[1456] | 1 | #include <math.h>
|
---|
| 2 | #include <stdio.h>
|
---|
| 3 | #include "xastropack.h"
|
---|
| 4 |
|
---|
| 5 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
|
---|
| 6 | // jour [1,31] (dy)
|
---|
| 7 | // mois [1,12] (mn)
|
---|
| 8 | // annee (yr)
|
---|
[1515] | 9 | // universal time [0,24[ (utc)
|
---|
| 10 | // Greenwich mean siderial [0,24[ (gst)
|
---|
| 11 | // Greenwich mean siderial at 0h UT [0,24[ (gst0)
|
---|
[1456] | 12 | // EQUATORIALE: ascension droite en heures [0,24[ (ra)
|
---|
| 13 | // declinaison en degres [-90,90] (dec)
|
---|
| 14 | // angle horaire en heures [-12,12] (-12=12) (ha) tsid=ha+ra
|
---|
| 15 | // GALACTIQUE: longitude en degres [0,360[ (glng)
|
---|
| 16 | // latitude en degres [-90,90] (glat)
|
---|
[1515] | 17 | // HORIZONTAL: azimuth en degres [0,360[ (az)
|
---|
| 18 | // (angle round to the east from north+)
|
---|
| 19 | // altitude en degres [-90,90] (alt)
|
---|
| 20 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
|
---|
| 21 | // (angle round counter clockwise from the vernal equinoxe)
|
---|
| 22 | // latitude ecliptique en degres [-90,90] (eclat)
|
---|
| 23 | // GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
|
---|
| 24 | // (angle + vers l'ouest, - vers l'est)
|
---|
| 25 | // latitude en degres [-90,90] (north>0) (geolat)
|
---|
[1456] | 26 |
|
---|
[1465] | 27 | double TrueJDfrMJD(double mjd)
|
---|
[1456] | 28 | {
|
---|
| 29 | return mjd + MJD0;
|
---|
| 30 | }
|
---|
| 31 |
|
---|
[1465] | 32 | double MJDfrTrueJD(double jd)
|
---|
| 33 | {
|
---|
| 34 | return jd - MJD0;
|
---|
| 35 | }
|
---|
| 36 |
|
---|
[1456] | 37 | double MJDfrDate(double dy,int mn,int yr)
|
---|
| 38 | {
|
---|
| 39 | double mjd;
|
---|
| 40 | cal_mjd(mn,dy,yr,&mjd);
|
---|
| 41 | return mjd;
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
|
---|
| 45 | {
|
---|
| 46 | mjd_cal(mjd,mn,dy,yr);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | /* given a mjd, return the year as a double. */
|
---|
| 50 | double YearfrMJD(double mjd)
|
---|
| 51 | {
|
---|
| 52 | double yr;
|
---|
| 53 | mjd_year(mjd,&yr);
|
---|
| 54 | return yr;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | /* given a decimal year, return mjd */
|
---|
| 58 | double MJDfrYear(double yr)
|
---|
| 59 | {
|
---|
| 60 | double mjd;
|
---|
| 61 | year_mjd(yr,&mjd);
|
---|
| 62 | return mjd;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | /* given a mjd, return the year and number of days since 00:00 Jan 1 */
|
---|
| 66 | /* Attention: si mjd = 2 Janvier -> number of days = 1 */
|
---|
| 67 | void YDfrMJD(double mjd,double *dy,int *yr)
|
---|
| 68 | {
|
---|
| 69 | mjd_dayno(mjd,yr,dy);
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | /* given a modified julian date, mjd, and a universally coordinated time, utc,
|
---|
| 73 | * return greenwich mean siderial time, *gst.
|
---|
| 74 | * N.B. mjd must be at the beginning of the day.
|
---|
| 75 | */
|
---|
| 76 | double GSTfrUTC(double mjd0,double utc)
|
---|
| 77 | {
|
---|
| 78 | double gst;
|
---|
| 79 | utc_gst(mjd0,utc,&gst) ;
|
---|
| 80 | return gst;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /* given a modified julian date, mjd, and a greenwich mean siderial time, gst,
|
---|
| 84 | * return universally coordinated time, *utc.
|
---|
| 85 | * N.B. mjd must be at the beginning of the day.
