrumresp} as
618\begin{equation}
619P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) } \hspace{4mm} .
620\label{eq:pnoiseuv}
621\end{equation}
622
623When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
624$P(k)$ is computed, angles are translated into comoving transverse distances,
625and frequencies or wavelengths into comoving radial distance, using the following relations
626{\changemarkb (e.g. chap. 13 of \cite{cosmo.peebles}; \cite{cosmo.rich})} :
627{ \changemark
628\begin{eqnarray}
629\alpha , \beta & \rightarrow & \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \, \alpha,\beta \\
630\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\
631\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
632 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
633% \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\
634\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \delta k_z =
6352 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
636 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
637\end{eqnarray}
638}
639{ \changemark
640A brightness measurement at a point $(\uv,\lambda)$, covering
641the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
642to a cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
643defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
644The measurement noise spectral density given by the Eq. \ref{eq:pnoisepairD} can then be
645translated into a 3D noise power spectrum, per unit of spatial frequencies
646$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) :
647
648\begin{eqnarray}
649(\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\
650P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv)
651 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
652 & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right)
653 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
654\label{eq:pnoisekxkz}
655\end{eqnarray}
656
657It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
658anymore on the individual measurement bandwidth.
659In the following paragraph, we will first consider an ideal instrument
660with uniform $(\uv)$ coverage
661in order to establish the general noise power spectrum behavior for cosmological 21 cm surveys.
662The numerical method used to compute the 3D noise power spectrum is then presented in section
663\ref{pnoisemeth}.
664}
665
666\subsubsection{Uniform $(\uv)$ coverage}
667{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage (${\cal R}(\uv)=1$),
668and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
669The noise's spectral power density from equation (\ref{eq:pnoisekxkz}) would then be
670constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum thus corresponds
671to a 3D white noise, with a uniform noise spectral density:}
672\begin{equation}
673P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
674\label{ctepnoisek}
675\end{equation}
676%
677where $P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
678$t_{int}$ is the integration time expressed in second,
679$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
680 $H(z)$ in $\mathrm{km/s/Mpc}$.
681
682The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
683with the number of observed Fourier modes, a number that is proportional to the volume of the universe
684being observed (sample variance). As the observed volume is proportional to the
685surveyed solid angle, we consider the survey of a fixed
686fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a given
687total observation time $t_{obs}$.
688A single-dish instrument with diameter $D$ would have an instantaneous field of view
689$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
690a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
691Each sky direction or patch of size $\Omega_{FOV}$ will be observed during an integration
692time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
693for the integration time, we can compute a simple expression
694for the noise spectral power density by a single-dish instrument of diameter $D$:
695\begin{equation}
696P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
697\end{equation}
698
699It is important to note that any real instrument does not have a flat
700response in the $(\uv)$ plane, and the observations provide no information above
701a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
702One has to take into account either a damping of the observed sky power
703spectrum or an increase in the noise spectral density if
704the observed power spectrum is corrected for damping. The white-noise
705expressions given below should thus be considered as a lower limit or floor of the
706instrument noise spectral density.
707
708For a single-dish instrument of diameter $D$ equipped with a multi-feed or
709phase-array receiver system, with $N$ independent beams on sky,
710the noise spectral density decreases by a factor $N$,
711thanks to the increase in per pointing integration time:
712
713\begin{equation}
714P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
715\label{eq:pnoiseNbeam}
716\end{equation}
717%
718This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
719identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
720of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as a $q \times q$ square.
721
722For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
723observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of
724$\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number
725$k_{\perp}^{max}$:
726\begin{equation}
727k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}} \hspace{3mm} .
728\label{kperpmax}
729\end{equation}
730%
731Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
732as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
733beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
734The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
735year. The maximum comoving wave number $k^{max}$ is also shown as a function
736of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent.
737To take the radial component of $\vec{k}$ and the increase of
738the instrument noise level with $k_{\perp}$ into account, we have taken the effective $k_{ max} $
739as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{Eq. \ref{kperpmax}}:
740\begin{equation}
741k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}} \hspace{3mm} .
742\end{equation}
743
744\begin{figure}
745\vspace*{-25mm}
746\centering
747\mbox{
748\hspace*{-10mm}
749\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
750}
751\vspace*{-40mm}
752\caption{Top: minimal noise level for a 100-beam instrument with \mbox{$\Tsys=50 \mathrm{K}$}
753as a function of redshift (top), for a one-year survey of a quarter of the sky. Bottom:
754maximum $k$ value for 21 cm LSS power spectrum measurement by a 100-meter diameter
755primary antenna. }
756\label{pnkmaxfz}
757\end{figure}
758
759\subsubsection{3D noise power spectrum computation}
760\label{pnoisemeth}
761{ \changemark
762We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
763response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
764sensitivities for different instrument configurations, although the noise realization for a real instrument would not be
765isotropic.
766\begin{itemize}
767\item We start by a 3D Fourier coefficient grid, with the two first coordinates the transverse angular wave modes,
768and the third the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
769we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise},
770the grid cell size and dimensions have been chosen to represent a box in the universe
771\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
772with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
773This corresponds to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
774the small angular extent, we have neglected the curvature of redshift shells.
775\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
776The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
777using equation (\ref{eq:uvkxky}), and the
778angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
779The noise variance is taken proportional to $P_{noise}$
780\begin{equation}
781\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
782\end{equation}
783\item An FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
784complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as
785\begin{equation}
786\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm}
787 \sqrt{k_x^2+k_y^2+k_z^2} = k \hspace{2mm} .
788\end{equation}
789Noise samples corresponding to small instrument response, typically less than 1\% of the
790maximum instrument response, are ignored when calculating $\tilde{P}_{noise}(k)$.
791However, we require a significant fraction, typically 20\% to 50\% of all possible modes
792$(k_x,k_y,k_z)$ measured for a given $k$ value.
793\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
794from random generations. The averaged computed noise power spectrum is normalized using
795equation \ref{eq:pnoisekxkz} and the instrument and survey parameters:
796{\changemarkb system temperature $\Tsys= 50 \mathrm{K}$,
797individual receiver size $D^2$ or $D_x D_y$ and the integration time $t_{int}$.
798This last parameter is obtained through the relation
799$t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration
800$t_{obs}=1 \mathrm{year}$, the instantaneous field of view
801$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage
802$\Omega_{tot} = \pi$ srad. }
803\end{itemize}
804
805It should be noted that it is possible to obtain a good approximation of the noise
806power spectrum shape by neglecting the redshift or frequency dependence of the
807instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
808using a fixed instrument response ${\cal R}(\uv,\lambda(z_0))$ and
809a constant radial distance $\dang(z_0)\times(1+z_0)$:
810\begin{equation}
811\tilde{P}_{noise}(k) = < | {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
812\end{equation}
813The approximate power spectrum obtained through this simplified and much faster
814method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
815configurations.
