[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "tarray.h"
|
---|
| 11 | #include "pexceptions.h"
|
---|
| 12 | #include "perandom.h"
|
---|
| 13 | #include "srandgen.h"
|
---|
| 14 |
|
---|
[3141] | 15 | #include "fabtcolread.h"
|
---|
| 16 | #include "fabtwriter.h"
|
---|
| 17 | #include "fioarr.h"
|
---|
| 18 |
|
---|
| 19 | #include "arrctcast.h"
|
---|
| 20 |
|
---|
[3115] | 21 | #include "constcosmo.h"
|
---|
| 22 | #include "geneutils.h"
|
---|
[3199] | 23 | #include "schechter.h"
|
---|
[3115] | 24 |
|
---|
| 25 | #include "genefluct3d.h"
|
---|
| 26 |
|
---|
| 27 | //#define FFTW_THREAD
|
---|
| 28 |
|
---|
| 29 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 30 |
|
---|
| 31 | //-------------------------------------------------------
|
---|
[3141] | 32 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
|
---|
[3154] | 33 | : T_(T) , Nx_(0) , Ny_(0) , Nz_(0) , array_allocated_(false) , lp_(0)
|
---|
[3157] | 34 | , redshref_(-999.) , kredshref_(0.) , cosmo_(NULL) , growth_(NULL)
|
---|
| 35 | , loscom_ref_(-999.), loscom_min_(-999.), loscom_max_(-999.)
|
---|
[3199] | 36 | , loscom2zred_min_(0.) , loscom2zred_max_(0.)
|
---|
[3115] | 37 | {
|
---|
[3157] | 38 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 39 | zred_.resize(0);
|
---|
| 40 | loscom_.resize(0);
|
---|
[3199] | 41 | loscom2zred_.resize(0);
|
---|
[3115] | 42 | SetNThread();
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 46 | {
|
---|
| 47 | fftw_destroy_plan(pf_);
|
---|
| 48 | fftw_destroy_plan(pb_);
|
---|
| 49 | #ifdef FFTW_THREAD
|
---|
| 50 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 51 | #endif
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | //-------------------------------------------------------
|
---|
[3129] | 55 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 56 | {
|
---|
[3141] | 57 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 58 | setalloc();
|
---|
| 59 | setpointers(false);
|
---|
[3154] | 60 | init_fftw();
|
---|
[3141] | 61 | }
|
---|
| 62 |
|
---|
[3154] | 63 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 64 | // L'observateur est au redshift z=0
|
---|
| 65 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 66 | // issue du centre de cette face
|
---|
| 67 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 68 | // redshref = redshift de reference
|
---|
| 69 | // Si redshref<0 alors redshref=0
|
---|
| 70 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
| 71 | // Si kredshref<0 alors kredshref=0
|
---|
[3157] | 72 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 73 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
[3154] | 74 | {
|
---|
| 75 | if(redshref<0.) redshref = 0.;
|
---|
| 76 | if(kredshref<0.) kredshref = 0.;
|
---|
[3157] | 77 | redshref_ = redshref;
|
---|
[3154] | 78 | kredshref_ = kredshref;
|
---|
[3199] | 79 | if(lp_>0)
|
---|
| 80 | cout<<"--- GeneFluct3D::SetObservator zref="<<redshref_<<" kref="<<kredshref_<<endl;
|
---|
[3154] | 81 | }
|
---|
| 82 |
|
---|
[3157] | 83 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 84 | {
|
---|
| 85 | cosmo_ = &cosmo;
|
---|
| 86 | if(lp_>1) cosmo_->Print();
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 90 | {
|
---|
| 91 | growth_ = &growth;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
[3141] | 94 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 95 | {
|
---|
[3155] | 96 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 97 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 98 | if(nx<=0 || dx<=0.) {
|
---|
[3199] | 99 | char *bla = "GeneFluct3D::setsize_Error: bad value(s";
|
---|
| 100 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3115] | 101 | }
|
---|
| 102 |
|
---|
[3141] | 103 | // Les tailles des tableaux
|
---|
[3115] | 104 | Nx_ = nx;
|
---|
| 105 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 106 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 107 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 108 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 109 | NCz_ = Nz_/2 +1;
|
---|
| 110 | NTz_ = 2*NCz_;
|
---|
| 111 |
|
---|
| 112 | // le pas dans l'espace (Mpc)
|
---|
| 113 | Dx_ = dx;
|
---|
| 114 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 115 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 116 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 117 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 118 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 119 |
|
---|
| 120 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 121 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 122 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 123 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 124 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 125 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 126 |
|
---|
| 127 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 128 | Knyqx_ = M_PI/Dx_;
|
---|
| 129 | Knyqy_ = M_PI/Dy_;
|
---|
| 130 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 131 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 132 | }
|
---|
[3115] | 133 |
|
---|
[3141] | 134 | void GeneFluct3D::setalloc(void)
|
---|
| 135 | {
|
---|
[3155] | 136 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
|
---|
[3141] | 137 | // Dimensionnement du tableau complex<r_8>
|
---|
| 138 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 139 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 140 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 141 | try {
|
---|
| 142 | T_.ReSize(3,SzK_);
|
---|
| 143 | array_allocated_ = true;
|
---|
| 144 | } catch (...) {
|
---|
[3155] | 145 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 146 | }
|
---|
| 147 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 148 | }
|
---|
| 149 |
|
---|
[3141] | 150 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 151 | {
|
---|
[3155] | 152 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 153 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 154 | else R_ = ArrCastC2R(T_);
|
---|
| 155 | // On remplit les pointeurs
|
---|
| 156 | fdata_ = (fftw_complex *) (&T_(0,0,0));
|
---|
| 157 | data_ = (double *) (&R_(0,0,0));
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 161 | // Pour tester si le tableau T_ est alloue
|
---|
| 162 | {
|
---|
| 163 | if(array_allocated_) return;
|
---|
