source: Sophya/trunk/Cosmo/SimLSS/cmvobserv3d.cc@ 3743

Last change on this file since 3743 was 3615, checked in by cmv, 16 years ago

Modifs relatives a l'introduction de RandomGeneratorInterface + delete de srandgen.c, cmv 01/05/2009

File size: 27.3 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9#include "sophyainit.h"
10#include "timing.h"
11#include "ntuple.h"
12#include "matharr.h"
13#include "randfmt.h"
14//#include "randr48.h"
15#include "srandgen.h"
16
17#include "constcosmo.h"
18#include "cosmocalc.h"
19#include "schechter.h"
20#include "geneutils.h"
21#include "genefluct3d.h"
22
23void usage(void);
24void usage(void)
25{
26 cout<<"cmvobserv3d [...options...]"<<endl
27 <<" -a : auto init random seed (needed for multiple simul)"<<endl
28 <<" -0 : use ComputeFourier0 method (defaut: no, use normal way)"<<endl
29 <<" -G typevol: compute Pk(z=0) and apply growth factor in real space"<<endl
30 <<" typevol=1 evolved with distance / observateur (def)"<<endl
31 <<" typevol=2 evolved with distance to middle of Z planes"<<endl
32 <<" else : no evol, spectrum Pk(z=z_median) for all cube (def)"<<endl
33 <<" -F : filter spectrum by pixel shape (0=no 1=yes(default)"<<endl
34 <<" -U typ =0 compute <NGal>, poisson fluctuate then convert to HI mass (def)"<<endl
35 <<" >0 compute directly <HI mass>, do NOT poisson fluctuate with <Ngal>"<<endl
36 <<" <0 just multiply dRho/Rho by mass_by_pixel (possible negative pixel values)"<<endl
37 <<" -x nx,dx : size along x axis (npix,Mpc)"<<endl
38 <<" -y ny,dy : size along y axis (npix,Mpc)"<<endl
39 <<" if ny or dy <=0 take same value as for x"<<endl
40 <<" -z nz,dz : size along z axis (redshift axis, npix,Mpc)"<<endl
41 <<" -Z zref : redshift for the center of the simulation cube"<<endl
42 <<" -s snoise,typevol : gaussian noise sigma in equivalent Msol"<<endl
43 <<" typevol=0 no evolution (def)"<<endl
44 <<" typevol=1 noise evolved with distance / observateur"<<endl
45 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
46 <<" -2 : compute also 2D spectrum (default: no)"<<endl
47 <<" -N scalemass: facteur d\'unite pour la masse (default: -1)"<<endl
48 <<" ex: si on veut unites 10^8 Msol -> scalemass=1.e-8"<<endl
49 <<" si <0 alors facteur=-scalemass*Mpix"<<endl
50 <<" -M schmin,schmax,nsch : min,max mass and nb points for schechter HI"<<endl
51 <<" If nsch<0 alors no,bre de points par decade"<<endl
52 <<" -Q naleagal : use quick method for turning ngal to mass"<<endl
53 <<" -R schmassdist.ppf : read mass distribution for trials from file"<<endl
54 <<" instead of computing it (ONLY if \"-Q\" option is activated)"<<endl
55 <<" -8 sigmaR,R : normalisation du spectre de puissance, R en Mpc"<<endl
56 <<" (default sigmaR=1, R=8/h100 Mpc)"<<endl
57 <<" -W : write cube in FITS format (complex cube is coded as real cube)"<<endl
58 <<" -P : write cube in PPF format"<<endl
59 <<" -O a,b,c,d,e : tell what you want to write (with the -W and -P options)"<<endl
60 <<" a=1 : write generated fourier cube (_k0)"<<endl
61 <<" b=1 : write real space cube dRho/Rho at z (_r0)"<<endl
62 <<" c=1 : write real space cube conv to gal,poiss,mass etc... (_r)"<<endl
63 <<" d=1 : write previous real space cube + noise (_rf)"<<endl
64 <<" e=1 : write fourier transform of previous cube (_k)"<<endl
65 <<" -S : write cube slices in PPF format"<<endl
66 <<" -o root_name_out : root string for output file name (def: cmvobserv3d)"<<endl
67 <<" -V : compute variance from real space (for check, default: no)"<<endl
68 <<" -T nth : nombre de threads (si compil multi-thread, default: 0)"<<endl
69 <<endl;
70 ////<<" -A <log10(S_agn in Jy at 1.4 GHz)>,sigma,powlaw :"<<endl
71 ////<<" AGN mean and sigma gaussian equiv. distrib. for solid angle of centeral pixel"<<endl