816}
817
818\subsection{Instrument configurations and noise power spectrum}
819\label{instrumnoise}
820We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$
821with uniform weights in the $(\uv)$ plane for several instrument configurations:
822\begin{itemize}
823\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
824a square $11 \times 11$ configuration ($q=11$). This array covers an area of
825$55 \times 55 \, \mathrm{m^2}$ \, .
826\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
827in eight rows, each with 16 dishes. These 128 dishes are spread over an area
828$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
829shown in figure \ref{figconfbc}.
830\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
831 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
832particular four subarrays of packed 16 dishes ($4\times4$), located in the
833four array corners. This array layout is also shown in figure \ref{figconfbc}.
834\item [{\bf d} :] A single-dish instrument, with diameter $D=75 \, \mathrm{m}$,
835equipped with a 100 beam focal plane receiver array.
836\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
837a square $20 \times 20$ configuration ($q=20$). This array covers an area of
838$100 \times 100 \, \mathrm{m^2}$
839\item[{\bf f} :] A packed array of four cylindrical reflectors, each 85 meter long and 12 meter
840wide. The focal line of each cylinder is equipped with 100 receivers, each
841$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
842This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
843a total of $400$ receivers per polarization, as in the (e) configuration.
844We computed the noise power spectrum for {\em perfect}
845cylinders, where all receiver pair correlations are used (fp), or for
846an imperfect instrument, where only correlations between receivers
847from different cylinders are used.
848\item[{\bf g} :] A packed array of eight cylindrical reflectors, each 102 meters long and 12 meters
849wide. The focal line of each cylinder is equipped with 120 receivers, each
850$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
851This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
852a total of 960 receivers per polarization. As for the (f) configuration,
853we have computed the noise power spectrum for {\em perfect}
854cylinders, where all receiver pair correlations are used (gp), or for
855an imperfect instrument, where only correlations between receivers
856from different cylinders are used.
857\end{itemize}
858
859\begin{figure}
860\centering
861\vspace*{-15mm}
862\mbox{
863\hspace*{-10mm}
864\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
865}
866\vspace*{-15mm}
867\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
868diameter dishes. }
869\label{figconfbc}
870\end{figure}
871
872We used simple triangular shaped dish response in the $(\uv)$ plane;
873however, we did introduce a filling factor or illumination efficiency
874$\eta$, relating the effective dish diameter $D_{ill}$ to the
875mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
876as $\eta^2$ or $\eta_x \eta_y$.
877\begin{eqnarray}
878{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2}) \\
879 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
880\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
881\end{eqnarray}
882For the multidish configuration studied here, we have taken the illumination efficiency factor
883{\bf $\eta = 0.9$}.
884
885For the receivers along the focal line of cylinders, we assumed that the
886individual receiver response in the $(\uv)$ plane corresponds to a
887rectangular antenna. The illumination efficiency factor was taken
888equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
889along the cylinder length. {\changemark We used a double triangular
890response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
891\begin{equation}
892 {\cal L}_\Box(\uv,\lambda) =
893\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
894\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
895\end{equation}
896}
897
898\noindent It should be noted that the small angle approximation
899used here for the expression of visibilities is not valid for the receivers along
900the cylinder axis. However, some preliminary numerical checks indicate that
901the results for the noise spectral power density would not change significantly.
902The instrument responses shown here correspond to a fixed pointing toward the zenith, which
903is the case for a transit type telescope.
904
905Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
906for the four configurations (a,b,c,d) with $\sim 100$ receivers per
907polarization.
908{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we
909computed the 3D noise power spectrum for each of the eight instrument configurations presented
910here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
911of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.}
912The resulting noise spectral power densities are shown in figure
913\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
914is due to our having ignored all auto-correlation measurements.
915It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
916should have enough sensitivity to map LSS in 21 cm at redshift z=1.
917
918\begin{figure*}
919\centering
920\mbox{
921% \hspace*{-10mm}
922\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
923}
924\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
925at 710 MHz (redshift $z=1$) for four configurations.
926(a) 121 $D_{dish}=$ 5-meter diameter dishes arranged in a compact, square array
927of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
928(c) 129 dishes arranged as shown in figure \ref{figconfbc}, (d) single D=75 meter diameter, with 100 beams.
929The common color scale (1 \ldots 80) is shown on the right. }
930\label{figuvcovabcd}
931\end{figure*}
932
933\begin{figure*}
934\vspace*{-10mm}
935\centering
936\mbox{
937% \hspace*{-5mm}
938\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
939}
940\vspace*{-20mm}
941\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
942and the noise power spectrum for several interferometer configurations
943 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400, and 960 receivers. The noise power spectrum has been
944computed for all configurations assuming a survey of a quarter of the sky over one year,
945with a system temperature $\Tsys = 50 \mathrm{K}$. }
946\label{figpnoisea2g}
947\end{figure*}
948
949
950\section{ Foregrounds and component separation }
951\label{foregroundcompsep}
952Reaching the required sensitivities is not the only difficulty of observing the
953LSS in 21 cm. Indeed, the synchrotron emission of the
954Milky Way and the extragalactic radio sources are a thousand times brighter than the
955emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
956using intensity mapping, without identifying the \HI point sources is the main challenge
957for this novel observation method. Although this task might seem impossible at first,
958it has been suggested that the smooth frequency dependence of the synchrotron
959emissions can be used to separate the faint LSS signal from the Galactic and radio source
960emissions. {\changemark Discussion of contribution of different sources
961of radio foregrounds for measurement of reionization through redshifted 21 cm,
962as well as foreground subtraction using their smooth frequency dependence, can
963be found in (\cite{shaver.99}; \cite{matteo.02};\cite{oh.03}).}
964However, any real radio instrument has a beam shape that changes with
965frequency, and this instrumental effect significantly increases the difficulty and complexity of this component separation
966technique. The effect of frequency dependent beam shape is sometimes referred to as {\em
967mode mixing}, {\changemark and its impact on foreground subtraction
968has been discussed for example in \cite{morales.06}.}
969
970In this section, we present a short description of the foreground emissions and
971the simple models we used for computing the sky radio emissions in the GHz frequency
972range. We also present a simple component-separation method to extract the LSS signal and
973its performance. {\changemark The analysis presented here follows a similar path to
974a detailed foreground subtraction study carried out for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
975We computed in particular, the effect of the instrument response on the recovered
976power spectrum. The results presented in this section concern the
977total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
978corresponding to the central frequency $\nu \sim 884$ MHz.
979
980\subsection{ Synchrotron and radio sources }
981We modeled the radio sky in the form of three 3D maps (data cubes) of sky temperature
982brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
983and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
984$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
985the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
986used in the simulations are given in the Table \ref{skycubechars}.
