[651] | 1 |
|
---|
| 2 | #include "manip.h"
|
---|
| 3 | #include "archeops.h"
|
---|
| 4 | #include "arcunit.h"
|
---|
| 5 |
|
---|
| 6 | /**************************************************************************************/
|
---|
| 7 | /* */
|
---|
| 8 | /* programme contenant les conversions en mesure physique */
|
---|
| 9 | /* */
|
---|
| 10 | /* */
|
---|
| 11 | /* */
|
---|
| 12 | /**************************************************************************************/
|
---|
| 13 |
|
---|
| 14 |
|
---|
| 15 | /* ---------------- block dilution --------------------------------------------- */
|
---|
| 16 |
|
---|
| 17 |
|
---|
| 18 | int voyant_EVO(block_type_dilution* blk) {return((blk->switch_dil&switch_EVO)?0:1);}
|
---|
| 19 | int voyant_EVF(block_type_dilution* blk) {return((blk->switch_dil&switch_EVF)?0:1);}
|
---|
| 20 | int commande_EVO(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVO)?0:1);}
|
---|
| 21 | int commande_EVF(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVF)?0:1);}
|
---|
| 22 | int commande_EVB(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVB)?0:1);}
|
---|
| 23 | int commande_EVV(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVV)?0:1);}
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | // les pressions et debits metres des injections de la dilution
|
---|
| 27 | double pression_entree_3He(block_type_dilution* blk)
|
---|
| 28 | {return(40. * val_multiplex(blk->ADC_dil[ p_R3]) -1.6);} // 200 bars pour 5V et 1.6 bar d'offset
|
---|
| 29 |
|
---|
| 30 | double debit_3He(block_type_dilution* blk)
|
---|
| 31 | {return(2. * val_multiplex(blk->ADC_dil[ d_3He]) );} // 10 MICRO MOLES pour 5V
|
---|
| 32 |
|
---|
| 33 | double pression_sortie_3He(block_type_dilution* blk)
|
---|
| 34 | {return(20. * val_multiplex(blk->ADC_dil[ p_C3]) );} // 100 bars pour 5V
|
---|
| 35 |
|
---|
| 36 | double pression_entree_4He(block_type_dilution* blk)
|
---|
| 37 | {return(40. * val_multiplex(blk->ADC_dil[ p_R4])) ;} // 200 bars pour 5V
|
---|
| 38 |
|
---|
| 39 | double debit_4He(block_type_dilution* blk)
|
---|
| 40 | {return(8. * val_multiplex(blk->ADC_dil[ d_4He])) ;} // 40 MICRO MOLES pour 5V
|
---|
| 41 | // ,4. * val_multiplex(blk->ADC_dil[ d_4He]) // 20 MICRO MOLES pour 5V
|
---|
| 42 |
|
---|
| 43 | double pression_sortie_4He(block_type_dilution* blk)
|
---|
| 44 | {return(20. * val_multiplex(blk->ADC_dil[ p_C4]) );} // 100 bars pour 5V
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | double pression_air_vanne(block_type_dilution* blk)
|
---|
| 49 | {return(20.*val_multiplex(blk->ADC_dil[ p_air]));}
|
---|
| 50 |
|
---|
| 51 | double pression_pompe_charbon(block_type_dilution* blk)
|
---|
| 52 | {return(20.*val_multiplex(blk->ADC_dil[ p_charb]));}
|
---|
| 53 |
|
---|
| 54 |
|
---|
| 55 | double pression_membranne(block_type_dilution* blk)
|
---|
| 56 | {return(0.2*val_multiplex(blk->ADC_dil[ p_memb]));}
|
---|
| 57 |
|
---|
| 58 |
|
---|
| 59 | double pression_externe(block_type_dilution* blk)
|
---|
| 60 | {return(0.2*val_multiplex(blk->ADC_dil[ p_haut]));}
|
---|
| 61 |
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | double tension_pile_10T(block_type_dilution* blk)
|
---|
| 65 | {return(2.03*val_multiplex(blk->ADC_dil[ p_10T]));}
|
---|
| 66 |
|
---|
| 67 | double tension_pile_p18D(block_type_dilution* blk)
|
---|
| 68 | {return(3.90*val_multiplex(blk->ADC_dil[ p_p18D]));}
|
---|
| 69 |
|
---|