72 ////<<" powlaw: apply S_agn evolution as (Nu/1.4)^powlaw"<<endl
73}
74
75int main(int narg,char *arg[])
76{
77 SophyaInit();
78 InitTim();
79
80 //-----------------------------------------------------------------
81 // *** Survey definition
82 long nx=360, ny=-1, nz=64; double dx=1., dy=-1., dz=-1.;
83 //long nx=1000, ny=-1, nz=128; double dx=3., dy=-1., dz=6.;
84 //long nx=1200, ny=-1, nz=128; double dx=1., dy=-1., dz=3;
85
86 // *** Cosmography definition (WMAP)
87 unsigned short flat = 0;
88 double ob0 = 0.0444356;
89 double h100=0.71, om0=0.267804, or0=7.9e-05, ol0=0.73,w0=-1.;
90 double zref = 0.5;
91 double perc=0.01,dzinc=-1.,dzmax=-1.; unsigned short glorder=4;
92
93 // *** Spectrum and variance definition
94 double ns = 1., as = 1.;
95 double R=8./h100, Rg=R/sqrt(5.);
96 double sigmaR = 1.;
97
98 double kmin=1e-5,kmax=1000.;
99 int npt = 10000;
100 double lkmin=log10(kmin), lkmax=log10(kmax);
101 double eps=1.e-3;
102
103 // *** Schechter mass function definition
104 double h75 = h100 / 0.75;
105 double nstar = 0.006*pow(h75,3.);
106 double mstar = pow(10.,9.8); // MSol
107 double alpha = -1.37;
108
109 double schmin=1.e7, schmax=1.e13;
110 int schnpt = -100;
111 bool use_schmassdist = false;
112 long naleagal = 100000;
113 bool recompute_schmassdist = true;
114 string schmassdistfile = "";
115 int no_poisson_type = 0;
116
117 double scalemass = -1.;
118
119 // *** Niveau de bruit
120 double snoise= 0.; // en equivalent MSol
121 int noise_evol = 0;
122
123 //// *** AGN
124 ////bool do_agn = false;
125 ////double lfjy_agn=-99., lsigma_agn=0.; // en Jy
126 ////double powlaw_agn = 0.;
127
128 // *** type de generation
129 bool computefourier0=false;
130 int use_growth_factor = 0;
131 unsigned short nthread=0;
132 int filter_by_pixel = 1;
133
134 // *** What to do
135 bool comp2dspec = false;
136 bool wfits = false;
137 bool wppf = false;
138 bool wslice = false;
139 bool compvarreal = false;
140 unsigned short whattowrt[5] = {1,1,1,1,1};
141 string rootnameout = "cmvobserv3d";
142
143 unsigned long ntnent = 10000; // 0 = do not fill NTuple
144
145 // --- Decodage arguments
146 if(narg>0) {
147 cout<<"\n--- Arguments: "<<endl;
148 for(int i=0;i<narg;i++) cout<<arg[i]<<" ";
149 cout<<endl;
150 }
151 system("date -u");
152
153 // --- Choix du generateur aleatoire (a faire ICI imperativement avant AutoInitRand)
154 FMTRandGen *RandGen = new FMTRandGen;
155 RandGen->SelectGaussianAlgo(C_Gaussian_RandLibSNorm);
156 RandGen->SelectPoissonAlgo(C_Poisson_Ahrens);
157 RandomGeneratorInterface::SetGlobalRandGenP(RandGen);
158
159 // --- Decodage des arguments
160 char c;
161 while((c = getopt(narg,arg,"ha0PWSV2U:G:F:x:y:z:s:Z:M:A:T:N:Q:R:8:O:o:")) != -1) {
162 int nth = 0;
163 switch (c) {
164 case 'a' :
165 AutoInitRand(5);
166 break;
167 case '0' :
168 computefourier0 = true;
169 break;
170 case 'G' :
171 sscanf(optarg,"%d",&use_growth_factor);
172 break;
173 case 'U' :
174 sscanf(optarg,"%d",&no_poisson_type);
175 break;
176 case 'F' :
177 sscanf(optarg,"%d",&filter_by_pixel);
178 break;
179 case 'x' :
180 sscanf(optarg,"%ld,%lf",&nx,&dx);
181 break;
182 case 'y' :
183 sscanf(optarg,"%ld,%lf",&ny,&dy);
184 break;
185 case 'z' :
186 sscanf(optarg,"%ld,%lf",&nz,&dz);
187 break;
188 case 's' :
189 sscanf(optarg,"%lf,%d",&snoise,&noise_evol);
190 break;
191 case 'Z' :
192 sscanf(optarg,"%lf",&zref);
193 break;
194 case '2' :
195 comp2dspec = true;
196 break;
197 case 'N' :
198 sscanf(optarg,"%lf",&scalemass);
199 if(scalemass==0.) scalemass = 1.;
200 break;
201 case 'M' :
202 sscanf(optarg,"%lf,%lf,%d",&schmin,&schmax,&schnpt);
203 break;
204 case 'Q' :
205 use_schmassdist = true;
206 sscanf(optarg,"%ld",&naleagal);
