[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "timing.h"
|
---|
| 11 | #include "tarray.h"
|
---|
| 12 | #include "pexceptions.h"
|
---|
| 13 | #include "perandom.h"
|
---|
| 14 | #include "srandgen.h"
|
---|
| 15 |
|
---|
| 16 | #include "constcosmo.h"
|
---|
| 17 | #include "integfunc.h"
|
---|
| 18 | #include "geneutils.h"
|
---|
| 19 |
|
---|
| 20 | #include "genefluct3d.h"
|
---|
| 21 |
|
---|
| 22 | //#define FFTW_THREAD
|
---|
| 23 |
|
---|
| 24 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 25 |
|
---|
| 26 | //-------------------------------------------------------
|
---|
| 27 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T,PkSpectrumZ& pkz)
|
---|
| 28 | : T_(T) , pkz_(pkz)
|
---|
| 29 | {
|
---|
| 30 | SetNThread();
|
---|
| 31 | SetSize(1,-1,1,1.,-1.,1.);
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 35 | {
|
---|
| 36 | fftw_destroy_plan(pf_);
|
---|
| 37 | fftw_destroy_plan(pb_);
|
---|
| 38 | #ifdef FFTW_THREAD
|
---|
| 39 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 40 | #endif
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | //-------------------------------------------------------
|
---|
[3129] | 44 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 45 | {
|
---|
| 46 | if(nx<=0 || dx<=0. ) {
|
---|
| 47 | cout<<"GeneFluct3D::SetSize_Error: bad value(s)"<<endl;
|
---|
| 48 | throw ParmError("GeneFluct3D::SetSize_Error: bad value(s)");
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | Tcontent_ = 0;
|
---|
| 52 |
|
---|
| 53 | // Les taille des tableaux
|
---|
| 54 | Nx_ = nx;
|
---|
| 55 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 56 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
| 57 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 58 | NCz_ = Nz_/2 +1;
|
---|
| 59 | NTz_ = 2*NCz_;
|
---|
| 60 | SzK_[2] = Nx_; SzK_[1] = Ny_; SzK_[0] = NCz_; // a l'envers
|
---|
| 61 |
|
---|
| 62 | // le pas dans l'espace (Mpc)
|
---|
| 63 | Dx_ = dx;
|
---|
| 64 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 65 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
| 66 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 67 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 68 |
|
---|
| 69 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 70 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 71 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 72 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
| 73 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 74 |
|
---|
| 75 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 76 | Knyqx_ = M_PI/Dx_;
|
---|
| 77 | Knyqy_ = M_PI/Dy_;
|
---|
| 78 | Knyqz_ = M_PI/Dz_;
|
---|
| 79 |
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | //-------------------------------------------------------
|
---|
| 83 | void GeneFluct3D::Print(void)
|
---|
| 84 | {
|
---|
| 85 | cout<<"GeneFluct3D(T_typ="<<Tcontent_<<"): z="<<pkz_.GetZ()<<endl;
|
---|
| 86 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 87 | <<NRtot_<<endl;
|
---|
| 88 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 89 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 90 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 91 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 92 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 93 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 94 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 95 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 96 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | //-------------------------------------------------------
|
---|
| 100 | void GeneFluct3D::ComputeFourier0(void)
|
---|
| 101 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 102 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 103 | {
|
---|
| 104 | int lp=2;
|
---|
| 105 |
|
---|
| 106 | T_.ReSize(3,SzK_);
|
---|
| 107 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
| 108 |
|
---|
| 109 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
| 110 | if(lp>1) PrtTim("--- ComputeFourier0: before fftw_plan ---");
|
---|
| 111 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
| 112 | double *data = (double *) (&T_(0,0,0));
|
---|
| 113 | #ifdef FFTW_THREAD
|
---|
| 114 | if(nthread_>0) {
|
---|
| 115 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
| 116 | fftw_init_threads();
|
---|
| 117 | fftw_plan_with_nthreads(nthread_);
|
---|
| 118 | }
|
---|
| 119 | #endif
|
---|
| 120 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data,fdata,FFTW_ESTIMATE);
|
---|
| 121 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata,data,FFTW_ESTIMATE);