|
---|
| 86 | */
|
---|
| 87 | double UTCfrGST(double mjd0,double gst)
|
---|
| 88 | {
|
---|
| 89 | double utc;
|
---|
| 90 | gst_utc(mjd0,gst,&utc);
|
---|
| 91 | return utc;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | /* gmst0() - return Greenwich Mean Sidereal Time at 0h UT */
|
---|
| 95 | /* mjd = date at 0h UT in julian days since MJD0 */
|
---|
| 96 | double GST0(double mjd0)
|
---|
| 97 | /* Copie depuis le code de Xephem car pas prototype */
|
---|
| 98 | {
|
---|
| 99 | double T, x;
|
---|
| 100 | T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
|
---|
| 101 | x = 24110.54841 +
|
---|
| 102 | (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
|
---|
| 103 | x /= 3600.0;
|
---|
| 104 | range(&x, 24.0);
|
---|
| 105 | return (x);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
|
---|
| 109 | {
|
---|
| 110 | ra1 *= PI/12.; // radians
|
---|
| 111 | dec1 *= PI/180.; // radians
|
---|
| 112 | precess(mjd1,mjd2,&ra1,&dec1);
|
---|
| 113 | *ra2 = ra1*12./PI; if(*ra2>24.) *ra2 -= 24.; if(*ra2==24.) *ra2 = 0.;
|
---|
| 114 | *dec2 = dec1*180./PI;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | /* given apparent altitude find airmass. */
|
---|
| 118 | double AirmassfrAlt(double alt)
|
---|
| 119 | {
|
---|
| 120 | double x;
|
---|
| 121 | alt *= PI/180.; // radians
|
---|
| 122 | airmass(alt,&x);
|
---|
| 123 | return x;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | /* donne l'angle horaire a partir du temps sideral et de l'ascension droite */
|
---|
| 127 | double HafrRaTS(double gst,double ra)
|
---|
| 128 | {
|
---|
| 129 | double ha = gst - ra;
|
---|
| 130 | // Attention au probleme de la discontinuite 0h <==> 24h
|
---|
| 131 | // ts=1 ra=23 ; (ts-ra)=-22 <-12 --> ha = +2 = +24 + (ts-ra)
|
---|
| 132 | // ts=23 ra=1 ; (ts-ra)=+22 >+12 --> ha = -2 = -24 + (ts-ra)
|
---|
| 133 | if(ha==-12.) ha = 12.; if(ha<-12.) ha += 24.; if(ha>12.) ha -= 24.;
|
---|
| 134 | return ha;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
[1465] | 137 | void HMSfrHdec(double hd,int *h,int *mn,double *s)
|
---|
[1456] | 138 | // INPUT: hd
|
---|
[1465] | 139 | // OUTPUT: h mn s (h,mn,s >=< 0)
|
---|
| 140 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
|
---|
| 141 | // EX: 12.51 -> h=12 mn=30 s=10 ;
|
---|
| 142 | // -12.51 -> h=-12 mn=-30 s=-10 ;
|
---|
[1456] | 143 | {
|
---|
| 144 | int sgn=1;
|
---|
| 145 | if(hd<0.) {sgn=-1; hd*=-1.;}
|
---|
| 146 | *h = int(hd);
|
---|
| 147 | *mn = int((hd-(double)(*h))*60.);
|
---|
| 148 | *s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
|
---|
| 149 | // pb precision
|
---|
| 150 | if(*s<0.) *s = 0.;
|
---|
| 151 | if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
|
---|
| 152 | if(*mn<0) *mn = 0;
|
---|
| 153 | if(*mn>=60) {*mn-=60; *h+=1;}
|
---|
[1465] | 154 | *h *= sgn; *mn *= sgn; *s *= (double)sgn;
|
---|
[1456] | 155 | }
|
---|
| 156 |
|
---|
[1465] | 157 | double HdecfrHMS(int h,int mn,double s)
|
---|
| 158 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
| 159 | // RETURN: en heures decimales
|
---|
| 160 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
|
---|
[1456] | 161 | {
|
---|
[1465] | 162 | return ((double)h + (double)mn/60. + s/3600.);
|
---|
[1456] | 163 | }
|
---|
| 164 |
|
---|
| 165 | string ToStringHMS(int h,int mn,double s)
|
---|
[1465] | 166 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
[1456] | 167 | // RETURN: string h:mn:s
|
---|
| 168 | {
|
---|
[1465] | 169 | double hd = HdecfrHMS(h,mn,s); // put in range
|
---|
| 170 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
[1456] | 171 | char str[128];
|
---|
[1465] | 172 | if(hd<0.)