207 break;
208 case 'R' :
209 schmassdistfile = optarg;
210 break;
211 //// case 'A' :
212 ////do_agn = true;
213 ////sscanf(optarg,"%lf,%lf,%lf",&lfjy_agn,&lsigma_agn,&powlaw_agn);
214 ////break;
215 case '8' :
216 sscanf(optarg,"%lf,%lf",&sigmaR,&R);
217 break;
218 case 'V' :
219 compvarreal = true;
220 break;
221 case 'W' :
222 wfits = true;
223 break;
224 case 'P' :
225 wppf = true;
226 break;
227 case 'O' :
228 sscanf(optarg,"%hu,%hu,%hu,%hu,%hu"
229 ,&whattowrt[0],&whattowrt[1],&whattowrt[2],&whattowrt[3],&whattowrt[4]);
230 break;
231 case 'S' :
232 wslice = true;
233 break;
234 case 'o' :
235 rootnameout = optarg;
236 break;
237 case 'T' :
238 sscanf(optarg,"%d",&nth);
239 nthread = (nth<1)? 0: nth;
240 break;
241 case 'h' :
242 default :
243 usage(); return -1;
244 }
245 }
246
247 double lschmin=log10(schmin), lschmax=log10(schmax);
248 if(schnpt<=0) { // alors c'est un nombre de points par decade
249 schnpt = long( (-schnpt)*(lschmax-lschmin+1.) + 0.5 );
250 if(schnpt<=2) schnpt = 1000;
251 }
252 if(naleagal<=2) naleagal = 100000;
253
254 cout<<"zref="<<zref<<endl;
255 cout<<"nx="<<nx<<" dx="<<dx<<" ny="<<ny<<" dy="<<dy<<" nz="<<nz<<" dz="<<dz<<endl;
256 cout<<"kmin="<<kmin<<" ("<<lkmin<<"), kmax="<<kmax<<" ("<<lkmax<<") Mpc^-1"
257 <<", npt="<<npt<<endl;
258 cout<<"Filter by pixel = "<<filter_by_pixel<<endl;
259 cout<<"R="<<R<<" Rg="<<Rg<<" Mpc, sigmaR="<<sigmaR<<endl;
260 cout<<"Use_growth_factor = "<<use_growth_factor<<endl;
261 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
262 cout<<"schmin="<<schmin<<" ("<<lschmin
263 <<"), schmax="<<schmax<<" ("<<lschmax<<") Msol"
264 <<", schnpt="<<schnpt<<endl;
265 if(no_poisson_type!=0) cout<<"No poisson fluctuation, direct conversion to HI mass, typ="
266 <<no_poisson_type<<endl;
267 cout<<"snoise="<<snoise<<" equivalent Msol, evolution="<<noise_evol<<endl;
268 cout<<"scalemass="<<scalemass<<endl;
269 ////if(do_agn)
270 //// cout<<"AGN: <log10(Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
271 //// <<" , powlaw="<<powlaw_agn<<endl;
272 cout<<"wfits="<<wfits<<" wppf="<<wppf<<" wslice="<<wslice<<" what?="
273 <<whattowrt[0]<<","<<whattowrt[1]<<","<<whattowrt[2]<<","<<whattowrt[3]<<","
274 <<whattowrt[4]<<endl;
275 cout<<"rootnameout="<<rootnameout<<endl;
276 ShowRandom();
277 cout<<" First random is: "<<drand01()<<endl;
278
279 string tagobs = rootnameout + ".ppf";
280 POutPersist posobs(tagobs);
281
282 //-----------------------------------------------------------------
283 cout<<endl<<"\n--- Create Cosmology"<<endl;
284
285 CosmoCalc univ(flat,true,zref+1.);
286 univ.SetInteg(perc,dzinc,dzmax,glorder);
287 univ.SetDynParam(h100,om0,or0,ol0,w0);
288 univ.PrtInteg();
289 univ.Print();
290 double loscomref = univ.Dloscom(zref);
291 cout<<"\nzref = "<<zref<<" -> dloscom = "<<loscomref<<" Mpc"<<endl;
292 univ.Print(zref);
293
294 //-----------------------------------------------------------------
295 cout<<endl<<"\n--- Create Spectrum"<<endl;
296
297 InitialSpectrum pkini(ns,as);
298
299 TransfertEisenstein tf(h100,om0-ob0,ob0,T_CMB_Par,false);
300 //tf.SetNoOscEnv(2);
301
302 GrowthFactor growth(om0,ol0);
303 // GrowthFactor growth(1.,0.); // D(z) = 1/(1+z)
304 double growth_at_z = growth(zref);
305 cout<<"...Growth factor at z="<<zref<<" = "<<growth_at_z<<endl;
306
307 PkSpectrum0 pk0(pkini,tf);
308
309 PkSpectrumZ pkz(pk0,growth,zref);
310
311 //-----------------------------------------------------------------
312 pkz.SetZ(0.);
313 cout<<endl<<"\n--- Compute variance for top-hat R="<<R
314 <<" at z="<<pkz.GetZ()<<endl;
315 VarianceSpectrum varpk_th(pkz,R,VarianceSpectrum::TOPHAT);
316 double kfind_th = varpk_th.FindMaximum(kmin,kmax,eps);
317 double pkmax_th = varpk_th(kfind_th);