|
---|
| 122 | if(lp>1) PrtTim("--- ComputeFourier0: after fftw_plan ---");
|
---|
| 123 |
|
---|
| 124 | // --- realisation d'un tableau de tirage gaussiens
|
---|
| 125 | if(lp>1) PrtTim("--- ComputeFourier0: before gaussian filling ---");
|
---|
| 126 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 127 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 128 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 129 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 130 | data[ip] = NorRand()/sntot;
|
---|
| 131 | }
|
---|
| 132 | if(lp>1) PrtTim("--- ComputeFourier0: after gaussian filling ---");
|
---|
| 133 |
|
---|
| 134 | // --- realisation d'un tableau de tirage gaussiens
|
---|
| 135 | if(lp>1) PrtTim("--- ComputeFourier0: before fft real ---");
|
---|
| 136 | fftw_execute(pf_);
|
---|
| 137 | if(lp>1) PrtTim("--- ComputeFourier0: after fft real ---");
|
---|
| 138 |
|
---|
| 139 | // --- On remplit avec une realisation
|
---|
| 140 | if(lp>1) PrtTim("--- ComputeFourier0: before Fourier realization filling ---");
|
---|
| 141 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 142 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 143 | for(long i=0;i<Nx_;i++) {
|
---|
| 144 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 145 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 146 | if(lp>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 147 | for(long j=0;j<Ny_;j++) {
|
---|
| 148 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 149 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 150 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 151 | double kz = l*Dkz_; kz *= kz;
|
---|
| 152 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 153 | double k = sqrt(kx+ky+kz);
|
---|
| 154 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
| 155 | double pk = pkz_(k)/Vol_;
|
---|
| 156 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 157 | T_(l,j,i) *= sqrt(pk);
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | if(lp>1) PrtTim("--- ComputeFourier0: after Fourier realization filling ---");
|
---|
| 162 |
|
---|
| 163 | double p = compute_power_carte();
|
---|
| 164 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
| 165 | if(lp>1) PrtTim("--- ComputeFourier0: after Computing power ---");
|
---|
| 166 |
|
---|
| 167 | Tcontent_ = 1;
|
---|
| 168 |
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | //-------------------------------------------------------
|
---|
| 172 | void GeneFluct3D::ComputeFourier(void)
|
---|
| 173 | // Calcule une realisation du spectre "pkz_"
|
---|
| 174 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 175 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 176 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 177 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 178 | // sum(f(x_i)^2) = S
|
---|
| 179 | // sum(F(nu_i)^2) = S*N
|
---|
| 180 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 181 | {
|
---|
| 182 | int lp=2;
|
---|
| 183 |
|
---|
| 184 | // --- Dimensionnement du tableau
|
---|
| 185 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 186 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 187 | T_.ReSize(3,SzK_);
|
---|
| 188 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
| 189 |
|
---|
| 190 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
| 191 | if(lp>1) PrtTim("--- ComputeFourier: before fftw_plan ---");
|
---|
| 192 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
| 193 | double *data = (double *) (&T_(0,0,0));
|
---|
| 194 | #ifdef FFTW_THREAD
|
---|
| 195 | if(nthread_>0) {
|
---|
| 196 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
| 197 | fftw_init_threads();
|
---|
| 198 | fftw_plan_with_nthreads(nthread_);
|
---|
| 199 | }
|
---|
| 200 | #endif
|
---|
| 201 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data,fdata,FFTW_ESTIMATE);
|
---|
| 202 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata,data,FFTW_ESTIMATE);
|
---|
| 203 | //fftw_print_plan(pb_); cout<<endl;
|
---|
| 204 | if(lp>1) PrtTim("--- ComputeFourier: after fftw_plan ---");
|
---|
| 205 |
|
---|
| 206 | // --- RaZ du tableau
|
---|
| 207 | T_ = complex<r_8>(0.);
|
---|
| 208 |
|
---|
| 209 | // --- On remplit avec une realisation
|
---|
| 210 | if(lp>1) PrtTim("--- ComputeFourier: before Fourier realization filling ---");
|
---|
[3129] | 211 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 212 | for(long i=0;i<Nx_;i++) {
|
---|
| 213 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 214 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 215 | if(lp>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 216 | for(long j=0;j<Ny_;j++) {