987\begin{table}
988\caption{
989Sky cube characteristics for the simulations described in this paper. }
990\label{skycubechars}
991\begin{center}
992\begin{tabular}{|c|c|c|}
993\hline
994 & range & center \\
995\hline
996Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
997Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
998Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
999Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
1000Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
1001\hline
1002\hline
1003& resolution & N-cells \\
1004\hline
1005Right ascension & 3 arcmin & 1800 \\
1006Declination & 3 arcmin & 600 \\
1007Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
1008\hline
1009\end{tabular}
1010\end{center}
1011\tablefoot{ Cube size: $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$;
1012$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells }
1013\end{table}
1014%%%%
1015\par
1016Two different methods were used to compute the sky temperature data cubes.
1017We used the global sky model (GSM) \citep{gsm.08} tools to generate full sky
1018maps of the emission temperature at different frequencies, from which we
1019extracted the brightness temperature cube for the region defined above
1020(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
1021Because the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
1022difficult to have reliable results for the effect of point sources on the reconstructed
1023LSS power spectrum.
1024
1025We have thus also made a simple sky model using the Haslam Galactic synchrotron map
1026at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
1027catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
1028was computed through the following steps:
1029
1030\begin{enumerate}
1031\item The Galactic synchrotron emission is modeled as a power law with a spatially
1032varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction,
1033where $\beta$ has a Gaussian distribution centered on -2.8 with a standard
1034deviation $\sigma_\beta = 0.15$. {\changemark The
1035diffuse radio background spectral index has been measured, for example, by
1036\citep{platania.98} or \citep{rogers.08}.}
1037The synchrotron contribution to the sky temperature for each cell is then
1038obtained through the formula:
1039\begin{equation}
1040 T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta
1041\end{equation}
1042%%
1043\item A 2D $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
1044by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
1045the sky cubes. The source brightness in Jansky is converted to temperature taking the
1046pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels).
1047A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
1048map. We have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
1049contribution of the radiosources to the sky temperature is computed as:
1050\begin{equation}
1051 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
1052\end{equation}
1053%%
1054\item The sky brightness temperature data cube is obtained through the sum of
1055the two contributions, Galactic synchrotron and resolved radio sources:
1056\begin{equation}
1057 T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu)
1058\end{equation}
1059\end{enumerate}
1060
1061 The 21 cm temperature fluctuations due to neutral hydrogen in LSS
1062$T_{lss}(\alpha, \delta, \nu)$ were computed using the
1063SimLSS\footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package, where
1064%
1065complex normal Gaussian fields were first generated in Fourier space.
1066The amplitude of each mode was then multiplied by the square root
1067of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
1068\citep{eisenhu.98}. We used the standard cosmological parameters,
1069 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
1070$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
1071An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
1072in the linear regime,
1073in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$, and evolved
1074to redshift $z=0.6$.
1075The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
1076$\Delta z \simeq 0.23$ in the longitudinal direction.
1077The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
1078sky cube angular and frequency resolution defined above.
1079{\changemarkb
1080We did not take the curvature of redshift shells into account when
1081converting SimLSS euclidean coordinates to angles and frequency coordinates
1082of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
1083These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and
1084 are excluded for results presented in this paper.
1085}
1086
1087The mass fluctuations have been converted into temperature using equation \ref{eq:tbar21z},
1088and a neutral hydrogen fraction \mbox{$0.008 \times (1+0.6)$}, leading to a mean temperature of
1089$0.13 \, \mathrm{mK}$.
1090The total sky brightness temperature is computed as the sum
1091of foregrounds and the LSS 21 cm emission:
1092\begin{equation}
1093 T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
1094T_{sky} = T_{gsm}+T_{lss}
1095\end{equation}
1096
1097Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
1098temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
1099It should be noted that the standard deviation depends on the map resolution, and the values given
1100in Table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
1101angular and 500 kHz frequency resolutions (see Table \ref{skycubechars}).
1102Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
1103with Haslam+NVSS map, smoothed with a 35 arcmin Gaussian beam.
1104Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
1105for Model-I/GSM and Model-II. There is good agreement between the two models, although
1106the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
1107
1108\begin{table}
1109\caption{Mean temperature and standard deviation for different sky cubes.}
1110\label{sigtsky}
1111\centering
1112\begin{tabular}{|c|c|c|}
1113\hline
1114 & mean (K) & std.dev (K) \\
1115\hline
1116Haslam & 2.17 & 0.6 \\
1117NVSS & 0.13 & 7.73 \\
1118Haslam+NVSS & 2.3 & 7.75 \\
1119(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
1120GSM & 2.1 & 0.8 \\
1121\hline
1122\end{tabular}
1123% \tablefoot{See table \ref{skycubechars} for sky cube resolution and size.}
1124\end{table}
1125
1126We computed the power spectrum for the 21cm-LSS sky temperature cube, as well
1127as for the radio foreground temperature cubes obtained from the two
1128models. We also computed the power spectrum on sky brightness temperature
1129cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) Gaussian beam.
1130The resulting computed power spectra are shown in figure \ref{pkgsmlss}.
1131The GSM model has more large-scale power compared to our simple Haslam+NVSS model,
1132while it lacks power at higher spatial frequencies. The mode mixing due to a
1133frequency-dependent response will thus be stronger in Model-II (Haslam+NVSS)
1134case. It can also be seen that the radio foreground's power spectrum is more than
1135$\sim 10^6$ times higher than the 21 cm signal from LSS. This corresponds
1136to the factor $\sim 10^3$ of the sky brightness temperature fluctuations (\mbox{$\sim$ K}),
1137compared to the mK LSS signal.
1138
1139{ \changemark In contrast to most similar studies, where it is assumed that bright sources
1140can be nearly perfectly subtracted, our aim was to compute also their
1141effect in the foreground subtraction process.
1142The GSM model lacks the angular resolution needed to correctly compute
1143the effect of bright compact sources for 21 cm LSS observations and
1144the mode mixing due to the frequency dependence of the instrumental response,
1145while Model-II provides a reasonable description of these compact sources. Our simulated
1146sky cubes have an angular resolution $3'\times3'$, well below the typical
1147$15'$ resolution of the instrument configuration considered here.
1148However, Model-II might lack spatial structures on large scales, above a degree,
1149compared to Model-I/GSM, and the frequency variations as a simple power law
1150might not be realistic enough. The differences for the two sky models can be seen
1151in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
1152a 25' beam has negligible effect on the GSM power spectrum, since it originally lacks
1153structures below 0.5 degree. By using
1154these two models, we explored some of the systematic uncertainties
1155related to foreground subtraction.}
1156
1157It should also be noted that in section 3, we presented the different instrument
1158configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
1159power spectrum is recovered unaffected in this case, while the noise power spectrum
1160increases at high k values (small scales). In practice, clean deconvolution is difficult to
1161implement for real data and the power spectra presented in this section are NOT corrected
1162for the instrumental response. The observed structures thus have a scale-dependent damping
1163according to the instrument response, while the instrument noise is flat (white noise or scale-independent).