| 164 | char bla[90];
|
---|
| 165 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
[3199] | 166 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3141] | 167 | }
|
---|
| 168 |
|
---|
[3154] | 169 | void GeneFluct3D::init_fftw(void)
|
---|
| 170 | {
|
---|
| 171 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 172 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3154] | 173 | #ifdef FFTW_THREAD
|
---|
| 174 | if(nthread_>0) {
|
---|
[3155] | 175 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3154] | 176 | fftw_init_threads();
|
---|
| 177 | fftw_plan_with_nthreads(nthread_);
|
---|
| 178 | }
|
---|
| 179 | #endif
|
---|
[3155] | 180 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3154] | 181 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 182 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3154] | 183 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 184 | }
|
---|
[3141] | 185 |
|
---|
[3157] | 186 | //-------------------------------------------------------
|
---|
[3199] | 187 | long GeneFluct3D::LosComRedshift(double zinc,long npoints)
|
---|
[3157] | 188 | // Given a position of the cube relative to the observer
|
---|
| 189 | // and a cosmology
|
---|
| 190 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 191 | // This routine filled:
|
---|
| 192 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 193 | // the vector "loscom_" of corresponding los comoving distance
|
---|
[3199] | 194 | // -- Input:
|
---|
| 195 | // zinc : redshift increment for computation
|
---|
| 196 | // npoints : number of points required for inverting loscom -> zred
|
---|
[3157] | 197 | //
|
---|
| 198 | {
|
---|
[3199] | 199 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
|
---|
[3154] | 200 |
|
---|
[3157] | 201 | if(cosmo_ == NULL || redshref_<0.) {
|
---|
[3199] | 202 | char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
|
---|
| 203 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 204 | }
|
---|
| 205 |
|
---|
[3199] | 206 | // On calcule les coordonnees de l'observateur dans le repere du cube
|
---|
| 207 | // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
|
---|
| 208 | // L'observateur est sur un axe centre sur le milieu de la face Oxy
|
---|
[3157] | 209 | double loscom_ref_ = cosmo_->Dloscom(redshref_);
|
---|
| 210 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 211 | xobs_[1] = Ny_/2.*Dy_;
|
---|
| 212 | xobs_[2] = kredshref_*Dz_ - loscom_ref_;
|
---|
| 213 |
|
---|
| 214 | // L'observateur est-il dans le cube?
|
---|
| 215 | bool obs_in_cube = false;
|
---|
| 216 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 217 |
|
---|
| 218 | // Find MINIMUM los com distance to the observer:
|
---|
| 219 | // c'est le centre de la face a k=0
|
---|
| 220 | // (ou zero si l'observateur est dans le cube)
|
---|
| 221 | loscom_min_ = 0.;
|
---|
| 222 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 223 |
|
---|
| 224 | // Find MAXIMUM los com distance to the observer:
|
---|
| 225 | // ou que soit positionne l'observateur, la distance
|
---|
| 226 | // maximal est sur un des coins du cube
|
---|
| 227 | loscom_max_ = 0.;
|
---|
| 228 | for(long i=0;i<=1;i++) {
|
---|
| 229 | double dx2 = xobs_[0] - i*Nx_*Dx_; dx2 *= dx2;
|
---|
| 230 | for(long j=0;j<=1;j++) {
|
---|
| 231 | double dy2 = xobs_[1] - j*Ny_*Dy_; dy2 *= dy2;
|
---|
| 232 | for(long k=0;k<=1;k++) {
|
---|
| 233 | double dz2 = xobs_[2] - k*Nz_*Dz_; dz2 *= dz2;
|
---|
| 234 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 235 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | }
|
---|
| 239 | if(lp_>0) {
|
---|
| 240 | cout<<"...zref="<<redshref_<<" kzref="<<kredshref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
| 241 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 242 | <<" in_cube="<<obs_in_cube
|
---|
| 243 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc "<<endl;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
[3199] | 246 | // Fill the corresponding vectors for loscom and zred
|
---|
| 247 | if(zinc<=0.) zinc = 0.01;
|
---|
[3157] | 248 | for(double z=0.; ; z+=zinc) {
|
---|
| 249 | double dlc = cosmo_->Dloscom(z);
|
---|
| 250 | if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
|
---|
| 251 | zred_.push_back(z);
|
---|
| 252 | loscom_.push_back(dlc);
|
---|
| 253 | z += zinc;
|
---|
[3199] | 254 | if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
|
---|
[3157] | 255 | }
|
---|
| 256 |
|
---|
| 257 | if(lp_>0) {
|
---|
[3199] | 258 | long n = zred_.size();
|
---|
| 259 | cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
|
---|
[3157] | 260 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 261 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 262 | cout<<endl;
|
---|
| 263 | }
|
---|
| 264 |
|
---|
[3199] | 265 | // Compute the parameters and tables needed for inversion loscom->zred
|
---|
| 266 | if(npoints<3) npoints = zred_.size();
|
---|
| 267 | InverseFunc invfun(zred_,loscom_);
|
---|
| 268 | invfun.ComputeParab(npoints,loscom2zred_);
|
---|
| 269 | loscom2zred_min_ = invfun.YMin();
|
---|
| 270 | loscom2zred_max_ = invfun.YMax();
|
---|
| 271 |
|
---|
| 272 | if(lp_>0) {
|
---|
| 273 | long n = loscom2zred_.size();
|
---|
| 274 | cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
|
---|
| 275 | <<" los_min="<<loscom2zred_min_
|
---|
| 276 | <<" los_max="<<loscom2zred_max_
|
---|
| 277 | <<" -> zred=[";
|
---|
| 278 | if(n>0) cout<<loscom2zred_[0];
|
---|
| 279 | cout<<",";
|
---|
| 280 | if(n>1) cout<<loscom2zred_[n-1];
|
---|
| 281 | cout<<"]"<<endl;
|
---|
| 282 | if(lp_>1 && n>0)
|
---|
| 283 | for(int i=0;i<n;i++)
|
---|
| 284 | if(i==0 || abs(i-n/2)<2 || i==n-1)
|
---|
| 285 | cout<<" "<<i<<" "<<loscom2zred_[i]<<endl;
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 | return zred_.size();
|
---|
[3157] | 289 | }
|
---|
| 290 |
|
---|
[3115] | 291 | //-------------------------------------------------------
|
---|
[3141] | 292 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 293 | {
|
---|
[3155] | 294 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 295 | try {
|
---|