|
---|
| 217 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 218 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 219 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 220 | double kz = l*Dkz_; kz *= kz;
|
---|
| 221 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 222 | double k = sqrt(kx+ky+kz);
|
---|
| 223 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
| 224 | double pk = pkz_(k)/Vol_;
|
---|
| 225 | // Explication de la division par 2: voir perandom.cc
|
---|
| 226 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 227 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | if(lp>1) PrtTim("--- ComputeFourier: after Fourier realization filling ---");
|
---|
| 232 |
|
---|
| 233 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 234 | if(lp>1) PrtTim("--- ComputeFourier: after managing coefficients ---");
|
---|
| 235 |
|
---|
| 236 | double p = compute_power_carte();
|
---|
| 237 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
| 238 | if(lp>1) PrtTim("--- ComputeFourier: after before Computing power ---");
|
---|
| 239 |
|
---|
| 240 | Tcontent_ = 1;
|
---|
| 241 |
|
---|
| 242 | }
|
---|
| 243 |
|
---|
[3129] | 244 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 245 | // Take into account the real and complexe conjugate coefficients
|
---|
| 246 | // because we want a realization of a real data in real space
|
---|
| 247 | {
|
---|
| 248 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
| 249 |
|
---|
| 250 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 251 | long nreal = 0;
|
---|
| 252 | for(long kk=0;kk<2;kk++) {
|
---|
| 253 | long k=0; // continu
|
---|
[3115] | 254 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 255 | for(long jj=0;jj<2;jj++) {
|
---|
| 256 | long j=0;
|
---|
[3115] | 257 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 258 | for(long ii=0;ii<2;ii++) {
|
---|
| 259 | long i=0;
|
---|
[3115] | 260 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
| 261 | size_t ip = k+NCz_*(j+Ny_*i);
|
---|
| 262 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata[ip][0]<<","<<fdata[ip][1]<<")"<<endl;
|
---|
| 263 | fdata[ip][1] = 0.; fdata[ip][0] *= M_SQRT2;
|
---|
| 264 | nreal++;
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
| 269 |
|
---|
| 270 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 271 |
|
---|
| 272 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 273 | long nconj1 = 0;
|
---|
| 274 | for(long kk=0;kk<2;kk++) {
|
---|
| 275 | long k=0; // continu
|
---|
[3115] | 276 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 277 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 278 | long j=0;
|
---|
[3115] | 279 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 280 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3115] | 281 | size_t ip = k+NCz_*(j+Ny_*i);
|
---|
| 282 | size_t ip1 = k+NCz_*(j+Ny_*(Nx_-i));
|
---|
| 283 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
| 284 | nconj1++;
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
[3129] | 287 | for(long ii=0;ii<2;ii++) {
|
---|
| 288 | long i=0;
|
---|
[3115] | 289 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 290 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 291 | size_t ip = k+NCz_*(j+Ny_*i);
|
---|
| 292 | size_t ip1 = k+NCz_*((Ny_-j)+Ny_*i);
|
---|
| 293 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
| 294 | nconj1++;
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
| 299 |
|
---|
| 300 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 301 | long nconj2 = 0;
|
---|
| 302 | for(long kk=0;kk<2;kk++) {
|
---|
| 303 | long k=0; // continu
|
---|
[3115] | 304 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 305 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 306 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 307 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 308 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
| 309 | size_t ip = k+NCz_*(j+Ny_*i);
|
---|
| 310 | size_t ip1 = k+NCz_*((Ny_-j)+Ny_*(Nx_-i));
|
---|
| 311 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
| 312 | nconj2++;
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 | cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
| 317 |
|
---|
| 318 | cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
| 319 |
|
---|
| 320 | return nreal+nconj1+nconj2;
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 324 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 325 | {
|
---|
| 326 | double s2 = 0.;
|
---|
[3129] | 327 | for(long l=0;l<NCz_;l++)