318 cout<<"kfind_th = "<<kfind_th<<" ("<<log10(kfind_th)<<"), integrand="<<pkmax_th<<endl;
319 double k1=kmin, k2=kmax;
320 int rc = varpk_th.FindLimits(pkmax_th/1.e4,k1,k2,eps);
321 cout<<"limit_th: rc="<<rc<<" : "<<k1<<" ("<<log10(k1)<<") , "
322 <<k2<<" ("<<log10(k2)<<")"<<endl;
323
324 double ldlk = (log10(k2)-log10(k1))/npt;
325 varpk_th.SetInteg(0.01,ldlk,-1.,4);
326 double sr2 = varpk_th.Variance(k1,k2);
327 cout<<"varpk_th="<<sr2<<" -> sigma="<<sqrt(sr2)<<endl;
328
329 double normpkz = sigmaR*sigmaR/sr2;
330 pkz.SetScale(normpkz);
331 cout<<"Spectrum normalisation = "<<pkz.GetScale()<<endl;
332
333 {
334 Histo hpkz0(lkmin,lkmax,npt); hpkz0.ReCenterBin();
335 FuncToHisto(pkz,hpkz0,true);
336 tagobs = "hpkz0"; posobs.PutObject(hpkz0,tagobs);
337 }
338
339 pkz.SetZ(zref);
340
341 {
342 Histo hpkz(lkmin,lkmax,npt); hpkz.ReCenterBin();
343 FuncToHisto(pkz,hpkz,true);
344 tagobs = "hpkz"; posobs.PutObject(hpkz,tagobs);
345 }
346
347 //-----------------------------------------------------------------
348 cout<<endl<<"\n--- Compute variance for Pk at z="<<pkz.GetZ()<<endl;
349 VarianceSpectrum varpk_int(pkz,R,VarianceSpectrum::NOFILTER);
350
351 double kfind_int = varpk_int.FindMaximum(kmin,kmax,eps);
352 double pkmax_int = varpk_int(kfind_int);
353 cout<<"kfind_int = "<<kfind_int<<" ("<<log10(kfind_int)<<"), integrand="<<pkmax_int<<endl;
354 double k1int=kmin, k2int=kmax;
355 int rcint = varpk_int.FindLimits(pkmax_int/1.e4,k1int,k2int,eps);
356 cout<<"limit_int: rc="<<rcint<<" : "<<k1int<<" ("<<log10(k1int)<<") , "
357 <<k2int<<" ("<<log10(k2int)<<")"<<endl;
358
359 double ldlkint = (log10(k2int)-log10(k1int))/npt;
360 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
361 double sr2int = varpk_int.Variance(k1int,k2int);
362 cout<<"varpk_int="<<sr2int<<" -> sigma="<<sqrt(sr2int)<<endl;
363
364 //-----------------------------------------------------------------
365 cout<<endl<<"\n--- Create mass function, compute number/mass density, init mass trials"<<endl;
366
367 Schechter sch(nstar,mstar,alpha);
368 sch.Print();
369
370 sch.SetOutValue(0);
371 cout<<"sch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
372 double ngal_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
373 cout<<"Galaxy density number = "<<ngal_by_mpc3<<" /Mpc^3 between limits"<<endl;
374
375 sch.SetOutValue(1);
376 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
377 double mass_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
378 cout<<"Galaxy mass density= "<<mass_by_mpc3<<" Msol/Mpc^3 between limits"<<endl;
379 cout<<"Omega_HI at z=0 is "<<mass_by_mpc3/(univ.Rhoc(0.)*GCm3toMsolMpc3_Cst)<<endl
380 <<" at z="<<zref<<" is "<<mass_by_mpc3/(univ.Rhoc(zref)*GCm3toMsolMpc3_Cst)<<endl;
381
382 SchechterMassDist schmdist(sch,schmin,schmax,schnpt);
383 if(use_schmassdist && schmassdistfile.size()>0) {
384 cout<<"\nSchechterMassDist read from "<<schmassdistfile<<endl;
385 schmdist.ReadPPF(schmassdistfile);
386 bool compsch = IsCompatible(sch,schmdist.GetSchechter());
387 double m1,m2; schmdist.GetMassLim(m1,m2);
388 if( !compsch || fabs(m1-schmin)>1e-4*schmin || fabs(m2-schmax)>1e-4*schmax) {
389 cout<<"FATAL_ERROR: INCONSISTENT SchechterMassDist file / Schechter or limits"<<endl;
390 cout<<"Schechter:"<<endl; sch.Print();
391 cout<<"schmin="<<schmin<<" schmax="<<schmax<<endl;
392 cout<<"SchechterMassDist:"<<endl; schmdist.Print();
393 return -10;
394 }
395 recompute_schmassdist = false;
396 }
397 schmdist.Print();
398 Histo hmdndm = schmdist.GetHmDnDm();
399 FunRan tirhmdndm = schmdist.GetTmDnDm();
400 {
401 tagobs = "hmdndm"; posobs.PutObject(hmdndm,tagobs);
402 Histo hdum1(tirhmdndm);
403 tagobs = "tirhmdndm"; posobs.PutObject(hdum1,tagobs);
404 }
405