1164
1165\begin{figure}
1166\centering
1167\vspace*{-10mm}
1168\mbox{
1169\hspace*{-20mm}
1170\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
1171}
1172\vspace*{-10mm}
1173\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
1174The Model-II (Haslam+NVSS),
1175has been smoothed with a 35 arcmin Gaussian beam. }
1176\label{compgsmhtemp}
1177\end{figure}
1178
1179\begin{figure*}
1180\centering
1181\mbox{
1182% \hspace*{-10mm}
1183\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
1184}
1185\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
1186The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) Gaussian beam.}
1187\label{compgsmmap}
1188\end{figure*}
1189
1190\begin{figure}
1191\centering
1192% \vspace*{-25mm}
1193\mbox{
1194\hspace*{-6mm}
1195\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
1196}
1197\vspace*{-5mm}
1198\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with \mbox{$\gHI\simeq1.3\%$} (red, orange)
1199with the radio foreground power spectrum.
1200The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1201model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
1202as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.
1203}
1204\label{pkgsmlss}
1205\end{figure}
1206
1207
1208
1209\subsection{ Instrument response and LSS signal extraction }
1210\label{recsec}
1211The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1212$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
1213${\cal R}(\uv,\lambda)$.
1214We have considered the simple case where the instrument response is constant throughout the survey area, or independent
1215of the sky direction.
1216For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$:
1217\begin{enumerate}
1218\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1219$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k) \hspace{2mm} .$$
1220\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1221$ {\cal R}(\uv,\lambda_k) \lesssim 1$
1222$$ {\cal T}_{sky}(\uv, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) \hspace{1mm} . $$
1223\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map
1224without instrumental (electronic/$\Tsys$) white noise:
1225$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)
1226\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1227\item Add white noise (Gaussian fluctuations) to the pixel map temperatures to obtain
1228the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1229{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
1230dependent instrumental response has already been applied.}
1231We also considered that the system temperature, and thus the
1232additive white noise level, was independent of the frequency or wavelength.
1233\end{enumerate}
1234The LSS signal extraction performance obviously depends on the white noise level.
1235The results shown here correspond to the (a) instrument configuration, a packed array of
1236$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
1237to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1238cell. \\[1mm]
1239
1240The different steps in the simple component separation procedure that has been applied are
1241briefly described here.
1242\begin{enumerate}
1243\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1244beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
1245corresponds to a smearing or degradation of the angular resolution
1246\begin{eqnarray*}
1247 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\
1248 {\cal T}_{mes}^{bcor}(u, v, \lambda_k) & = &
1249{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
1250{\cal T}_{mes}^{bcor}(u, v, \lambda_k) & \rightarrow & \mathrm{2D-FFT} \rightarrow T_{mes}^{bcor}(\alpha,\delta,\lambda) \hspace{2mm} .
1251\end{eqnarray*}
1252{\changemark
1253The virtual target beam ${\cal R}_f(\uv)$ has a lower resolution than the worst real instrument beam,
1254i.e at the lowest observed frequency.
1255No correction has been applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
1256attempt to represent imperfect knowledge of the instrument response.
1257We recall that this is the normalized instrument response,
1258${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$
1259also has a numerical upper bound $\sim 100$. }
1260\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1261 is fitted to the beam-corrected brightness temperature. The parameters were obtained
1262using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
1263We show here the results for a pure power law (P1), as well as a modified power law (P2):
1264\begin{eqnarray*}
1265P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1266P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
1267\end{eqnarray*}
1268where $b$ is the power law index and $T_0 = 10^a$ the brightness temperature at the
1269reference frequency $\nu_0$.
1270
1271{\changemark Interferometers have a poor response at small $(\uv)$ corresponding to baselines
1272smaller than interferometer element size. The zero-spacing baseline, the $(\uv)=(0,0)$ mode, represents
1273the mean temperature for a given frequency plane and cannot be measured with interferometers.
1274We used a simple trick to make the power-law fitting procedure applicable,
1275by setting the mean value of the temperature for
1276each frequency plane according to a power law with an index close to the synchrotron index
1277($\beta\sim-2.8$). And we checked that the results are not too sensitive to the
1278arbitrarily fixed mean temperature power law parameters. }
1279
1280\item The difference between the beam-corrected sky temperature and the fitted power law
1281$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1282\end{enumerate}
1283
1284Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1285for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
128621 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1287Gaussian frequency independent beam is shown, as well as
1288the extracted power spectrum, after beam {\em correction}
1289and foreground separation with second order polynomial fit (P2).
1290We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1291or with the first-order polynomial fit (P1).
1292
1293Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1294with the recovered 21 cm map, after subtracting the radio continuum component. It can be seen that structures
1295present in the original map have been correctly recovered, although the amplitude of the temperature
1296fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
1297{\changemark This is mostly due to the damping of the large-scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
1298due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
1299
1300We have shown that it should be possible to measure the red-shifted 21 cm emission fluctuations in the
1301presence of the strong radio continuum signal, provided that the latter has a smooth frequency dependence.
1302However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1303or smearing procedure described here are key ingredients for recovering the 21 cm LSS power spectrum.
1304It is also important to note that, while it is enough to correct the beam to the lowest resolution instrument beam
1305($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1306has to be applied ($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for Model-II to reduce
1307significantly the ripples from bright radio sources.
1308We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1309with a frequency-dependent Gaussian beam shape. The mode mixing effect is greatly reduced for
1310such a smooth beam, compared to the more complex instrument response
1311${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1312
1313\begin{figure*}
1314\centering
1315% \vspace*{-25mm}
1316\mbox{
1317% \hspace*{-20mm}
1318\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
1319}
1320% \vspace*{-10mm}
1321\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1322continuum radio emissions at $z \sim 0.6$, \mbox{$\gHI\simeq1.3\%$}, for the instrument configuration (a), $11\times11$
1323packed array interferometer.
1324Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
1325corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
1326signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency-independent Gaussian beam. }
1327\label{extlsspk}
1328\end{figure*}
1329
1330
1331\begin{figure*}
1332\centering
1333\vspace*{-20mm}
1334\mbox{
1335\hspace*{-25mm}
1336\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1337}
1338\vspace*{-25mm}
1339\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1340with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer. }
1341\label{extlssmap}
1342\end{figure*}
1343
1344\subsection{$P_{21}(k)$ measurement transfer function}
1345\label{tfpkdef}
1346The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1347 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1348{\changemarkb
1349We recall that we have neglected the curvature of redshift or frequency shells
1350in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
1351The results presented here and our conclusions are thus restricted to the wave-mode range
1352$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
1353}
1354We expect damping on small scales, or large $k$, due to the finite instrument size, but also on large scales, small $k$,
1355if total power measurements (auto-correlations) are not used in the case of interferometers.