| 70 | double tension_pile_m18D(block_type_dilution* blk)
|
---|
| 71 | {return(3.90*val_multiplex(blk->ADC_dil[ p_m18D]));}
|
---|
| 72 |
|
---|
| 73 | double tension_pile_10B(block_type_dilution* blk)
|
---|
| 74 | {return(2.03*val_multiplex(blk->ADC_dil[ p_10B]));}
|
---|
| 75 |
|
---|
| 76 | double tension_pile_p18B(block_type_dilution* blk)
|
---|
| 77 | {return(3.90*val_multiplex(blk->ADC_dil[ p_p18B]));}
|
---|
| 78 |
|
---|
| 79 | double tension_pile_m18B(block_type_dilution* blk)
|
---|
| 80 | {return(3.90*val_multiplex(blk->ADC_dil[ p_m18B]));}
|
---|
| 81 |
|
---|
| 82 | double tension_pile_Ch(block_type_dilution* blk)
|
---|
| 83 | {return(3.8*val_multiplex(blk->ADC_dil[ p_Ch]));}
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 |
|
---|
| 87 | int switch_pile_5(block_type_dilution* blk)
|
---|
| 88 | {return((blk->switch_dil&switch_pile_par_5)?1:0);}
|
---|
| 89 | int switch_pile_15(block_type_dilution* blk)
|
---|
| 90 | {return((blk->switch_dil&switch_pile_par_15)?1:0);}
|
---|
| 91 |
|
---|
| 92 |
|
---|
| 93 | double temperature_caisson_haut1(block_type_dilution* blk)
|
---|
| 94 | {return(val_temperature(blk->ADC_dil[ t_h2]));}
|
---|
| 95 |
|
---|
| 96 | double temperature_caisson_haut2(block_type_dilution* blk)
|
---|
| 97 | {return(val_temperature(blk->ADC_dil[ t_h4]));}
|
---|
| 98 |
|
---|
| 99 | double temperature_caisson_bas1(block_type_dilution* blk)
|
---|
| 100 | {return(val_temperature(blk->ADC_dil[ t_b1]));}
|
---|
| 101 |
|
---|
| 102 | double temperature_caisson_bas2(block_type_dilution* blk)
|
---|
| 103 | {return(val_temperature(blk->ADC_dil[ t_b2]));}
|
---|
| 104 |
|
---|
| 105 | double temperature_caisson_tube_helium(block_type_dilution* blk)
|
---|
| 106 | {return(val_temperature(blk->ADC_dil[ t_b3]));}
|
---|
| 107 |
|
---|
| 108 | double temperature_caisson_piles(block_type_dilution* blk)
|
---|
| 109 | {return(val_temperature(blk->ADC_dil[ t_pile]));}
|
---|
| 110 |
|
---|
| 111 | double temperature_caisson_driver_moteur(block_type_dilution* blk)
|
---|
| 112 | {return(val_temperature(blk->ADC_dil[ t_a1]));}
|
---|
| 113 |
|
---|
| 114 | double pression_helium_bain(block_type_dilution* blk)
|
---|
| 115 | {return( 0.2*val_multiplex(blk->ADC_dil[ RP_He]));}
|
---|
| 116 |
|
---|
| 117 | double pression_pirani(block_type_dilution* blk)
|
---|
| 118 | {return(val_multiplex(blk->ADC_dil[ pirani]));}
|
---|
| 119 |
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | #define c(j,i) (1e-4*(double)param_pt->nom_coef[param_pt->bolo[j].numero_nom_coef].coef[i])
|
---|
| 123 |
|
---|
| 124 | // les temperatures sur les cartes modifiées
|
---|
| 125 |
|
---|
| 126 | double resistance_service(param_bolo* param_pt, reglage_bolo* reglage_pt, block_type_dilution* blk, int indice_tempe)
|
---|
| 127 | {
|
---|
| 128 | double I,V,R;
|
---|
| 129 | int j,k;
|
---|
| 130 | def_gains;
|
---|
| 131 | k=0;
|
---|
| 132 |
|
---|
| 133 | for(j=0;(j<nb_max_bolo) && (k<4);j++)
|
---|
| 134 | {
|
---|
| 135 | if(param_pt->bolo[j].bolo_code_util==bolo_thermo_simplifie)
|
---|
| 136 | {
|
---|
| 137 | if(k==indice_tempe)
|
---|
| 138 | {
|
---|
| 139 | I = 1e-3 * (double)dac_V(reglage_pt->bolo[j]) * 2441. / param_pt->bolo[j].bolo_capa; // I en µA
|
---|
| 140 | V=0.001*bol_micro_volt(blk->temperature[k],(double)param_pt->bolo[j].bolo_gain*gain_ampli(reglage_pt->bolo[j]));
|
---|
| 141 | if(I>0.0000001) R=V/I; else R=0; // R en
|
---|
| 142 | return(R);
|
---|
| 143 | }
|
---|