406 PrtTim(">>>> End of definition");
407
408 //-----------------------------------------------------------------
409 // FFTW3 (p26): faster if sizes 2^a 3^b 5^c 7^d 11^e 13^f with e+f=0 ou 1
410 cout<<endl<<"\n--- Initialisation de GeneFluct3D"<<endl;
411
412 GeneFluct3D fluct3d(nx,ny,nz,dx,dy,dz,nthread,2);
413 fluct3d.SetObservator(zref,-nz/2.);
414 fluct3d.SetCosmology(univ);
415 fluct3d.SetGrowthFactor(growth);
416 fluct3d.LosComRedshift(0.001,-1);
417 //TArray< complex<GEN3D_TYPE> >& pkgen = fluct3d.GetComplexArray();
418 //TArray<GEN3D_TYPE>& rgen = fluct3d.GetRealArray();
419 cout<<endl; fluct3d.Print();
420 cout<<"\nMean number of galaxies per pixel = "<<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
421 double mass_by_pixel = mass_by_mpc3 * fluct3d.GetDVol();
422 cout<<"Mean mass per pixel = "<<mass_by_pixel<<endl;
423
424 double dkmin = fluct3d.GetKincMin();
425 double knyqmax = fluct3d.GetKmax();
426 long nherr = long(knyqmax/dkmin+0.5);
427 cout<<"\nFor HistoErr: d="<<dkmin<<" max="<<knyqmax<<" n="<<nherr<<endl;
428
429 double dktmin = fluct3d.GetKTincMin();
430 double ktnyqmax = fluct3d.GetKTmax();
431 long nherrt = long(ktnyqmax/dktmin+0.5);
432 double dkzmin = fluct3d.GetKinc()[2];
433 double kznyqmax = fluct3d.GetKnyq()[2];
434 long nherrz = long(kznyqmax/dkzmin+0.5);
435 cout<<"For Histo2DErr: d="<<dktmin<<","<<dkzmin
436 <<" max="<<ktnyqmax<<","<<kznyqmax<<" n="<<nherrt<<","<<nherrz<<endl;
437
438 //-----------------------------------------------------------------
439 cout<<"\n--- Computing spectra variance up to Kmax at z="<<pkz.GetZ()<<endl;
440 // En fait on travaille sur un cube inscrit dans la sphere de rayon kmax:
441 // sphere: Vs = 4Pi/3 k^3 , cube inscrit (cote k*sqrt(2)): Vc = (k*sqrt(2))^3
442 // Vc/Vs = 0.675 -> keff = kmax * (0.675)^(1/3) = kmax * 0.877
443 double knyqmax_mod = 0.877*knyqmax;
444 ldlkint = (log10(knyqmax_mod)-log10(k1int))/npt;
445 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
446 double sr2int_kmax = varpk_int.Variance(k1int,knyqmax_mod);
447 cout<<"varpk_int(<"<<knyqmax_mod<<")="<<sr2int_kmax<<" -> sigma="<<sqrt(sr2int_kmax)<<endl;
448
449 PrtTim(">>>> End Initialisation de GeneFluct3D");
450
451 //-----------------------------------------------------------------
452 cout<<"\n--- Computing a realization in Fourier space"<<endl;
453 if(use_growth_factor>0) pkz.SetZ(0.); else pkz.SetZ(zref);
454 cout<<"Power spectrum set at redshift: "<<pkz.GetZ()<<endl;
455 if(computefourier0) fluct3d.ComputeFourier0(pkz);
456 else fluct3d.ComputeFourier(pkz);
457 fluct3d.NTupleCheck(posobs,string("ntpkgen"),ntnent);
458 PrtTim(">>>> End Computing a realization in Fourier space");
459
460 cout<<"\n--- Checking realization spectra"<<endl;
461 HistoErr hpkgen(0.,knyqmax,nherr);
462 hpkgen.ReCenterBin(); hpkgen.Zero();
463 hpkgen.Show();
464 fluct3d.ComputeSpectrum(hpkgen);
465 {
466 tagobs = "hpkgen"; posobs.PutObject(hpkgen,tagobs);
467 }
468 PrtTim(">>>> End Checking realization spectra");
469
470 if(comp2dspec) {
471 cout<<"\n--- Checking realization 2D spectra"<<endl;
472 Histo2DErr hpkgen2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
473 hpkgen2.ReCenterBin(); hpkgen2.Zero();
474 hpkgen2.Show();
475 fluct3d.ComputeSpectrum2D(hpkgen2);
476 {
477 tagobs = "hpkgen2"; posobs.PutObject(hpkgen2,tagobs);
478 }
479 PrtTim(">>>> End Checking realization 2D spectra");
480 }
481
482 if(filter_by_pixel!=0) {
483 cout<<"\n--- Computing convolution by pixel shape"<<endl;
484 fluct3d.FilterByPixel();
485 fluct3d.NTupleCheck(posobs,string("ntpkgenf"),ntnent);
486 PrtTim(">>>> End Computing convolution by pixel shape");
487
488 cout<<"\n--- Checking realization spectra after pixel shape convol."<<endl;