| 296 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 297 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 298 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 299 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 300 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 301 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 302 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 303 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 304 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 305 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3154] | 306 | fwrt.WriteKey("ZREF",redshref_," reference redshift");
|
---|
| 307 | fwrt.WriteKey("KZREF",kredshref_," reference redshift on z axe");
|
---|
[3141] | 308 | fwrt.Write(R_);
|
---|
| 309 | } catch (PThrowable & exc) {
|
---|
| 310 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 311 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 312 | return;
|
---|
| 313 | } catch (...) {
|
---|
| 314 | cout<<" some other exception was caught !"<<endl;
|
---|
| 315 | return;
|
---|
| 316 | }
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 320 | {
|
---|
[3155] | 321 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 322 | try {
|
---|
| 323 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 324 | fimg.Read(R_);
|
---|
| 325 | long nx = fimg.ReadKeyL("NX");
|
---|
| 326 | long ny = fimg.ReadKeyL("NY");
|
---|
| 327 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 328 | double dx = fimg.ReadKey("DX");
|
---|
| 329 | double dy = fimg.ReadKey("DY");
|
---|
| 330 | double dz = fimg.ReadKey("DZ");
|
---|
[3154] | 331 | double zref = fimg.ReadKey("ZREF");
|
---|
| 332 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 333 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 334 | setpointers(true);
|
---|
[3154] | 335 | init_fftw();
|
---|
| 336 | SetObservator(zref,kzref);
|
---|
[3141] | 337 | } catch (PThrowable & exc) {
|
---|
| 338 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 339 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 340 | return;
|
---|
| 341 | } catch (...) {
|
---|
| 342 | cout<<" some other exception was caught !"<<endl;
|
---|
| 343 | return;
|
---|
| 344 | }
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 348 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 349 | {
|
---|
[3155] | 350 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 351 | try {
|
---|
| 352 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 353 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 354 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 355 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 356 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 357 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3154] | 358 | R_.Info()["ZREF"] = (r_8)redshref_;
|
---|
| 359 | R_.Info()["KZREF"] = (r_8)kredshref_;
|
---|
[3141] | 360 | POutPersist pos(cfname.c_str());
|
---|
| 361 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 362 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 363 | } catch (PThrowable & exc) {
|
---|
| 364 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 365 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 366 | return;
|
---|
| 367 | } catch (...) {
|
---|
| 368 | cout<<" some other exception was caught !"<<endl;
|
---|
| 369 | return;
|
---|
| 370 | }
|
---|
| 371 | }
|
---|
| 372 |
|
---|
| 373 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 374 | {
|
---|
[3155] | 375 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 376 | try {
|
---|
| 377 | bool from_real = true;
|
---|
| 378 | PInPersist pis(cfname.c_str());
|
---|
| 379 | string name_tag_k = "pkgen";
|
---|
| 380 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 381 | if(found_tag_k) {
|
---|
| 382 | cout<<" ...reading spectrun into TArray<complex <r_8> >"<<endl;
|
---|
| 383 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 384 | from_real = false;
|
---|
| 385 | } else {
|
---|
| 386 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 387 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 388 | }
|
---|
[3154] | 389 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 390 | int_8 nx = R_.Info()["NX"];
|
---|
| 391 | int_8 ny = R_.Info()["NY"];
|
---|
| 392 | int_8 nz = R_.Info()["NZ"];
|
---|
| 393 | r_8 dx = R_.Info()["DX"];
|
---|
| 394 | r_8 dy = R_.Info()["DY"];
|
---|
| 395 | r_8 dz = R_.Info()["DZ"];
|
---|
[3154] | 396 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 397 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 398 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 399 | init_fftw();
|
---|
| 400 | SetObservator(zref,kzref);
|
---|
[3141] | 401 | } catch (PThrowable & exc) {
|
---|
| 402 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 403 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 404 | return;
|
---|
| 405 | } catch (...) {
|
---|
| 406 | cout<<" some other exception was caught !"<<endl;
|
---|
| 407 | return;
|
---|
| 408 | }
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | //-------------------------------------------------------
|
---|
[3115] | 412 | void GeneFluct3D::Print(void)
|
---|
| 413 | {
|
---|
[3141] | 414 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 415 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 416 | <<NRtot_<<endl;
|
---|
| 417 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 418 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 419 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 420 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 421 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 422 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 423 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 424 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 425 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3154] | 426 | cout<<"Redshift "<<redshref_<<" for z axe at k="<<kredshref_<<endl;
|
---|
[3115] | 427 | }
|
---|
| 428 |
|
---|
| 429 | //-------------------------------------------------------
|
---|
[3141] | 430 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 431 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 432 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 433 | {
|
---|
| 434 |
|
---|
| 435 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 436 | if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
|
---|
[3115] | 437 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 438 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 439 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 440 | int_8 ip = IndexR(i,j,l);
|
---|