|
---|
| 173 | sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
|
---|
| 174 | else
|
---|
| 175 | sprintf(str,"%d:%d:%.3f",h,mn,s);
|
---|
[1456] | 176 | string dum = str;
|
---|
| 177 | return dum;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | string ToStringHdec(double hd)
|
---|
| 181 | {
|
---|
| 182 | int h,mn; double s;
|
---|
[1465] | 183 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
[1456] | 184 | return ToStringHMS(h,mn,s);
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
|
---|
| 188 | // Coordonnees equatoriales -> Coordonnees galactiques
|
---|
| 189 | {
|
---|
| 190 | ra *= PI/12.; // radians
|
---|
| 191 | dec *= PI/180.; // radians
|
---|
| 192 | eq_gal(mjd,ra,dec,glat,glng);
|
---|
| 193 | // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
|
---|
| 194 | *glng *= 180./PI; if(*glng>360.) *glng -= 360.; if(*glng==360.) *glng = 0.;
|
---|
| 195 | *glat *= 180./PI;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
|
---|
| 199 | // Coordonnees galactiques -> Coordonnees equatoriales
|
---|
| 200 | {
|
---|
| 201 | glng *= PI/180.; // radians
|
---|
| 202 | glat *= PI/180.; // radians
|
---|
| 203 | gal_eq (mjd,glat,glng,ra,dec);
|
---|
| 204 | *ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
|
---|
| 205 | *dec *= 180./PI;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | void EqtoHor(double geolat,double ha,double dec,double *az,double *alt)
|
---|
| 209 | // Coordonnees equatoriales -> Coordonnees horizontales
|
---|
| 210 | {
|
---|
| 211 | geolat *= PI/180.;
|
---|
| 212 | ha *= PI/12.; // radians
|
---|
| 213 | dec *= PI/180.; // radians
|
---|
| 214 | hadec_aa (geolat,ha,dec,alt,az);
|
---|
| 215 | *alt *= 180./PI;
|
---|
| 216 | *az *= 180./PI; if(*az>360.) *az -= 360.; if(*az==360.) *az = 0.;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | void HortoEq(double geolat,double az,double alt,double *ha,double *dec)
|
---|
| 220 | // Coordonnees horizontales -> Coordonnees equatoriales
|
---|
| 221 | {
|
---|
| 222 | geolat *= PI/180.;
|
---|
| 223 | alt *= PI/180.; // radians
|
---|
| 224 | az *= PI/180.; // radians
|
---|
| 225 | aa_hadec (geolat,alt,az,ha,dec);
|
---|
| 226 | *ha *= 12./PI;
|
---|
| 227 | if(*ha==-12.) *ha = 12.; if(*ha<-12.) *ha += 24.; if(*ha>12.) *ha -= 24.;
|
---|
| 228 | *dec *= 180./PI;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | // Attention, j'ai modifie eq_ecl.c pour proteger NaN
|
---|
| 232 | // dans ecleq_aux :
|
---|
| 233 | // *q = (sy*ceps)-(cy*seps*sx*sw);
|
---|
| 234 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
|
---|
| 235 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
|
---|
| 236 | // Coordonnees equatoriales -> Coordonnees ecliptiques
|
---|
| 237 | {
|
---|
| 238 | ra *= PI/12.; // radians
|
---|
| 239 | dec *= PI/180.; // radians
|
---|
| 240 | eq_ecl(mjd,ra,dec,eclat,eclng);
|
---|
| 241 | *eclng *= 180./PI; if(*eclng>360.) *eclng -= 360.; if(*eclng==360.) *eclng = 0.;
|
---|
| 242 | *eclat *= 180./PI;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
|
---|
| 246 | // Coordonnees ecliptiques -> Coordonnees equatoriales
|
---|
| 247 | {
|
---|
| 248 | eclat *= PI/180.; // radians
|
---|
| 249 | eclng *= PI/180.; // radians
|
---|
| 250 | ecl_eq(mjd,eclat,eclng,ra,dec);
|
---|
| 251 | *ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
|
---|
| 252 | *dec *= 180./PI;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | /* given the modified JD, mjd, return the true geocentric ecliptic longitude
|
---|
| 256 | * of the sun for the mean equinox of the date, *lsn, in radians, the
|
---|
| 257 | * sun-earth distance, *rsn, in AU, and the latitude *bsn, in radians
|
---|
| 258 | * (since this is always <= 1.2 arcseconds, in can be neglected by
|
---|
| 259 | * calling with bsn = NULL). */
|
---|
| 260 | void SunPos(double mjd,double *eclsn,double *ecbsn)
|
---|
| 261 | {
|
---|
| 262 | double rsn;
|
---|
| 263 | sunpos(mjd,eclsn,&rsn,ecbsn);
|
---|
| 264 | *eclsn *= 180./PI; if(*eclsn>360.) *eclsn -= 360.; if(*eclsn==360.) *eclsn = 0.;
|
---|
| 265 | *ecbsn *= 180./PI;
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | /* given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
|
---|
| 269 | * bet, and geocentric distance, rho in a.u. for the moon. also return
|
---|
| 270 | * the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
|
---|
| 271 | * (for the mean equinox) */
|
---|
| 272 | void MoonPos(double mjd,double *eclmn,double *ecbmn)
|
---|
| 273 | {
|
---|
| 274 | double rho,msp,mdp;
|
---|
| 275 | moon(mjd,eclmn,ecbmn,&rho,&msp,&mdp);
|
---|
| 276 | *eclmn *= 180./PI; if(*eclmn>360.) *eclmn -= 360.; if(*eclmn==360.) *eclmn = 0.;
|
---|
| 277 | *ecbmn *= 180./PI;
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | void PlanetPos(double mjd,int numplan,double *ecl,double *ecb,double *diamang)
|
---|
| 281 | /* given a modified Julian date, mjd, and a planet, p, find:
|
---|
| 282 | * lpd0: heliocentric longitude,
|
---|
| 283 | * psi0: heliocentric latitude,
|
---|
| 284 | * rp0: distance from the sun to the planet,
|
---|
| 285 | * rho0: distance from the Earth to the planet,
|
---|
| 286 | * none corrected for light time, ie, they are the true values for the
|
---|
| 287 | * given instant.