1356The sky reconstruction and the component separation introduce additional filtering and distortions.
1357The real transverse plane transfer function might even be anisotropic.
1358
1359However, within the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
1360recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
1361{\changemarkb , similar to the one defined by \cite{bowman.09}, equation (23):}
1362\begin{equation}
1363\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) \hspace{3mm} .
1364\end{equation}
1365
1366Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1367separation performed here, around $z \sim 0.6$, for the instrumental setup (a),
1368a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed
1369$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
1370The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
1371power spectrum, if the original LSS temperature cube is smoothed by the frequency independent
1372target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
1373small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1374The transfer function for the GSM foreground model (Model-I) and the $11\times11$ filled array
1375interferometer (setup (a)) is represented, as well as the transfer function for a D=55 meter
1376diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
1377array is also shown. The recovered power spectrum also suffers significant damping on large
1378scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}$, mostly due to the filtering of radial or
1379longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
1380by the component separation algorithm. We were able to remove the ripples on the reconstructed
1381power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
1382target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
1383obtained for Model-II on small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
1384
1385 It should be stressed that the simulations presented in this section were
1386focused on the study of the radio foreground effects and have been carried
1387intentionally with a very low instrumental noise level of
1388$0.25$ mK per pixel, corresponding to several years of continuous
1389observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1390%
1391This transfer function is well represented by the analytical form:
1392\begin{equation}
1393\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right) \hspace{1mm} .
1394\label{eq:tfanalytique}
1395\end{equation}
1396
1397We simulated observations and radio foreground subtraction using
1398the procedure described here for different redshifts and instrument configurations, in particular
1399for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1400increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1401becomes difficult for higher redshifts, in particular for $z \gtrsim 2$.
1402
1403We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
1404for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1405for redshift $z=2, 2.5$. The value of the parameters are grouped in Table \ref{tab:paramtfk},
1406and the corresponding transfer functions are shown in Fig. \ref{tfpkz0525}.
1407
1408\begin{table}[hbt]
1409\caption{Transfer function parameters.}
1410\label{tab:paramtfk}
1411\begin{center}
1412\begin{tabular}{|c|ccccc|}
1413\hline
1414\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1415\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1416\hline
1417$k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1418$k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1419$k_C \, (\mathrm{Mpc^{-1}})$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1420\hline
1421\end{tabular}
1422\end{center}
1423\tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$ (Eq. \ref{eq:tfanalytique})
1424at different redshifts and for instrumental setup (e), $20\times20$ packed array interferometer,
1425are given in $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$. }
1426\end{table}
1427
1428\begin{figure}
1429\centering
1430% \vspace*{-25mm}
1431\mbox{
1432% \hspace*{-10mm}
1433\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
1434}
1435% \vspace*{-30mm}
1436\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial
143721 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$
1438for the instrument configuration (a), $11\times11$ packed array interferometer.
1439The effect of a frequency-independent Gaussian beam of $\sim 30'$ is shown in black.
1440The transfer function $\TrF(k)$ for the instrument configuration (a), $11\times11$ packed array interferometer,
1441for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
1442for a D=55 meter diameter dish for the GSM model is also shown as the dashed red curve. }
1443\label{extlssratio}
1444\end{figure}
1445
1446
1447\begin{figure}
1448\centering
1449% \vspace*{-25mm}
1450\mbox{
1451% \hspace*{-10mm}
1452\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
1453}
1454%\vspace*{-30mm}
1455\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
1456$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1457\label{tfpkz0525}
1458\end{figure}
1459
1460
1461
1462%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1463%% \section{ BAO scale determination and constrain on dark energy parameters}
1464% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1465%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1466%% and determine BAO scale as a function of redshifts.
1467%% Method:
1468%% \begin{itemize}
1469%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1470%% \item Compute / guess the instrument noise level for the same redshit values
1471%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1472%% \item Compute the DETF ellipse with different priors
1473%% \end{itemize}
1474
1475%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1476%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1477%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1478
1479\section{Sensitivity to cosmological parameters}
1480\label{cosmosec}
1481
1482The impact of the various telescope configurations on the sensitivity for 21 cm
1483power spectrum measurement has been discussed in Sec. \ref{pkmessens}.
1484Figure \ref{figpnoisea2g} shows the noise power spectra and allows us to visually rank
1485the configurations in terms of instrument noise contribution to P(k) measurement.
1486The differences in $P_{noise}$ will translate into differing precisions
1487in the reconstruction of the BAO peak positions and in
1488the estimation of cosmological parameters. In addition, we have seen (Sect. \ref{recsec})
1489that subtraction of continuum radio emissions, Galactic synchrotron, and radio sources
1490also has an effect on the measured 21 cm power spectrum.
1491In this paragraph, we present our method and the results for the precisions on the estimation
1492of dark energy parameters through a radio survey of the redshifted 21 cm emission of LSS,
1493with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1494dishes, arranged into a filled $20 \times 20$ array.
1495
1496
1497\subsection{BAO peak precision}
1498
1499To estimate the precision with which BAO peak positions can be
1500measured, we used a method similar to the one established in
1501\citep{blake.03} and \citep{glazebrook.05}.
1502%
1503To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1504 slices of the Universe with a quarter-sky coverage and a redshift depth,
1505 $\Delta z=0.5$ for $0.25<z<2.75$.
1506The peaks in the generated spectra were then determined by a
1507fitting procedure and the reconstructed peak positions compared with the
1508generated peak positions.
1509The reconstructed power spectrum used in the simulation is
1510the sum of the expected \HI signal term, corresponding to Eqs. \ref{eq:pk21z} and \ref{eq:tbar21z},
1511damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , Table \ref{tab:paramtfk})
1512and a white noise component $P_{noise}$ calculated according to the Eq. \ref{eq:pnoiseNbeam},
1513established in section \ref{instrumnoise} with $N=400$:
1514\begin{equation}
1515 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
1516\end{equation}
1517where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
1518The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula
1519%\begin{equation}
1520\begin{eqnarray}
1521\label{eq:signal}
1522\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
15231\; +
1524\hspace*{40mm}
1525\nonumber
1526\\ \hspace*{20mm}
1527A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1528\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1529\frac{\kpar^2}{\kopar^2}}\;\right)
1530\end{eqnarray}
1531%\end{equation}
1532where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$, and $\tau$
1533are adjusted to the formula presented in
1534\citep{eisenhu.98}, and $P_{ref}(\kperp,\kpar)$ is the
1535envelope curve of the HI power spectrum without baryonic oscillations.