|
---|
| 328 | for(long j=0;j<Ny_;j++)
|
---|
| 329 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 330 |
|
---|
| 331 | double s20 = 0.;
|
---|
[3129] | 332 | for(long j=0;j<Ny_;j++)
|
---|
| 333 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 334 |
|
---|
| 335 | double s2n = 0.;
|
---|
| 336 | if(Nz_%2==0)
|
---|
[3129] | 337 | for(long j=0;j<Ny_;j++)
|
---|
| 338 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 339 |
|
---|
| 340 | return 2.*s2 -s20 -s2n;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | //-------------------------------------------------------------------
|
---|
| 344 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 345 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 346 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 347 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 348 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 349 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 350 | // avec y = k_x*dx/2
|
---|
[3115] | 351 | {
|
---|
| 352 | int lp=2;
|
---|
| 353 | if(lp>1) PrtTim("--- FilterByPixel: before ---");
|
---|
| 354 |
|
---|
[3129] | 355 | for(long i=0;i<Nx_;i++) {
|
---|
| 356 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 357 | double kx = ii*Dkx_ *Dx_/2;
|
---|
| 358 | double pkx = pixelfilter(kx);
|
---|
[3129] | 359 | for(long j=0;j<Ny_;j++) {
|
---|
| 360 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 361 | double ky = jj*Dky_ *Dy_/2;
|
---|
| 362 | double pky = pixelfilter(ky);
|
---|
[3129] | 363 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 364 | double kz = l*Dkz_ *Dz_/2;
|
---|
| 365 | double pkz = pixelfilter(kz);
|
---|
| 366 | T_(l,j,i) *= pkx*pky*pkz;
|
---|
[3115] | 367 | }
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 | if(lp>1) PrtTim("--- FilterByPixel: after ---");
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 | //-------------------------------------------------------------------
|
---|
| 375 | void GeneFluct3D::ComputeReal(void)
|
---|
| 376 | // Calcule une realisation dans l'espace reel
|
---|
| 377 | {
|
---|
| 378 | int lp=2;
|
---|
| 379 |
|
---|
| 380 | if( Tcontent_==0 ) {
|
---|
| 381 | cout<<"GeneFluct3D::ComputeReal_Error: empty array"<<endl;
|
---|
| 382 | throw ParmError("GeneFluct3D::ComputeReal_Error: empty array");
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | // On fait la FFT
|
---|
| 386 | if(lp>1) PrtTim("--- ComputeReal: before fftw backward ---");
|
---|
| 387 | fftw_execute(pb_);
|
---|
| 388 | if(lp>1) PrtTim("--- ComputeReal: after fftw backward ---");
|
---|
| 389 |
|
---|
| 390 | Tcontent_ = 2;
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | //-------------------------------------------------------------------
|
---|
| 394 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 395 | {
|
---|
| 396 | int lp=2;
|
---|
| 397 |
|
---|
| 398 | // On fait la FFT
|
---|
| 399 | if(lp>1) PrtTim("--- ComputeReal: before fftw forward ---");
|
---|
| 400 | fftw_execute(pf_);
|
---|
| 401 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 402 | double v = (double)NRtot_;
|
---|
[3129] | 403 | for(long i=0;i<Nx_;i++)
|
---|
| 404 | for(long j=0;j<Ny_;j++)
|
---|
| 405 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 406 |
|
---|
| 407 | Tcontent_ = 3;
|
---|
| 408 | if(lp>1) PrtTim("--- ComputeReal: after fftw forward ---");
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | //-------------------------------------------------------------------
|
---|
| 412 | int GeneFluct3D::ComputeSpectrum(HProf& hp)
|
---|
| 413 | // Compute spectrum from "T" and fill HProf "hp"
|
---|
| 414 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 415 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 416 | {
|
---|
| 417 |
|
---|
| 418 | if(hp.NBins()<0) return -1;
|
---|
| 419 | hp.Zero();
|
---|
| 420 | hp.SetErrOpt(false);
|
---|
| 421 |
|
---|
| 422 | // Attention a l'ordre
|
---|
[3129] | 423 | for(long i=0;i<Nx_;i++) {
|
---|
| 424 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 425 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 426 | for(long j=0;j<Ny_;j++) {
|
---|
| 427 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 428 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 429 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 430 | double kz = l*Dkz_; kz *= kz;
|
---|
| 431 | double k = sqrt(kx+ky+kz);
|
---|
| 432 | double pk = MODULE2(T_(l,j,i));
|
---|
| 433 | hp.Add(k,pk);
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 | hp.UpdateHisto();
|
---|
| 438 |
|
---|
| 439 | // renormalize to directly compare to original spectrum