| 144 | k++;
|
---|
| 145 | }
|
---|
| 146 | }
|
---|
| 147 | return(0);
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | double temperature_service(param_bolo* param_pt, reglage_bolo* reglage_pt, block_type_dilution* blk, int indice_tempe)
|
---|
| 152 | {
|
---|
| 153 | double I,V,R,T,llR;
|
---|
| 154 | int j,k;
|
---|
| 155 | def_gains;
|
---|
| 156 | k=0;
|
---|
| 157 |
|
---|
| 158 | for(j=0;(j<nb_max_bolo) && (k<4);j++)
|
---|
| 159 | {
|
---|
| 160 | if(param_pt->bolo[j].bolo_code_util==bolo_thermo_simplifie)
|
---|
| 161 | {
|
---|
| 162 | if(k==indice_tempe)
|
---|
| 163 | {
|
---|
| 164 | I = 1e-3 * (double)dac_V(reglage_pt->bolo[j]) * 2441. / param_pt->bolo[j].bolo_capa; // I en µA
|
---|
| 165 | V=0.001*bol_micro_volt(blk->temperature[k],(double)param_pt->bolo[j].bolo_gain*gain_ampli(reglage_pt->bolo[j]));
|
---|
| 166 | if(I>0.0000001) R=V/I; else R=0; // R en
|
---|
| 167 | //------ calcul de l'etalonnage en temperature des cartes temperature simplifiées
|
---|
| 168 | // j=numero de bebo T[k] = R[k+4] en Kelvin
|
---|
| 169 | if ((R-c(j,6))>1.)
|
---|
| 170 | {if((log(R-c(j,6))-c(j,0))>0.001) llR= log(log(R-c(j,6))-c(j,0)) ; else llR=0;
|
---|
| 171 | // printf("\nk=%d j=%d R=%g c2=%g c3=%g llR=%g",k,j,R[k],c(j,2),c(j,3),llR);
|
---|
| 172 | }
|
---|
| 173 | else llR=0;
|
---|
| 174 | T = exp( c(j,1) + c(j,2)* llR + c(j,3)* llR* llR + c(j,4)* llR* llR* llR + c(j,5)* llR* llR* llR* llR) ;
|
---|
| 175 | if(T>9999) T=9999;
|
---|
| 176 | return(T);
|
---|
| 177 | }
|
---|
| 178 | k++;
|
---|
| 179 | }
|
---|
| 180 | }
|
---|
| 181 | return(0);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | #undef c
|
---|
| 185 |
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | /********** coefficients pour les mesures bolo **********************************/
|
---|
| 189 | /* toutes les puissances en pW */
|
---|
| 190 | /* -1- loi de reponse thermique des bolos avec R en ohms et T en Kelvin */
|
---|
| 191 | /* */
|
---|
| 192 | /* T = coef2 * ( ln ( R / coef1) ** ( -1 / coef0 ) */
|
---|
| 193 | /* */
|
---|
| 194 | /* -2- fuite thermique du bolo coef 3,4 */
|
---|
| 195 | /* */
|
---|
| 196 | /* Ptot = coef3 * ( (10*Tb) ** coef4 - (10*Tcryo) ** coef4 ) */
|
---|
| 197 | /* */
|
---|
| 198 | /* -3- calcul empirique de Pciel et de tau coef 5,6 */
|
---|
| 199 | /* */
|
---|
| 200 | /* Pciel = coef5 - Pelec coef5= I * Ai (tables xavier) */
|
---|
| 201 | /* tau = - ln ( 1 + Pciel / coef6 ) coef6= I * Bi (tables xavier) */
|
---|
| 202 | /* */
|
---|
| 203 | /* Pour les thermometres 1 à 4 (germanium et carbone Allan-Bradley) */
|
---|
| 204 | /* les coefficients sont utilisés differemment, ils permettent de convertir */
|
---|
| 205 | /* R vers T ( c(6) est un offset sur la mesure de R par rapport aux mesures 4 fils)*/
|
---|
| 206 | /* llR= log(log(R - c(6))-c(0)) */
|
---|
| 207 | /* T = exp(c(1) + c(2)* llR + c(3)* llR* llR + c(4)* llR* llR* llR + */
|
---|
| 208 | /* c(5)* llR* llR* llR* llR) */
|
---|
| 209 | /* */
|
---|
| 210 | /* version vol Trapani */
|
---|
| 211 | /* on corrige le biais de temperature coef2=1.1 old, coef3=old/1.1^coef4 */
|
---|
| 212 | /* */
|
---|
| 213 | /* */
|
---|
| 214 | /* */
|
---|
| 215 | /* */
|
---|
| 216 | /* */
|
---|
| 217 | /****************************************************************************************/
|
---|
| 218 |
|
---|
| 219 |
|
---|
| 220 |
|
---|
| 221 |
|
---|