1536The parameters $\koperp$ and $\kopar$
1537are the inverses of the oscillation periods in k-space.
1538The following values were used for these
1539parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1540$\alpha=1.4$, and $\koperp=\kopar=0.060 \, \hMpcm$.
1541
1542Each simulation is performed for a given set of parameters:
1543the system temperature $\Tsys$, an observation time
1544$t_{obs}$, an average redshift, and a redshift depth $\Delta z=0.5$.
1545Then, each simulated power spectrum is fitted with a 2D
1546normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$, which is
1547the sum of the signal power spectrum damped by the transfer function and the
1548noise power spectrum multiplied by a
1549linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1550corresponds to the approximate position of the linear/nonlinear transition.
1551This limit is established on the basis of the criterion discussed in
1552\citep{blake.03}.
1553In practice, we used $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$,
1554and $0.23 \hMpcm$ for the redshifts $z=0.5,\,\, 1.0$, and $1.5$, respectively.
1555
1556Figure \ref{fig:fitOscill} shows the result of the fit for one of these simulations.
1557Figure \ref{fig:McV2} histogram show the recovered values of $\koperp$ and $\kopar$
1558for 100 simulations.
1559The widths of the two distributions give an estimate
1560of the statistical errors.
1561
1562In addition, in the fitting procedure, both the parameters modeling the
1563signal $A$, $\tau$, $\alpha$, and the parameter correcting the noise power
1564spectrum $(a_0,a_1)$ are floated to take the possible
1565ignorance of the signal shape and the uncertainties in the
1566computation of the noise power spectrum into account.
1567In this way, we can correct possible imperfections, and the
1568systematic uncertainties are directly propagated to statistical errors
1569on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1570fitted noise contribution to each simulation, the baryonic oscillations
1571are clearly observed, for instance, in Fig.~\ref{fig:AverPk}.
1572
1573
1574\begin{figure}[htbp]
1575\begin{center}
1576\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1577\caption{1D projection of the power spectrum for one simulation.
1578The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1579corresponding to the power spectrum without baryonic oscillations.
1580The dots represents one simulation for a "packed" array of cylinders
1581with a system temperature,$T_{sys}=50$K, an observation time,
1582$T_{obs}=$ 1 year,
1583a solid angle of $1\pi sr$,
1584an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1585The solid line is the result of the fit to the data.}
1586\label{fig:fitOscill}
1587\end{center}
1588\end{figure}
1589
1590\begin{figure}[htbp]
1591\begin{center}
1592%\includegraphics[width=\textwidth]{McV2.eps}
1593\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1594\caption{ Distributions of the reconstructed
1595wavelength $\koperp$ and $\kopar$ perpendicular and parallel,
1596respectively, to the line of sight
1597for simulations as in Fig. \ref{fig:fitOscill}.
1598The fit by a Gaussian of the distribution (solid line) gives the
1599width of the distribution, which represents the statistical error
1600expected on these parameters.}
1601\label{fig:McV2}
1602\end{center}
1603\end{figure}
1604
1605
1606\begin{figure}[htbp]
1607\begin{center}
1608\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1609\caption{1D projection of the power spectrum averaged over 100 simulations
1610of the packed cylinder array $b$.
1611The simulations are performed for the following conditions: a system
1612temperature $T_{sys}=50$K, an observation time $T_{obs}=1$ year,
1613a solid angle of $1 \pi sr$,
1614an average redshift $z=1.5$, and a redshift depth $\Delta z=0.5$.
1615The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1616corresponding to the power spectrum without baryonic oscillations,
1617and the background estimated by a fit is subtracted. The errors are
1618the RMS of the 100 distributions for each $k$ bin, and the dots are
1619the mean of the distribution for each $k$ bin. }
1620\label{fig:AverPk}
1621\end{center}
1622\end{figure}
1623
1624
1625
1626
1627%\subsection{Results}
1628
1629In our comparison of the various configurations, we have considered
1630the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1631\begin{itemize}
1632\item {\it Simulation without electronics noise}: the statistical errors on the power
1633spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1634the $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1635The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as
1636\begin{equation}
1637V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1638N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k \hspace{3mm} .
1639\end{equation}
1640\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1641\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for an $N=400$ dish interferometer
1642with $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1643\item {\it Noise with transfer function}: we consider the interferometer response and radio foreground
1644subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1645well as the instrument noise $P_{noise}$.
1646\end{itemize}
1647
1648\begin{table}
1649\caption{Noise spectral power.}
1650\label{tab:pnoiselevel}
1651\begin{tabular}{|l|ccccc|}
1652\hline
1653z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1654\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1655\hline
1656$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1657\hline
1658\end{tabular}
1659\end{table}
1660
1661Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1662decrease as a function of redshift for simulations without electronic noise because the volume
1663of the universe probed is larger. Once we apply the electronics noise, each slice in redshift gives
1664comparable results. Finally, after applying the full reconstruction of the interferometer, the best
1665accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of
1666observation. We can optimize the survey by using a different observation time for each
1667slice in redshift. Finally, for a 3-year survey we can split in five observation periods
1668with durations that are three months, three months, six months, one year and one year
1669for redshift 0.5, 1.0, 1.5, 2.0, and 2.5, respectively (Table \ref{tab:ErrorOnK}, 4$^{\rm th}$ row).
1670
1671\begin{table*}[ht]
1672\caption{Sensitivity on $\mathbf{k}_{BAO}$ measurement.}
1673\label{tab:ErrorOnK}
1674\begin{center}
1675\begin{tabular}{lc|c c c c c }
1676\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1677\hline\hline
1678\bf No noise, pure cosmic variance & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1679 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1680 \hline
1681 \bf Noise without transfer function (a) & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1682 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1683 \hline
1684 \bf Noise with transfer function (a) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1685 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1686 \hline
1687 \bf Optimized survey (b) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1688 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1689 \hline
1690\end{tabular}
1691\end{center}
1692\tablefoot{Relative errors on $\koperp$ and $\kopar$ measurements are given
1693as a function of the redshift $z$ for various simulation configurations: \\
1694\tablefoottext{a}{simulations with electronics noise, without ($2^{\rm nd}$ row) and with ($3^{\rm rd}$ row) the transfer function; } \\
1695\tablefoottext{b}{optimized survey, simulations with electronic noise and the transfer function}
1696}
1697\end{table*}%
1698
1699
1700
1701\subsection{Expected sensitivity on $w_0$ and $w_a$}
1702
1703\begin{figure}
1704\begin{center}
1705\includegraphics[width=8.5cm]{Figs/dist.pdf}
1706\caption{
1707The two ``Hubble diagrams'' for BAO experiments.