|
---|
| 440 | double norm = Vol_;
|
---|
| 441 | hp *= norm;
|
---|
| 442 |
|
---|
| 443 | return 0;
|
---|
| 444 | }
|
---|
| 445 |
|
---|
| 446 | //-------------------------------------------------------
|
---|
| 447 | size_t GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
| 448 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 449 | {
|
---|
| 450 | int lp=2;
|
---|
| 451 | if(lp>1) PrtTim("--- VarianceFrReal: before computation ---");
|
---|
| 452 |
|
---|
| 453 | double *data = (double *) (&T_(0,0,0));
|
---|
[3129] | 454 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 455 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 456 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3115] | 457 | cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
| 458 |
|
---|
| 459 | double sum=0., sum2=0., r2 = R*R; size_t nsum=0;
|
---|
| 460 |
|
---|
[3129] | 461 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 462 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 463 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3115] | 464 | double s=0.; size_t n=0;
|
---|
[3129] | 465 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 466 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 467 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 468 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 469 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 470 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 471 | if(x+y+z>r2) continue;
|
---|
| 472 | size_t ip = ll+NTz_*(jj+Ny_*ii);
|
---|
| 473 | s += 1.+data[ip];
|
---|
| 474 | n++;
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 479 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 480 | }
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 |
|
---|
| 484 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 485 |
|
---|
| 486 | sum /= nsum;
|
---|
| 487 | sum2 = sum2/nsum - sum*sum;
|
---|
| 488 | if(lp) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
| 489 |
|
---|
| 490 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
| 491 | if(lp) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
| 492 |
|
---|
| 493 | if(lp>1) PrtTim("--- VarianceFrReal: after computation ---");
|
---|
| 494 | return nsum;
|
---|
| 495 | }
|
---|
| 496 |
|
---|
| 497 | //-------------------------------------------------------
|
---|
| 498 | size_t GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
| 499 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 500 | // -> vmin and vmax are considered as bad
|
---|
| 501 | {
|
---|
| 502 | double *data = (double *) (&T_(0,0,0));
|
---|
| 503 |
|
---|
| 504 | size_t nbad = 0;
|
---|
[3129] | 505 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 506 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 507 | double v = data[ip];
|
---|
| 508 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | return nbad;
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | size_t GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
|
---|
| 515 | // mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 516 | // -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
|
---|
| 517 | {
|
---|
| 518 | double *data = (double *) (&T_(0,0,0));
|
---|
| 519 |
|
---|
| 520 | size_t n = 0;
|
---|
| 521 | rm = rs2 = 0.;
|
---|
| 522 |
|
---|
[3129] | 523 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 524 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 525 | double v = data[ip];
|
---|
| 526 | if(v<=vmin || v>=vmax) continue;
|
---|
| 527 | rm += v;
|
---|
| 528 | rs2 += v*v;
|
---|
| 529 | n++;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | if(n>1) {
|
---|
| 533 | rm /= (double)n;
|
---|
| 534 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 | return n;
|
---|
| 538 | }
|
---|
| 539 |
|
---|
| 540 | size_t GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
| 541 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
| 542 | // -> vmin and vmax are set to val0
|
---|
| 543 | {
|
---|
| 544 | double *data = (double *) (&T_(0,0,0));
|
---|
| 545 |
|
---|
| 546 | size_t nbad = 0;
|
---|
[3129] | 547 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 548 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 549 | double v = data[ip];
|
---|
| 550 | if(v<=vmin || v>=vmax) {data[ip] = val0; nbad++;}
|
---|
| 551 | }
|
---|
| 552 |
|
---|
| 553 | return nbad;
|
---|
| 554 | }
|
---|
| 555 |
|
---|
| 556 | //-------------------------------------------------------
|
---|
| 557 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 558 | // d_rho/rho -> Mass (add one!)