| 222 | /* ------------------------------------ corps des fonctions ------------------------------ */
|
---|
| 223 | /* -------------------------------------------------------------------------------------------- */
|
---|
| 224 |
|
---|
| 225 |
|
---|
| 226 |
|
---|
| 227 |
|
---|
| 228 | double DAC_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo)
|
---|
| 229 | {
|
---|
| 230 | double div,car;
|
---|
| 231 | car= (double)dac_V(reglage_pt->bolo[indice_bolo]) ;
|
---|
| 232 | div=(double)param_pt->bolo[indice_bolo].bolo_diviseur;
|
---|
| 233 | if(div) return (car *2441. / div );
|
---|
| 234 | else return(0);
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 |
|
---|
| 238 |
|
---|
| 239 | double DAC_muA (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo)
|
---|
| 240 | {
|
---|
| 241 | double capa,tri;
|
---|
| 242 | tri= (double)dac_I(reglage_pt->bolo[indice_bolo]) ;
|
---|
| 243 | capa=((param_pt->bolo[indice_bolo].bolo_bebo==10)?0.000868 * (double)param_pt->bolo[indice_bolo].bolo_capa:0.001 * (double)param_pt->bolo[indice_bolo].bolo_capa);
|
---|
| 244 | /* capa en pF */
|
---|
| 245 | return (tri * capa / (4096. * 22. * 20.) );
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 |
|
---|
| 249 | double bolo_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int valbrut,int indice_bolo)
|
---|
| 250 | {
|
---|
| 251 | double x;
|
---|
| 252 | int nb_coups;
|
---|
| 253 | int aa;
|
---|
| 254 | def_gains
|
---|
| 255 |
|
---|
| 256 | nb_coups= reglage_pt->horloge.nb_mesures/2 - reglage_pt->horloge.temp_mort;
|
---|
| 257 |
|
---|
| 258 | aa = (nb_coups<<14) + (nb_coups*190) ;
|
---|
| 259 | x=((double)((valbrut-aa)<<1))/(double)nb_coups;
|
---|
| 260 | x= bol_micro_volt(x,(double)param_pt->bolo[indice_bolo].bolo_gain*gain_ampli(reglage_pt->bolo[indice_bolo]));
|
---|
| 261 | return(x);
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 |
|
---|
| 267 | #define c(i) (1e-4*(double)param_pt->nom_coef[param_pt->bolo[indice_bolo].numero_nom_coef].coef[i])
|
---|
| 268 |
|
---|
| 269 | double bolo_temp (param_bolo* param_pt, reglage_bolo* reglage_pt, double R,int indice_bolo)
|
---|
| 270 | {
|
---|
| 271 | double a,T;
|
---|
| 272 | a=1; if( (R>0) && (c(1) >0.01) ) a= log ( R / c(1) );
|
---|
| 273 | T=0; if( (a>0) && (c(0)>0.01) ) T= c(2) * pow( a , -1 / c(0) );
|
---|
| 274 | return(T);
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | #undef c
|
---|
| 278 |
|
---|
| 279 |
|
---|
| 280 |
|
---|
| 281 |
|
---|
| 282 | /* ------------------------------------------------------------- */
|
---|
| 283 |
|
---|
| 284 |
|
---|
| 285 | unsigned int4 val_long(char x)
|
---|
| 286 | {
|
---|
| 287 | unsigned long a,xl;
|
---|
| 288 | char aa;
|
---|
| 289 | aa=x-2;
|
---|
| 290 | a=aa;
|
---|
| 291 | if(x<3) xl=x; else xl=((a&1) + 2)<<(a>>1);
|
---|
| 292 | return(xl);
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 |
|
---|
| 296 | double val_double(char x)
|
---|
| 297 | {
|
---|
| 298 | unsigned long a,xl;
|
---|
| 299 | if(x<0) x=-x; a=x; if(!a) xl=0; else xl=((a&1) + 2)<<(a>>1);
|
---|
| 300 | if(x>0) return(1e-4*(double)xl); else return(-1e-4*(double)xl);
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | int new_val_dac(int a,char code)
|
---|
| 304 | {
|
---|
| 305 | if(code&0x80) a=(code&0x7f) <<5 ;
|
---|
| 306 | else {
|
---|
| 307 | if(code&0x40) a+=code&0x3f;
|
---|
| 308 | else a-=code&0x3f;
|
---|
| 309 | }
|
---|
| 310 | return(a);
|
---|
| 311 | }
|
---|
| 312 |
|
---|