1708The four falling curves give the angular size of the acoustic horizon
1709(left scale) and the four
1710rising curves give the redshift interval of the acoustic horizon (right scale).
1711The solid lines are for
1712$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1713the dashed for
1714$(1,0,-1)$
1715the dotted for
1716$(0.27,0,-1)$, and
1717the dash-dotted for
1718$(0.27,0.73,-0.9)$,
1719The error bars on the solid curve correspond to the four-month run
1720(packed array)
1721of Table \ref{tab:ErrorOnK}.
1722 }
1723\label{fig:hubble}
1724\end{center}
1725\end{figure}
1726
1727
1728The observations give the \HI power spectrum in
1729angle-angle-redshift space rather than in real space.
1730The inverse of the peak positions in the observed power spectrum therefore
1731gives the angular and redshift intervals corresponding to the
1732sonic horizon.
1733The peaks in the angular spectrum are proportional to
1734$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$, where
1735$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1736$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ the Hubble distance
1737(see Eq. \ref{eq:expHz}):
1738\begin{equation}
1739d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1740d_T = \int_0^z d_H(z) dz
1741\label{eq:dTdH}
1742\end{equation}
1743The quantities $d_T$, $d_H$, and $a_s$ all depend on
1744the cosmological parameters.
1745Figure \ref{fig:hubble} gives the angular and redshift intervals
1746as a function of redshift for four cosmological models.
1747The error bars on the lines for
1748$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1749correspond to the expected errors
1750on the peak positions
1751taken from Table \ref{tab:ErrorOnK}
1752for the four-month runs with the packed array.
1753We see that with these uncertainties, the data would be able to
1754measure $w$ at better than the 10\% level.
1755
1756
1757To estimate the sensitivity
1758to parameters describing the dark energy equation of
1759state, we follow the procedure explained in
1760\citep{blake.03}. We can introduce the equation of
1761state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$, by
1762replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1763(Eq. \ref{eq:dTdH}) by
1764\begin{equation}
1765\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
1766\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1767\end{equation}
1768where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1769respect to the critical density.
1770Using the relative errors on $\koperp$ and $\kopar$ given in
1771Table \ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1772five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1773Then, the combination of this BAO Fisher
1774matrix with the Fisher matrix obtained for Planck mission allows us to
1775compute the errors on dark energy parameters.
1776{\changemark We used the Planck Fisher matrix, computed for the
1777Euclid proposal \citep{laureijs.09}, for the 8 parameters:
1778$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1779$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1780$\tau$ (optical depth to the last-scatter surface),
1781assuming a flat universe. }
1782
1783For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1784observation time of three years, the packed 400-dish interferometer array has a
1785precision of 12\% on $w_0$ and 48\% on $w_a$.
1786The figure of merit (FOM), the inverse of the area in the 95\% confidence level
1787contours, is 38.
1788Finally, Fig.~\ref{fig:Compw0wa}
1789shows a comparison of different BAO projects, with a set of priors on
1790$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1791these parameters in early 2010s. {\changemark The confidence contour
1792level in the plane $(w_0,w_a)$ were obtained by marginalizing
1793over all the other parameters.} This BAO project based on \HI intensity
1794mapping is clearly competitive with the current generation of optical
1795surveys such as SDSS-III \citep{eisenstein.11}.
1796
1797
1798\begin{figure}[htbp]
1799\begin{center}
1800\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1801\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1802parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
1803for two BAO projects: SDSS-III (LRG) project
1804(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1805\label{fig:Compw0wa}
1806\end{center}
1807\end{figure}
1808
1809\section{Conclusions}
1810The 3D mapping of redshifted 21 cm emission though {\it intensity mapping} is a novel and complementary
1811approach to optical surveys for studying the statistical properties of the LSS in the universe
1812up to redshifts $z \lesssim 3$. A radio instrument with a large instantaneous field of view
1813(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1814to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1815a nearly packed interferometer array with a few hundred receiver elements spread over an hectare or a hundred beam
1816focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
1817the 21 cm power spectrum. A method of computing the instrument response for interferometers
1818was developed, and we computed the noise power spectrum for various telescope configurations.
1819The Galactic synchrotron and radio sources are a thousand times brighter than the redshifted 21 cm signal,
1820making the measurement of the latter signal a major scientific and technical challenge.
1821We also studied the performance of a simple foreground subtraction method through realistic models of the sky
1822emissions in the GHz domain and simulation of interferometric observations.
1823We were able to show that the cosmological 21 cm signal from the LSS should be observable, but
1824requires a very good knowledge of the instrument response. Our method allowed us to define and
1825compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1826power spectrum.
1827Finally, we used the computed noise power spectrum and $P(k)$
1828measurement response function to estimate
1829the precision on the determination of dark energy parameters, for a 21 cm BAO survey. This radio survey
1830could be carried using the current technology and would be competitive with the ongoing or planned
1831optical surveys for dark energy, with a fraction of their cost.