| 441 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 442 | }
|
---|
| 443 |
|
---|
| 444 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 445 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3115] | 446 | fftw_execute(pf_);
|
---|
| 447 |
|
---|
| 448 | // --- On remplit avec une realisation
|
---|
[3157] | 449 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3115] | 450 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 451 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 452 | for(long i=0;i<Nx_;i++) {
|
---|
| 453 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 454 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 455 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 456 | for(long j=0;j<Ny_;j++) {
|
---|
| 457 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 458 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 459 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 460 | double kz = l*Dkz_; kz *= kz;
|
---|
| 461 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 462 | double k = sqrt(kx+ky+kz);
|
---|
| 463 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 464 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 465 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 466 | T_(l,j,i) *= sqrt(pk);
|
---|
| 467 | }
|
---|
| 468 | }
|
---|
| 469 | }
|
---|
| 470 |
|
---|
[3155] | 471 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 472 | double p = compute_power_carte();
|
---|
[3155] | 473 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 474 |
|
---|
| 475 | }
|
---|
| 476 |
|
---|
| 477 | //-------------------------------------------------------
|
---|
[3141] | 478 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 479 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 480 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 481 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 482 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 483 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 484 | // sum(f(x_i)^2) = S
|
---|
| 485 | // sum(F(nu_i)^2) = S*N
|
---|
| 486 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 487 | {
|
---|
| 488 | // --- RaZ du tableau
|
---|
| 489 | T_ = complex<r_8>(0.);
|
---|
| 490 |
|
---|
| 491 | // --- On remplit avec une realisation
|
---|
[3155] | 492 | if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
|
---|
[3129] | 493 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 494 | for(long i=0;i<Nx_;i++) {
|
---|
| 495 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 496 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 497 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 498 | for(long j=0;j<Ny_;j++) {
|
---|
| 499 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 500 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 501 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 502 | double kz = l*Dkz_; kz *= kz;
|
---|
| 503 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 504 | double k = sqrt(kx+ky+kz);
|
---|
| 505 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 506 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 507 | // Explication de la division par 2: voir perandom.cc
|
---|
| 508 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 509 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 515 |
|
---|
[3155] | 516 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 517 | double p = compute_power_carte();
|
---|
[3155] | 518 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 519 |
|
---|
| 520 | }
|
---|
| 521 |
|
---|
[3129] | 522 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 523 | // Take into account the real and complexe conjugate coefficients
|
---|
| 524 | // because we want a realization of a real data in real space
|
---|
| 525 | {
|
---|
[3155] | 526 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 527 | check_array_alloc();
|
---|
[3115] | 528 |
|
---|
| 529 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 530 | long nreal = 0;
|
---|
| 531 | for(long kk=0;kk<2;kk++) {
|
---|
| 532 | long k=0; // continu
|
---|
[3115] | 533 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 534 | for(long jj=0;jj<2;jj++) {
|
---|
| 535 | long j=0;
|
---|
[3115] | 536 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 537 | for(long ii=0;ii<2;ii++) {
|
---|
| 538 | long i=0;
|
---|
[3115] | 539 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 540 | int_8 ip = IndexC(i,j,k);
|
---|
| 541 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 542 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 543 | nreal++;
|
---|
| 544 | }
|
---|
| 545 | }
|
---|
| 546 | }
|
---|
[3155] | 547 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 548 |
|
---|
| 549 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 550 |
|
---|
| 551 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 552 | long nconj1 = 0;
|
---|
| 553 | for(long kk=0;kk<2;kk++) {
|
---|
| 554 | long k=0; // continu
|
---|
[3115] | 555 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 556 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 557 | long j=0;
|
---|
[3115] | 558 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 559 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 560 | int_8 ip = IndexC(i,j,k);
|
---|
| 561 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 562 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 563 | nconj1++;
|
---|
| 564 | }
|
---|
| 565 | }
|
---|
[3129] | 566 | for(long ii=0;ii<2;ii++) {
|
---|
| 567 | long i=0;
|
---|
[3115] | 568 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 569 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 570 | int_8 ip = IndexC(i,j,k);
|
---|
| 571 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 572 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 573 | nconj1++;
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | }
|
---|
[3155] | 577 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 578 |
|
---|
| 579 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 580 | long nconj2 = 0;
|
---|
| 581 | for(long kk=0;kk<2;kk++) {
|
---|
| 582 | long k=0; // continu
|
---|
[3115] | 583 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 584 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 585 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 586 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 587 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 588 | int_8 ip = IndexC(i,j,k);