489 HistoErr hpkgenfb(0.,knyqmax,nherr);
490 hpkgenfb.ReCenterBin(); hpkgenfb.Zero();
491 hpkgenfb.Show();
492 fluct3d.ComputeSpectrum(hpkgenfb);
493 {
494 tagobs = "hpkgenfb"; posobs.PutObject(hpkgenfb,tagobs);
495 }
496 PrtTim(">>>> End Checking realization spectra");
497
498 cout<<"\n--- Checking realization spectra after pixel shape convol. with pixel correc."<<endl;
499 HistoErr hpkgenf(hpkgenfb); hpkgenf.Zero();
500 fluct3d.ComputeSpectrum(hpkgenf,0.,filter_by_pixel);
501 {
502 tagobs = "hpkgenf"; posobs.PutObject(hpkgenf,tagobs);
503 }
504 PrtTim(">>>> End Checking realization spectra with pixel correc.");
505
506 if(comp2dspec) {
507 cout<<"\n--- Checking realization 2D spectra after pixel shape convol."<<endl;
508 Histo2DErr hpkgenfb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
509 hpkgenfb2.ReCenterBin(); hpkgenfb2.Zero();
510 hpkgenfb2.Show();
511 fluct3d.ComputeSpectrum2D(hpkgenfb2);
512 {
513 tagobs = "hpkgenfb2"; posobs.PutObject(hpkgenfb2,tagobs);
514 }
515 PrtTim(">>>> End Checking realization 2D spectra");
516
517 cout<<"\n--- Checking realization 2D spectra after pixel shape convol. with pixel correc."<<endl;
518 Histo2DErr hpkgenf2(hpkgenfb2); hpkgenf2.Zero();
519 fluct3d.ComputeSpectrum2D(hpkgenf2,0.,filter_by_pixel);
520 {
521 tagobs = "hpkgenf2"; posobs.PutObject(hpkgenf2,tagobs);
522 }
523 PrtTim(">>>> End Checking realization 2D spectra with pixel correc.");
524 }
525 }
526
527 if(whattowrt[0]==1) {
528 if(wfits) {
529 tagobs = "!" + rootnameout + "_k0.fits";
530 fluct3d.WriteFits(tagobs);
531 PrtTim(">>>> End WriteFits");
532 }
533 if(wppf) {
534 tagobs = rootnameout + "_k0.ppf";
535 fluct3d.WritePPF(tagobs,false);
536 PrtTim(">>>> End WritePPF");
537 }
538 }
539
540 //-----------------------------------------------------------------
541 cout<<"\n--- Computing a realization in real space"<<endl;
542 fluct3d.ComputeReal();
543 double rmin,rmax; fluct3d.MinMax(rmin,rmax);
544 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
545 fluct3d.NTupleCheck(posobs,string("ntreal"),ntnent);
546 PrtTim(">>>> End Computing a realization in real space");
547
548 if(use_growth_factor>0) {
549 cout<<"\n--- Apply Growth factor"<<endl;
550 cout<<"...D(z=0)="<<growth(0.)<<" D(z="<<zref<<")="<<growth(zref)<<endl;
551 fluct3d.ApplyGrowthFactor(use_growth_factor);
552 fluct3d.MinMax(rmin,rmax);
553 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
554 fluct3d.NTupleCheck(posobs,string("ntgrow"),ntnent);
555 PrtTim(">>>> End Applying growth factor");
556 }
557
558 int_8 nm;
559 double rmref,rs2ref;
560 cout<<"\n--- Computing reference variance in real space"<<endl;
561 nm = fluct3d.MeanSigma2(rmref,rs2ref);
562 cout<<" rs2ref= "<<rs2ref<<" , rmref="<<rmref<<" ("<<nm<<")"<<endl;
563 PrtTim(">>>> End Computing reference variance in real space");
564
565 if(whattowrt[1]==1) {
566 if(wfits) {
567 tagobs = "!" + rootnameout + "_r0.fits";
568 fluct3d.WriteFits(tagobs);
569 PrtTim(">>>> End WriteFits");
570 }
571 if(wppf) {
572 tagobs = rootnameout + "_r0.ppf";
573 fluct3d.WritePPF(tagobs,true);
574 PrtTim(">>>> End WritePPF");
575 }
576 if(wslice) {
577 tagobs = rootnameout + "_s_r0.ppf";
578 fluct3d.WriteSlicePPF(tagobs);
579 PrtTim(">>>> End WriteSlicePPF");
580 }
581 }
582
583 cout<<"\n--- Check mean and variance in real space"<<endl;
584 fluct3d.NumberOfBad(-1.,1e+200);
585 double rm,rs2;
586 nm = fluct3d.MeanSigma2(rm,rs2);
587 PrtTim(">>>> End Check mean and variance in real space");
588
589 if(compvarreal) {
590 cout<<"\n--- Check variance sigmaR in real space"<<endl;
591 double varr;
592 fluct3d.VarianceFrReal(R,varr);
593 cout<<"...Computed variance = "<<varr
594 <<" , Theorical variance at (z=0) = "<<pow(sigmaR,2.)