1832
1833% \begin{acknowledgements}
1834% \end{acknowledgements}
1835
1836\bibliographystyle{aa}
1837
1838\begin{thebibliography}{}
1839
1840%%%
1841%%%% LSST Science book
1842\bibitem[Abell et al. 2009]{lsst.science}
1843Abell, P.A. {\it et al.} {\it LSST Science book}, LSST Science Collaborations, {\it et al.} 2009, arXiv:0912.0201
1844
1845%% reference SKA - BAO / DE en radio avec les sources
1846\bibitem[Abdalla \& Rawlings 2005]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1847
1848% reference DETF - DE eq.state parameter figure of merit
1849\bibitem[Albrecht et al. 2006]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force), 2006, arXiv:astro-ph/0609591
1850
1851% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
1852\bibitem[Ansari et al. 2008]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1853 V. Ruhlmann-Kleider, \& C. Y\`eche, 2008 , arXiv:0807.3614
1854
1855%% Temperature HI 21 cm (Valeur pour la reionisation)
1856\bibitem[Barkana \& Loeb 2007]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
1857
1858%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
1859\bibitem[Blake \& Glazebrook 2003]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1860\bibitem[Glazebrook \& Blake 2005]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1861
1862% WiggleZ BAO observation ( arXiv/1105.2862 )
1863\bibitem[Blake et al. 2011]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, 415, 2892-2909
1864
1865% Galactic astronomy, emission HI d'une galaxie
1866\bibitem[Binney \& Merrifield 1998]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1867% 21cm reionisation P(k) estimation and sensitivities
1868\bibitem[Bowman et al. 2006]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
1869% MWA description
1870\bibitem[Bowman et al. 2007]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. {\it et al.} 2007, \aj, 133, 1505-1518
1871
1872%% Soustraction avant plans ds MWA
1873\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1874
1875%%% SKA-Science Elsevier, December 2004 http://www.skatelescope.org/pages/page\_sciencegen.htm
1876\bibitem[Carilli et al. 2004]{ska.science}
1877{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings, 2004, New Astronomy Reviews, 48
1878
1879% Intensity mapping/HSHS
1880\bibitem[Chang et al. 2008]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P., 2008, \prl, 100, 091303
1881
1882% Mesure 21 cm avec le GBT (papier Nature )
1883\bibitem[Chang et al. 2010]{chang.10} Chang T-C, Pen U-L, Bandura K., Peterson J.B., 2010, \nat, 466, 463-465
1884
1885% 2dFRS BAO observation
1886\bibitem[Cole et al. 2005]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} 2005, \mnras, 362, 505
1887
1888% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1889\bibitem[Condon et al. 1998]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1890Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1891
1892% Effet des radio-sources sur le signal 21 cm reionisation
1893\bibitem[Di Matteo et al. 2002]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
1894
1895% Parametrisation P(k) - (astro-ph/9709112)
1896\bibitem[Eisenstein \& Hu 1998]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj, 496, 605-614
1897
1898% SDSS first BAO observation
1899\bibitem[Eisenstein et al. 2005]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1900
1901% SDSS-III description
1902\bibitem[Eisenstein et al. 2011]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529 \\
1903{ \tt http://www.sdss3.org/ }
1904
1905% Papier de Field sur la profondeur optique HI en 1959
1906\bibitem[Field 1959]{field.59} Field G.B., 1959, \apj, 129, 155
1907% 21 cm emission for mapping matter distribution
1908\bibitem[Furlanetto et al. 2006]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1909
1910% Mesure 21 cm a 610 MHz par GMRT
1911\bibitem[Ghosh et al. 2011]{ghosh.11} Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur J. N., 2011, \mnras, 411, 2426-2438
1912
1913
1914% Haslam 400 MHz synchrotron map
1915\bibitem[Haslam et al. 1982]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1916Astron. \& Astrophys. Supp. Vol 47 %% {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
1917
1918
1919% Distribution des radio sources
1920\bibitem[Jackson 2004]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1921
1922% WMAP 7 years cosmological parameters
1923\bibitem[Komatsu et al. 2011]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley {\it et al.} 2011, \apjs, 192, p. 18
1924% \mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
1925
1926% HI mass in galaxies
1927\bibitem[Lah et al. 2009]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.} 2009, \mnras, 399, 1447
1928% ( astro-ph/0907.1416)
1929
1930% Livre Astrophysical Formulae de Lang
1931\bibitem[Lang 1999]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
1932
1933% WMAP CMB 7 years power spectrum 2011
1934% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1935\bibitem[Larson et al. 2011]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16
1936
1937%% Description MWA
1938\bibitem[Lonsdale et al. 2009]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. {\it et al.}, 2009,
1939IEEE Proceeding, 97, 1497-1506 (arXiv:0903.1828)
1940
1941% Planck Fischer matrix, computed for EUCLID
1942\bibitem[Laureijs 2009]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
1943
1944% Temperature du 21 cm
1945\bibitem[Madau et al. 1997]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
1946
1947% Foret Ly alpha - 1
1948\bibitem[McDonald et al. 2006]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1949
1950% Foret Ly alpha - 2 , BAO from Ly-a
1951\bibitem[McDonald \& Eisenstein 2007]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1952
1953% Boomerang 2000, Acoustic pics
1954\bibitem[Mauskopf et al. 2000]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1955
1956%% PNoise and cosmological parameters with reionization
1957\bibitem[McQuinn et al. 2006]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R.
19582006, \apj, 653, 815-834
1959
1960% Papier sur la mesure de sensibilite P(k)_reionisation
1961\bibitem[Morales \& Hewitt 2004]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7-18
1962
1963% Papier sur le traitement des observations radio / mode mixing
1964\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1965
1966%% Foreground removal using smooth frequency dependence
1967\bibitem[Oh \& Mack 2003]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
1968
1969% Global Sky Model Paper
1970\bibitem[Oliveira-Costa et al. 2008]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1971\mnras, 388, 247-260
1972
1973%% Description+ resultats PAPER - arXiv:0904.2334
1974\bibitem[Parsons et al. 2010]{parsons.10} Parsons A.R.,Backer D.C.,Bradley R.F. {\it et al.} 2010,
1975\aj, 2010, 139, 1468-1480
1976
1977% Livre Cosmo de Peebles
1978\bibitem[Peebles 1993]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
1979Princeton University Press, 1993
1980
1981% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
1982\bibitem[Peterson et al. 2006]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
1983
1984% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
1985\bibitem[Platania et al. 1998]{platania.98} Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998, \apj, 505, 473-483
1986
1987% SDSS BAO 2007
1988\bibitem[Percival et al. 2007]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, 2007, \apj, 657, 645
1989
1990% SDSS BAO 2010 - arXiv:0907.1660
1991\bibitem[Percival et al. 2010]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168
1992
1993% Livre Cosmo de Jim Rich
1994\bibitem[Rich 2001]{cosmo.rich} James Rich, {\it Fundamentals of Cosmology}, Springer, 2001
1995
1996% Radio spectral index between 100-200 MHz
1997\bibitem[Rogers \& Bowman 2008]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
1998
1999%% LOFAR description
2000\bibitem[Rottering et al. 2006]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
2001%%%%
2002
2003%% SDSS-3
2004% \bibitem[SDSS-III 2008]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
2005
2006% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
2007\bibitem[Shaver et al. 1999]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
2008
2009% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
2010
2011% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
2012\bibitem[Seo et al 2010]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. {\it et al.} 2010, \apj, 721, 164-173
2013
2014% Mesure P(k) par SDSS
2015\bibitem[Tegmark et al. 2004]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. {\it et al.} 2004, \apj, 606, 702-740
2016
2017% FFT telescope
2018\bibitem[Tegmark \& Zaldarriaga 2009]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
2019
2020% Thomson-Morane livre interferometry
2021\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
2022Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
2023
2024% Lyman-alpha, HI fraction
2025\bibitem[Wolf et al. 2005]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
2026
2027% BAO à 21 cm et reionisation
2028\bibitem[Wyithe et al. 2008]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955,
2029
2030%% Papier fluctuations 21 cm par Zaldarriaga et al
2031\bibitem[Zaldarriaga et al. 2004]{zaldarriaga.04} Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
2032\apj, 608, 622-635
2033
2034%% Today HI cosmological density
2035\bibitem[Zwaan et al. 2005]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
2036
2037\end{thebibliography}
2038
2039\end{document}
2040
2041%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2042% Examples for figures using graphicx
2043% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
2044% is available on a lot of LaTeX public servers or ctan mirrors.
2045% The file is : epslatex.pdf
2046%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2047
2048
2049\end{document}
Note: See TracBrowser for help on using the repository browser.