|
---|
| 589 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 590 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 591 | nconj2++;
|
---|
| 592 | }
|
---|
| 593 | }
|
---|
| 594 | }
|
---|
[3155] | 595 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 596 |
|
---|
[3155] | 597 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
[3115] | 598 |
|
---|
| 599 | return nreal+nconj1+nconj2;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 603 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 604 | {
|
---|
[3141] | 605 | check_array_alloc();
|
---|
| 606 |
|
---|
[3115] | 607 | double s2 = 0.;
|
---|
[3129] | 608 | for(long l=0;l<NCz_;l++)
|
---|
| 609 | for(long j=0;j<Ny_;j++)
|
---|
| 610 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 611 |
|
---|
| 612 | double s20 = 0.;
|
---|
[3129] | 613 | for(long j=0;j<Ny_;j++)
|
---|
| 614 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 615 |
|
---|
| 616 | double s2n = 0.;
|
---|
| 617 | if(Nz_%2==0)
|
---|
[3129] | 618 | for(long j=0;j<Ny_;j++)
|
---|
| 619 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 620 |
|
---|
| 621 | return 2.*s2 -s20 -s2n;
|
---|
| 622 | }
|
---|
| 623 |
|
---|
| 624 | //-------------------------------------------------------------------
|
---|
| 625 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 626 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 627 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 628 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 629 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 630 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 631 | // avec y = k_x*dx/2
|
---|
[3115] | 632 | {
|
---|
[3155] | 633 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 634 | check_array_alloc();
|
---|
| 635 |
|
---|
[3129] | 636 | for(long i=0;i<Nx_;i++) {
|
---|
| 637 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 638 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3141] | 639 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 640 | for(long j=0;j<Ny_;j++) {
|
---|
| 641 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 642 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3141] | 643 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 644 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 645 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 646 | double pk_z = pixelfilter(kz);
|
---|
| 647 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 648 | }
|
---|
| 649 | }
|
---|
| 650 | }
|
---|
| 651 |
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | //-------------------------------------------------------------------
|
---|
[3199] | 655 | void GeneFluct3D::ApplyGrowthFactor(void)
|
---|
[3157] | 656 | // Apply Growth to real space
|
---|
| 657 | // Using the correspondance between redshift and los comoving distance
|
---|
| 658 | // describe in vector "zred_" "loscom_"
|
---|
| 659 | {
|
---|
[3199] | 660 | if(lp_>0) cout<<"--- ApplyGrowthFactor ---"<<endl;
|
---|
[3157] | 661 | check_array_alloc();
|
---|
| 662 |
|
---|
| 663 | if(growth_ == NULL) {
|
---|
[3199] | 664 | char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
|
---|
| 665 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 666 | }
|
---|
| 667 |
|
---|
[3199] | 668 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3157] | 669 | unsigned short ok;
|
---|
| 670 |
|
---|
| 671 | //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
|
---|
| 672 | for(long i=0;i<Nx_;i++) {
|
---|
| 673 | double dx2 = xobs_[0] - i*Dx_; dx2 *= dx2;
|
---|
| 674 | for(long j=0;j<Ny_;j++) {
|
---|
| 675 | double dy2 = xobs_[1] - j*Dy_; dy2 *= dy2;
|
---|
| 676 | for(long l=0;l<Nz_;l++) {
|
---|
| 677 | double dz2 = xobs_[2] - l*Dz_; dz2 *= dz2;
|
---|
| 678 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 679 | double z = interpinv(dz2);
|
---|
| 680 | //CHECK: hgr.Add(z);
|
---|
| 681 | double dzgr = (*growth_)(z); // interpolation par morceau
|
---|
| 682 | //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
|
---|
| 683 | //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
|
---|
| 684 | int_8 ip = IndexR(i,j,l);
|
---|
| 685 | data_[ip] *= dzgr;
|
---|
| 686 | }
|
---|
| 687 | }
|
---|
| 688 | }
|
---|
| 689 |
|
---|
| 690 | //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
|
---|
| 691 |
|
---|
| 692 | }
|
---|
| 693 |
|
---|
| 694 | //-------------------------------------------------------------------
|
---|
[3115] | 695 | void GeneFluct3D::ComputeReal(void)
|
---|
| 696 | // Calcule une realisation dans l'espace reel
|
---|
| 697 | {
|
---|
[3155] | 698 | if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
|
---|
[3141] | 699 | check_array_alloc();
|
---|
[3115] | 700 |
|
---|
| 701 | // On fait la FFT
|
---|
| 702 | fftw_execute(pb_);
|
---|
| 703 | }
|
---|
| 704 |
|
---|
| 705 | //-------------------------------------------------------------------
|
---|
| 706 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 707 | {
|
---|
[3155] | 708 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 709 | check_array_alloc();
|
---|
[3115] | 710 |
|
---|
| 711 | // On fait la FFT
|
---|
| 712 | fftw_execute(pf_);
|
---|
| 713 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 714 | double v = (double)NRtot_;
|
---|
[3129] | 715 | for(long i=0;i<Nx_;i++)
|
---|
| 716 | for(long j=0;j<Ny_;j++)
|
---|
| 717 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 718 |
|
---|
| 719 | }
|
---|
| 720 |
|
---|
| 721 | //-------------------------------------------------------------------
|
---|
[3141] | 722 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 723 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 724 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 725 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 726 | {
|
---|
[3155] | 727 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 728 | check_array_alloc();
|
---|
[3115] | 729 |
|
---|
[3141] | 730 | if(herr.NBins()<0) return -1;
|
---|
| 731 | herr.Zero();
|
---|
[3115] | 732 |
|
---|
| 733 | // Attention a l'ordre
|
---|
[3129] | 734 | for(long i=0;i<Nx_;i++) {
|
---|
| 735 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 736 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 737 | for(long j=0;j<Ny_;j++) {