595 <<" , at (z="<<zref<<") = "<<pow(sigmaR*growth_at_z,2.)<<endl;
596 PrtTim(">>>> End Check variance sigmaR in real space");
597 }
598
599 //-----------------------------------------------------------------
600 if(no_poisson_type!=0) {
601 cout<<"\n--- Converting !!!DIRECTLY!!! mass into HI mass: mass per pixel ="
602 <<mass_by_pixel<<endl;
603 if(no_poisson_type<0) {
604 cout<<"!!!WARNING!!! dRho/Rho is just multiplied by "<<mass_by_pixel<<endl;
605 fluct3d.ScaleOffset(mass_by_pixel);
606 } else {
607 rm = fluct3d.TurnFluct2MeanNumber(mass_by_mpc3); // ici on doit donner Msol/Mpc^3
608 }
609 fluct3d.NTupleCheck(posobs,string("ntmhi"),ntnent);
610 } else {
611 cout<<"\n--- Converting mass into galaxy number: gal per pixel ="
612 <<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
613 rm = fluct3d.TurnFluct2MeanNumber(ngal_by_mpc3); // ici on doit donner Ngal/Mpc^3
614 fluct3d.NTupleCheck(posobs,string("ntmeang"),ntnent);
615 }
616 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
617 nm = fluct3d.MeanSigma2(rm,rs2);
618 if(rm>0.) cout<<"normalised sigma(dM/M) is "<<sqrt(rs2)/rm<<endl;
619 PrtTim(">>>> End Converting mass into galaxy number or mass");
620
621 if( no_poisson_type==0 ) {
622
623 cout<<"\n--- Apply poisson on galaxy number"<<endl;
624 fluct3d.ApplyPoisson();
625 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
626 nm = fluct3d.MeanSigma2(rm,rs2);
627 double xgalmin,xgalmax; fluct3d.MinMax(xgalmin,xgalmax,0.1,1.e50);
628 fluct3d.NTupleCheck(posobs,string("ntpois"),ntnent);
629 PrtTim(">>>> End Apply poisson on galaxy number");
630 if(wslice) {
631 tagobs = rootnameout + "_s_rn.ppf";
632 fluct3d.WriteSlicePPF(tagobs);
633 PrtTim(">>>> End WriteSlicePPF");
634 }
635
636 cout<<"\n--- Convert Galaxy number to HI mass"<<endl;
637 double mhi = 0.;
638 if(use_schmassdist) {
639 if(recompute_schmassdist) {
640 int ngalmax = int(xgalmax+0.5);
641 schmdist.SetNgalLim(ngalmax,1,naleagal);
642 PrtTim(">>>> End creating tabulated histograms for trials");
643 }
644 mhi = fluct3d.TurnNGal2MassQuick(schmdist);
645 schmdist.PrintStatus();
646 } else {
647 mhi = fluct3d.TurnNGal2Mass(tirhmdndm,true);
648 }
649 cout<<mhi<<" MSol in survey / "<<mass_by_mpc3*fluct3d.GetVol()<<endl;
650 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
651 cout<<"Equivalent: "<<rm*nm/fluct3d.NPix()<<" Msol / pixels"<<endl;
652 nm = fluct3d.MeanSigma2(rm,rs2);
653 fluct3d.NTupleCheck(posobs,string("ntmhi"),ntnent);
654 PrtTim(">>>> End Convert Galaxy number to HI mass");
655
656 }
657
658 //-----------------------------------------------------------------
659 if(whattowrt[2]==1) {
660 if(wfits) {
661 tagobs = "!" + rootnameout + "_r.fits";
662 fluct3d.WriteFits(tagobs);
663 PrtTim(">>>> End WriteFits");
664 }
665 if(wppf) {
666 tagobs = rootnameout + "_r.ppf";
667 fluct3d.WritePPF(tagobs,true);
668 PrtTim(">>>> End WritePPF");
669 }
670 if(wslice) {
671 tagobs = rootnameout + "_s_r.ppf";
672 fluct3d.WriteSlicePPF(tagobs);
673 PrtTim(">>>> End WriteSlicePPF");
674 }
675 }
676
677 //-----------------------------------------------------------------
678 ////if(do_agn) {
679 //// cout<<"\n--- Add AGN: <log10(S Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
680 //// <<" , powlaw="<<powlaw_agn<<endl;
681 //// fluct3d.AddAGN(lfjy_agn,lsigma_agn,powlaw_agn);
682 //// nm = fluct3d.MeanSigma2(rm,rs2);
683 //// fluct3d.NTupleCheck(posobs,string("ntagn"),ntnent);
684 //// PrtTim(">>>> End Add AGN");
685 ////}
686
687 //-----------------------------------------------------------------
688 double snoisesave = 0.;