|
---|
| 559 | {
|
---|
| 560 | int lp=2;
|
---|
| 561 | if(lp>1) PrtTim("--- TurnFluct2Mass: before computation ---");
|
---|
| 562 | double *data = (double *) (&T_(0,0,0));
|
---|
| 563 |
|
---|
[3129] | 564 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 565 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 566 | data[ip] += 1.;
|
---|
| 567 | }
|
---|
| 568 |
|
---|
| 569 | Tcontent_ = 4;
|
---|
| 570 | if(lp>1) PrtTim("--- TurnFluct2Mass: after computation ---");
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 574 | // do NOT treate negative or nul values
|
---|
| 575 | {
|
---|
| 576 | int lp=2;
|
---|
| 577 | if(lp>1) PrtTim("--- TurnMass2MeanNumber: before computation ---");
|
---|
| 578 |
|
---|
| 579 | double *data = (double *) (&T_(0,0,0));
|
---|
| 580 |
|
---|
| 581 | double m,s2;
|
---|
| 582 | size_t ngood = MeanSigma2(m,s2,0.,1e+200);
|
---|
| 583 | if(lp) cout<<"TurnMass2MeanNumber: ngood="<<ngood
|
---|
| 584 | <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
|
---|
| 585 |
|
---|
| 586 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 587 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 588 | // On NE met PAS a zero les pixels <0
|
---|
| 589 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 590 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 591 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 592 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
| 593 | double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
|
---|
| 594 | if(lp) cout<<"galaxy density move from "
|
---|
| 595 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
| 596 | double sum = 0.;
|
---|
[3129] | 597 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 598 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 599 | data[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 600 | if(data[ip]>0.) sum += data[ip]; // mais on ne les compte pas
|
---|
| 601 | }
|
---|
| 602 | if(lp) cout<<sum<<" galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
| 603 |
|
---|
| 604 | Tcontent_ = 6;
|
---|
| 605 | if(lp>1) PrtTim("--- TurnMass2MeanNumber: after computation ---");
|
---|
| 606 | return sum;
|
---|
| 607 | }
|
---|
| 608 |
|
---|
| 609 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 610 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 611 | {
|
---|
| 612 | int lp=2;
|
---|
| 613 | if(lp>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
| 614 |
|
---|
| 615 | double *data = (double *) (&T_(0,0,0));
|
---|
| 616 |
|
---|
| 617 | double sum = 0.;
|
---|
[3129] | 618 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 619 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 620 | double v = data[ip];
|
---|
| 621 | if(v>0.) {
|
---|
| 622 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
| 623 | data[ip] = (double)dn;
|
---|
| 624 | sum += (double)dn;
|
---|
| 625 | }
|
---|
| 626 | }
|
---|
| 627 | if(lp) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
| 628 | Tcontent_ = 8;
|
---|
| 629 |
|
---|
| 630 | if(lp>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
| 631 | return sum;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 635 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 636 | // INPUT:
|
---|
| 637 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 638 | // axeslog = false : retourne la masse
|
---|
| 639 | // = true : retourne le log10(mass)
|
---|
| 640 | // RETURN la masse totale
|
---|
| 641 | {
|
---|
| 642 | int lp=2;
|
---|
| 643 | if(lp>1) PrtTim("--- TurnNGal2Mass: before computation ---");
|
---|
| 644 |
|
---|
| 645 | double *data = (double *) (&T_(0,0,0));
|
---|
| 646 |
|
---|
| 647 | double sum = 0.;
|
---|
[3129] | 648 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 649 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 650 | double v = data[ip];
|
---|
| 651 | if(v>0.) {
|
---|
[3129] | 652 | long ngal = long(v+0.1);
|
---|
[3115] | 653 | data[ip] = 0.;
|
---|
[3129] | 654 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 655 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 656 | if(axeslog) m = pow(10.,m);
|
---|
| 657 | data[ip] += m;
|
---|
| 658 | }
|
---|
| 659 | sum += data[ip];
|
---|
| 660 | }
|
---|
| 661 | }
|
---|
| 662 | if(lp) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
| 663 | Tcontent_ = 10;
|
---|
| 664 |
|
---|
| 665 | if(lp>1) PrtTim("--- TurnNGal2Mass: after computation ---");
|
---|
| 666 | return sum;
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | void GeneFluct3D::AddNoise2Real(double snoise)
|
---|
| 670 | // add noise to every pixels (meme les <=0 !)
|
---|
| 671 | {
|
---|
| 672 | int lp=2;
|
---|
| 673 | if(lp>1) PrtTim("--- AddNoise2Real: before computation ---");
|
---|
| 674 |
|
---|
| 675 | double *data = (double *) (&T_(0,0,0));
|
---|
| 676 |
|
---|
[3129] | 677 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3115] | 678 | size_t ip = l+NTz_*(j+Ny_*i);
|
---|
| 679 | data[ip] += snoise*NorRand();
|
---|
| 680 | }
|
---|
| 681 | Tcontent_ = 12;
|
---|
| 682 |
|
---|
| 683 | if(lp>1) PrtTim("--- AddNoise2Real: after computation ---");
|
---|
| 684 | }
|
---|