|
---|
| 738 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 739 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 740 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 741 | double kz = l*Dkz_; kz *= kz;
|
---|
| 742 | double k = sqrt(kx+ky+kz);
|
---|
| 743 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 744 | herr.Add(k,pk);
|
---|
[3115] | 745 | }
|
---|
| 746 | }
|
---|
| 747 | }
|
---|
[3150] | 748 | herr.ToVariance();
|
---|
[3115] | 749 |
|
---|
| 750 | // renormalize to directly compare to original spectrum
|
---|
| 751 | double norm = Vol_;
|
---|
[3141] | 752 | herr *= norm;
|
---|
[3115] | 753 |
|
---|
| 754 | return 0;
|
---|
| 755 | }
|
---|
| 756 |
|
---|
[3141] | 757 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 758 | {
|
---|
[3155] | 759 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 760 | check_array_alloc();
|
---|
| 761 |
|
---|
| 762 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 763 | herr.Zero();
|
---|
| 764 |
|
---|
| 765 | // Attention a l'ordre
|
---|
| 766 | for(long i=0;i<Nx_;i++) {
|
---|
| 767 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 768 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 769 | for(long j=0;j<Ny_;j++) {
|
---|
| 770 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 771 | double ky = jj*Dky_; ky *= ky;
|
---|
| 772 | double kt = sqrt(kx+ky);
|
---|
| 773 | for(long l=0;l<NCz_;l++) {
|
---|
| 774 | double kz = l*Dkz_;
|
---|
| 775 | double pk = MODULE2(T_(l,j,i));
|
---|
| 776 | herr.Add(kt,kz,pk);
|
---|
| 777 | }
|
---|
| 778 | }
|
---|
| 779 | }
|
---|
[3150] | 780 | herr.ToVariance();
|
---|
[3141] | 781 |
|
---|
| 782 | // renormalize to directly compare to original spectrum
|
---|
| 783 | double norm = Vol_;
|
---|
| 784 | herr *= norm;
|
---|
| 785 |
|
---|
| 786 | return 0;
|
---|
| 787 | }
|
---|
| 788 |
|
---|
[3115] | 789 | //-------------------------------------------------------
|
---|
[3134] | 790 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 791 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 792 | {
|
---|
[3155] | 793 | if(lp_>0) cout<<"--- VarianceFrReal ---"<<endl;
|
---|
[3141] | 794 | check_array_alloc();
|
---|
| 795 |
|
---|
[3129] | 796 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 797 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 798 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3155] | 799 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 800 |
|
---|
[3134] | 801 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
[3115] | 802 |
|
---|
[3129] | 803 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 804 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 805 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3134] | 806 | double s=0.; int_8 n=0;
|
---|
[3129] | 807 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 808 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 809 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 810 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 811 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 812 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 813 | if(x+y+z>r2) continue;
|
---|
[3141] | 814 | int_8 ip = IndexR(ii,jj,ll);
|
---|
| 815 | s += 1.+data_[ip];
|
---|
[3115] | 816 | n++;
|
---|
| 817 | }
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
| 820 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 821 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 | }
|
---|
| 825 |
|
---|
| 826 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 827 |
|
---|
| 828 | sum /= nsum;
|
---|
| 829 | sum2 = sum2/nsum - sum*sum;
|
---|
[3155] | 830 | if(lp_>0) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
[3115] | 831 |
|
---|
| 832 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
[3155] | 833 | if(lp_>0) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
[3115] | 834 |
|
---|
| 835 | return nsum;
|
---|
| 836 | }
|
---|
| 837 |
|
---|
| 838 | //-------------------------------------------------------
|
---|
[3134] | 839 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 840 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 841 | // -> vmin and vmax are considered as bad
|
---|
| 842 | {
|
---|
[3141] | 843 | check_array_alloc();
|
---|
[3115] | 844 |
|
---|
[3134] | 845 | int_8 nbad = 0;
|
---|
[3129] | 846 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 847 | int_8 ip = IndexR(i,j,l);
|
---|
| 848 | double v = data_[ip];
|
---|
[3115] | 849 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 850 | }
|
---|
| 851 |
|
---|
| 852 | return nbad;
|
---|
| 853 | }
|
---|
| 854 |
|
---|
[3134] | 855 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
|
---|
[3115] | 856 | // mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 857 | // -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
|
---|
| 858 | {
|
---|
[3141] | 859 | check_array_alloc();
|
---|
[3115] | 860 |
|
---|
[3134] | 861 | int_8 n = 0;
|
---|
[3115] | 862 | rm = rs2 = 0.;
|
---|
| 863 |
|
---|
[3129] | 864 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 865 | int_8 ip = IndexR(i,j,l);
|
---|
| 866 | double v = data_[ip];
|
---|
[3115] | 867 | if(v<=vmin || v>=vmax) continue;
|
---|
| 868 | rm += v;
|
---|
| 869 | rs2 += v*v;
|
---|
| 870 | n++;
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | if(n>1) {
|
---|
| 874 | rm /= (double)n;
|
---|
| 875 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 876 | }
|
---|
| 877 |
|
---|
| 878 | return n;
|
---|
| 879 | }
|
---|
| 880 |
|
---|
[3134] | 881 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 882 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
| 883 | // -> vmin and vmax are set to val0
|
---|
| 884 | {
|
---|
[3141] | 885 | check_array_alloc();
|
---|
[3115] | 886 |
|
---|
[3134] | 887 | int_8 nbad = 0;
|
---|
[3129] | 888 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 889 | int_8 ip = IndexR(i,j,l);
|
---|
| 890 | double v = data_[ip];
|
---|
| 891 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 892 | }
|
---|
| 893 |
|
---|
| 894 | return nbad;
|
---|
| 895 | }
|
---|
| 896 |
|
---|
| 897 | //-------------------------------------------------------
|
---|
| 898 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 899 | // d_rho/rho -> Mass (add one!)
|
---|
| 900 | {
|
---|