689 if(snoise>0.) {
690 cout<<"\n--- Add noise to HI Flux snoise="<<snoise<<", evolution="<<noise_evol<<endl;
691 fluct3d.AddNoise2Real(snoise,noise_evol);
692 snoisesave = snoise;
693 nm = fluct3d.MeanSigma2(rm,rs2);
694 fluct3d.NTupleCheck(posobs,string("ntnois"),ntnent);
695 PrtTim(">>>> End Add noise");
696 }
697
698 //-----------------------------------------------------------------
699 if(scalemass!=0. && scalemass!=1.) { // Si scalemass==0 pas de normalisation
700 if(scalemass<0.) scalemass = 1. / (-scalemass * mass_by_pixel);
701 cout<<"\n--- Scale cube scale="<<scalemass<<endl;
702 fluct3d.ScaleOffset(scalemass);
703 snoisesave *= scalemass;
704 nm = fluct3d.MeanSigma2(rm,rs2);
705 PrtTim(">>>> End Scale cube");
706 }
707 fluct3d.NTupleCheck(posobs,string("ntfin"),ntnent);
708
709 //-----------------------------------------------------------------
710 if(whattowrt[3]==1) {
711 if(wfits) {
712 tagobs = "!" + rootnameout + "_rf.fits";
713 fluct3d.WriteFits(tagobs);
714 PrtTim(">>>> End WriteFits");
715 }
716 if(wppf) {
717 tagobs = rootnameout + "_rf.ppf";
718 fluct3d.WritePPF(tagobs,true);
719 PrtTim(">>>> End WritePPF");
720 }
721 if(wslice) {
722 tagobs = rootnameout + "_s_rf.ppf";
723 fluct3d.WriteSlicePPF(tagobs);
724 PrtTim(">>>> End WriteSlicePPF");
725 }
726 }
727
728 //-----------------------------------------------------------------
729 // -- NE PAS FAIRE CA SI ON VEUT CONTINUER LA SIMULATION -> d_rho/rho ecrase
730
731 cout<<endl<<"\n--- ReComputing spectrum from real space"<<endl;
732 fluct3d.ReComputeFourier();
733 fluct3d.NTupleCheck(posobs,string("ntpkrec"),ntnent);
734 PrtTim(">>>> End ReComputing spectrum");
735
736 if(whattowrt[4]==1) {
737 if(wfits) {
738 tagobs = "!" + rootnameout + "_k.fits";
739 fluct3d.WriteFits(tagobs);
740 PrtTim(">>>> End WriteFits");
741 }
742 if(wppf) {
743 tagobs = rootnameout + "_k.ppf";
744 fluct3d.WritePPF(tagobs,false);
745 PrtTim(">>>> End WritePPF");
746 }
747 }
748
749 cout<<endl<<"\n--- Computing final spectrum"<<endl;
750 HistoErr hpkrecb(0.,knyqmax,nherr); hpkrecb.Zero();
751 hpkrecb.ReCenterBin();
752 hpkrecb.Show();
753 fluct3d.ComputeSpectrum(hpkrecb);
754 {
755 tagobs = "hpkrecb"; posobs.PutObject(hpkrecb,tagobs);
756 }
757 PrtTim(">>>> End Computing final spectrum");
758
759 cout<<endl<<"\n--- Computing final spectrum with pixel deconv."<<endl;
760 HistoErr hpkrec(hpkrecb); hpkrec.Zero();
761 fluct3d.ComputeSpectrum(hpkrec,snoisesave,filter_by_pixel);
762 {
763 tagobs = "hpkrec"; posobs.PutObject(hpkrec,tagobs);
764 }
765 PrtTim(">>>> End Computing final spectrum with pixel deconv.");
766
767 if(comp2dspec) {
768 cout<<"\n--- Computing final 2D spectrum"<<endl;
769 Histo2DErr hpkrecb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
770 hpkrecb2.ReCenterBin(); hpkrecb2.Zero();
771 hpkrecb2.Show();
772 fluct3d.ComputeSpectrum2D(hpkrecb2);
773 {
774 tagobs = "hpkrecb2"; posobs.PutObject(hpkrecb2,tagobs);
775 }
776 PrtTim(">>>> End Computing final 2D spectrum");
777
778 cout<<"\n--- Computing final 2D spectrum with pixel deconv."<<endl;
779 Histo2DErr hpkrec2(hpkrecb2); hpkrec2.Zero();
780 fluct3d.ComputeSpectrum2D(hpkrec2,snoisesave,filter_by_pixel);
781 {
782 tagobs = "hpkrec2"; posobs.PutObject(hpkrec2,tagobs);
783 }
784 PrtTim(">>>> End Computing final 2D spectrum with pixel deconv.");
785
786 }
787
788 //-----------------------------------------------------------------
789 delete RandGen;
790 PrtTim(">>>> End Of Job");
791
792 return 0;
793}
794
Note: See TracBrowser for help on using the repository browser.