[3155] | 901 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 902 | check_array_alloc();
|
---|
| 903 |
|
---|
[3115] | 904 |
|
---|
[3129] | 905 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 906 | int_8 ip = IndexR(i,j,l);
|
---|
| 907 | data_[ip] += 1.;
|
---|
[3115] | 908 | }
|
---|
| 909 | }
|
---|
| 910 |
|
---|
| 911 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 912 | // do NOT treate negative or nul values
|
---|
| 913 | {
|
---|
[3155] | 914 | if(lp_>0) cout<<"--- TurnMass2MeanNumber ---"<<endl;
|
---|
[3115] | 915 |
|
---|
| 916 | double m,s2;
|
---|
[3134] | 917 | int_8 ngood = MeanSigma2(m,s2,0.,1e+200);
|
---|
[3155] | 918 | if(lp_>0) cout<<"...ngood="<<ngood
|
---|
| 919 | <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
|
---|
[3115] | 920 |
|
---|
| 921 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 922 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 923 | // On NE met PAS a zero les pixels <0
|
---|
| 924 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 925 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 926 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 927 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
| 928 | double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
|
---|
[3155] | 929 | if(lp_>0) cout<<"...galaxy density move from "
|
---|
| 930 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
[3115] | 931 | double sum = 0.;
|
---|
[3129] | 932 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 933 | int_8 ip = IndexR(i,j,l);
|
---|
| 934 | data_[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 935 | if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
|
---|
[3115] | 936 | }
|
---|
[3155] | 937 | if(lp_>0) cout<<sum<<"...galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
[3115] | 938 |
|
---|
| 939 | return sum;
|
---|
| 940 | }
|
---|
| 941 |
|
---|
| 942 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 943 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 944 | {
|
---|
[3155] | 945 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 946 | check_array_alloc();
|
---|
| 947 |
|
---|
[3115] | 948 | double sum = 0.;
|
---|
[3129] | 949 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 950 | int_8 ip = IndexR(i,j,l);
|
---|
| 951 | double v = data_[ip];
|
---|
[3115] | 952 | if(v>0.) {
|
---|
| 953 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 954 | data_[ip] = (double)dn;
|
---|
[3115] | 955 | sum += (double)dn;
|
---|
| 956 | }
|
---|
| 957 | }
|
---|
[3155] | 958 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 959 |
|
---|
| 960 | return sum;
|
---|
| 961 | }
|
---|
| 962 |
|
---|
| 963 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 964 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 965 | // INPUT:
|
---|
| 966 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 967 | // axeslog = false : retourne la masse
|
---|
| 968 | // = true : retourne le log10(mass)
|
---|
| 969 | // RETURN la masse totale
|
---|
| 970 | {
|
---|
[3155] | 971 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 972 | check_array_alloc();
|
---|
| 973 |
|
---|
[3115] | 974 | double sum = 0.;
|
---|
[3129] | 975 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 976 | int_8 ip = IndexR(i,j,l);
|
---|
| 977 | double v = data_[ip];
|
---|
[3115] | 978 | if(v>0.) {
|
---|
[3129] | 979 | long ngal = long(v+0.1);
|
---|
[3141] | 980 | data_[ip] = 0.;
|
---|
[3129] | 981 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 982 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 983 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 984 | data_[ip] += m;
|
---|
[3115] | 985 | }
|
---|
[3141] | 986 | sum += data_[ip];
|
---|
[3115] | 987 | }
|
---|
| 988 | }
|
---|
[3155] | 989 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 990 |
|
---|
| 991 | return sum;
|
---|
| 992 | }
|
---|
| 993 |
|
---|
[3199] | 994 | void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
|
---|
[3196] | 995 | // Add AGN flux into simulation:
|
---|
| 996 | // --- Procedure:
|
---|
| 997 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
[3199] | 998 | // (au redshift de reference du survey)
|
---|
[3196] | 999 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 1000 | // au centre du cube.
|
---|
| 1001 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 1002 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 1003 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
[3199] | 1004 | // Attention: la distribution n'est pas gaussienne les "mean,sigma"
|
---|
| 1005 | // de l'histo ne sont pas vraiment ce que l'on veut
|
---|
[3196] | 1006 | // --- Limitations actuelle du code:
|
---|
[3199] | 1007 | // . les AGN sont supposes en loi de puissance IDENTIQUE pour tout theta,phi
|
---|
| 1008 | // . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
|
---|
| 1009 | // . la distribution est approximee a une gaussienne
|
---|
| 1010 | // ... C'est une approximation pour un observateur loin du centre du cube
|
---|
| 1011 | // et pour un cube peu epais / distance observateur
|
---|
[3196] | 1012 | // --- Parametres de la routine:
|
---|
[3199] | 1013 | // llfy : c'est le <log10(S)> du flux depose dans un pixel par les AGN
|
---|
[3196] | 1014 | // lsigma : c'est le sigma de la distribution
|
---|
[3199] | 1015 | // powlaw : c'est la pente de ls distribution cad que le flux "lmsol"
|
---|
| 1016 | // et considere comme le flux a 1.4GHz et qu'on suppose une loi
|
---|
| 1017 | // F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
|
---|
[3196] | 1018 | // - Comme on est en echelle log10():
|
---|
| 1019 | // on tire log10(Msol) + X
|
---|
| 1020 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1021 | // La masse realisee est donc: Msol*10^X
|
---|
| 1022 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1023 | {
|
---|
[3199] | 1024 | if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
|
---|
[3196] | 1025 | check_array_alloc();
|
---|
| 1026 |
|
---|
[3199] | 1027 | if(cosmo_ == NULL || redshref_<0.| loscom2zred_.size()<1) {
|
---|
| 1028 | char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
|
---|
| 1029 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1030 | }
|
---|
[3196] | 1031 |
|
---|
[3199] | 1032 | // La distance angulaire/luminosite/Dnu au centre
|
---|
| 1033 | double dangref = cosmo_->Dang(redshref_);
|
---|
| 1034 | double dlumref = cosmo_->Dlum(redshref_);
|
---|
| 1035 | double dredref = Dz_/(cosmo_->Dhubble()/cosmo_->E(redshref_));
|
---|
| 1036 | double dnuref = Fr_HyperFin_Par *dredref/pow(1.+redshref_,2.); // GHz
|
---|
| 1037 | double fagnref = pow(10.,lfjy)*(dnuref*1.e9); // Jy.Hz
|
---|
| 1038 | double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlumref); // Msol
|
---|
| 1039 | if(lp_>0) {
|
---|
| 1040 | cout<<"Au centre: z="<<redshref_<<", dredref="<<dredref<<", dnuref="<<dnuref<<" GHz"<<endl
|
---|
| 1041 | <<" dang="<<dangref<<" Mpc, dlum="<<dlumref<<" Mpc,"
|
---|
| 1042 | <<" fagnref="<<fagnref<<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
|
---|
| 1043 | }
|
---|
[3196] | 1044 |
|
---|
[3199] | 1045 | if(powlaw!=0.) {
|
---|
| 1046 | // F(nu) = (nu GHz/1.4 Ghz)^p * F(1.4GHz) et nu = 1.4 GHz / (1+z)
|
---|
| 1047 | magnref *= pow(1/(1.+redshref_),powlaw);
|
---|
| 1048 | if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
|
---|
| 1049 | }
|
---|
| 1050 |
|
---|
| 1051 | // Les infos en fonction de l'indice "l" selon Oz
|
---|
| 1052 | vector<double> correction;
|
---|
| 1053 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1054 | for(long l=0;l<Nz_;l++) {
|
---|
| 1055 | double z = fabs(xobs_[2] - l*Dz_);
|
---|
| 1056 | double zred = interpinv(z);
|
---|
| 1057 | double dang = cosmo_->Dang(zred); // pour variation angle solide
|
---|
| 1058 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1059 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1060 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
| 1061 | double corr = dnu/dnuref*pow(dangref/dang*dlum/dlumref,2.);
|
---|
| 1062 | if(powlaw!=0.) corr *= pow((1.+redshref_)/(1.+zred),powlaw);
|
---|
| 1063 | correction.push_back(corr);
|
---|
| 1064 | if(lp_>0 && (l==0 || abs(l-Nz_/2)<2 || l==Nz_-1)) {
|
---|
| 1065 | cout<<"l="<<l<<" z="<<z<<" red="<<zred
|
---|
| 1066 | <<" da="<<dang<<" dlu="<<dlum<<" dred="<<dred
|
---|
| 1067 | <<" dnu="<<dnu<<" -> corr="<<corr<<endl;
|
---|
| 1068 | }
|
---|
| 1069 | }
|
---|
| 1070 |
|
---|
| 1071 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1072 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1073 | double a = lsigma*NorRand();
|
---|
| 1074 | a = magnref*pow(10.,a);
|
---|
| 1075 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1076 | for(long l=0;l<Nz_;l++) {
|
---|
| 1077 | int_8 ip = IndexR(i,j,l);
|
---|
| 1078 | data_[ip] += a*correction[l];
|
---|
| 1079 | }
|
---|
| 1080 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1081 | }
|
---|
| 1082 |
|
---|
| 1083 | if(lp_>0 && nsum>1.) {
|
---|
[3196] | 1084 | sum /= nsum;
|
---|
| 1085 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1086 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
| 1089 | }
|
---|
| 1090 |
|
---|
[3115] | 1091 | void GeneFluct3D::AddNoise2Real(double snoise)
|
---|
| 1092 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1093 | {
|
---|
[3155] | 1094 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<endl;
|
---|
[3141] | 1095 | check_array_alloc();
|
---|
| 1096 |
|
---|
[3129] | 1097 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1098 | int_8 ip = IndexR(i,j,l);
|
---|
| 1099 | data_[ip] += snoise*NorRand();
|
---|
[3115] | 1100 | }
|
---|
| 1101 | }
|
---|
[3199] | 1102 |
|
---|
| 1103 |
|
---|
| 1104 |
|
---|
| 1105 | //-------------------------------------------------------------------
|
---|
| 1106 | //-------------------------------------------------------------------
|
---|
| 1107 | //--------------------- BRICOLO A NE PAS GARDER ---------------------
|
---|
| 1108 | //-------------------------------------------------------------------
|
---|
| 1109 | //-------------------------------------------------------------------
|
---|
| 1110 | int GeneFluct3D::ComputeSpectrum_bricolo(HistoErr& herr)
|
---|
| 1111 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
| 1112 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 1113 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 1114 | {
|
---|
| 1115 | if(lp_>0) cout<<"--- ComputeSpectrum_bricolo ---"<<endl;
|
---|
| 1116 | check_array_alloc();
|
---|
| 1117 |
|
---|
| 1118 | if(herr.NBins()<0) return -1;
|
---|
| 1119 | herr.Zero();
|
---|
| 1120 |
|
---|
| 1121 | // Attention a l'ordre
|
---|
| 1122 | for(long i=0;i<Nx_;i++) {
|
---|
| 1123 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 1124 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 1125 | for(long j=0;j<Ny_;j++) {
|
---|
| 1126 | if(i==0 && j==0) continue;
|
---|
| 1127 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 1128 | double ky = jj*Dky_; ky *= ky;
|
---|
| 1129 | for(long l=1;l<NCz_;l++) {
|
---|
| 1130 | double kz = l*Dkz_; kz *= kz;
|
---|
| 1131 | double k = sqrt(kx+ky+kz);
|
---|
| 1132 | double pk = MODULE2(T_(l,j,i));
|
---|
| 1133 | herr.Add(k,pk);
|
---|
| 1134 | }
|
---|
| 1135 | }
|
---|
| 1136 | }
|
---|
| 1137 | herr.ToVariance();
|
---|
| 1138 |
|
---|
| 1139 | // renormalize to directly compare to original spectrum
|
---|
| 1140 | double norm = Vol_;
|
---|
| 1141 | herr *= norm;
|
---|
| 1142 |
|
---|
| 1143 | return 0;
|
---|
| 1144 | }
|
---|
| 1145 |
|
---|
| 1146 | int GeneFluct3D::ComputeSpectrum2D_bricolo(Histo2DErr& herr)
|
---|
| 1147 | {
|
---|
| 1148 | if(lp_>0) cout<<"--- ComputeSpectrum2D_bricolo ---"<<endl;
|
---|
| 1149 | check_array_alloc();
|
---|
| 1150 |
|
---|
| 1151 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 1152 | herr.Zero();
|
---|
| 1153 |
|
---|
| 1154 | // Attention a l'ordre
|
---|
| 1155 | for(long i=0;i<Nx_;i++) {
|
---|
| 1156 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 1157 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 1158 | for(long j=0;j<Ny_;j++) {
|
---|
| 1159 | if(i==0 && j==0) continue;
|
---|
| 1160 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 1161 | double ky = jj*Dky_; ky *= ky;
|
---|
| 1162 | double kt = sqrt(kx+ky);
|
---|
| 1163 | for(long l=1;l<NCz_;l++) {
|
---|
| 1164 | double kz = l*Dkz_;
|
---|
| 1165 | double pk = MODULE2(T_(l,j,i));
|
---|
| 1166 | herr.Add(kt,kz,pk);
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
| 1169 | }
|
---|
| 1170 | herr.ToVariance();
|
---|
| 1171 |
|
---|
| 1172 | // renormalize to directly compare to original spectrum
|
---|
| 1173 | double norm = Vol_;
|
---|
| 1174 | herr *= norm;
|
---|
| 1175 |
|
---|
| 1176 | return 0;
|
---|
| 1177 | }
|
---|