|
---|
| 288 | * lam: geocentric ecliptic longitude,
|
---|
| 289 | * bet: geocentric ecliptic latitude,
|
---|
| 290 | * each corrected for light time, ie, they are the apparent values as
|
---|
| 291 | * seen from the center of the Earth for the given instant.
|
---|
| 292 | * dia: angular diameter in arcsec at 1 AU,
|
---|
| 293 | * mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
|
---|
| 294 | * (for the mean equinox) */
|
---|
| 295 | {
|
---|
| 296 | double lpd0,psi0,rp0,rho0,mag;
|
---|
| 297 | plans(mjd,numplan,&lpd0,&psi0,&rp0,&rho0,ecl,ecb,diamang,&mag);
|
---|
| 298 | *ecl *= 180./PI; if(*ecl>360.) *ecl -= 360.; if(*ecl==360.) *ecl = 0.;
|
---|
| 299 | *ecb *= 180./PI;
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | void JupiterPos(double mjd,double *ecl,double *ecb,double *diamang)
|
---|
| 303 | {
|
---|
| 304 | PlanetPos(mjd,JUPITER,ecl,ecb,diamang);
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 | void SaturnPos(double mjd,double *ecl,double *ecb,double *diamang)
|
---|
| 308 | {
|
---|
| 309 | PlanetPos(mjd,SATURN,ecl,ecb,diamang);
|
---|
| 310 | }
|
---|
[1515] | 311 |
|
---|
| 312 | /* Given a coordinate type "typ", convert to standard for astropack */
|
---|
| 313 | int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
|
---|
| 314 | // Return : 0 = OK
|
---|
| 315 | // 1 = Type de coordonnees non connu
|
---|
| 316 | // 2 = Mauvais range pour coord1
|
---|
| 317 | // 4 = Mauvais range pour coord2
|
---|
| 318 | // 6 = Mauvais range pour coord1 et coord2
|
---|
| 319 | {
|
---|
| 320 | int rc = 0;
|
---|
| 321 |
|
---|
| 322 | // ---- Equatoriales alpha,delta
|
---|
| 323 | // - standard = [0,24[ , [-90,90]
|
---|
| 324 | if(typ&TypCoordEq) {
|
---|
| 325 | if(typ&TypCoordDD) {
|
---|
| 326 | coord1 = coord1 / 180. * 12.;
|
---|
| 327 | } else if(typ&TypCoordRR) {
|
---|
| 328 | coord1 = coord1 / PI * 12.;
|
---|
| 329 | coord2 = coord2 / PI * 180.;
|
---|
| 330 | }
|
---|
| 331 | if(coord1==24.) coord1 = 0.;
|
---|
| 332 | if(coord1<0. || coord1>=24.) rc+= 2;
|
---|
| 333 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
| 334 |
|
---|
| 335 | // ---- Galactiques gLong, gLat
|
---|
| 336 | // ---- Horizontales azimuth,altitude
|
---|
| 337 | // ---- Ecliptiques EclLong,EclLat
|
---|
| 338 | // - standard = [0,360[ , [-90,90]
|
---|
| 339 | } else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
|
---|
| 340 | if(typ&TypCoordHD) {
|
---|
| 341 | coord1 = coord1 / 12. * 180.;
|
---|
| 342 | } else if(typ&TypCoordRR) {
|
---|
| 343 | coord1 = coord1 / PI * 180.;
|
---|
| 344 | coord2 = coord2 / PI * 180.;
|
---|
| 345 | }
|
---|
| 346 | if(coord1==360.) coord1 = 0.;
|
---|
| 347 | if(coord1<0. || coord1>=360.) rc+= 2;
|
---|
| 348 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
| 349 |
|
---|
| 350 | } else { // Coordonnees non-connues
|
---|
| 351 | rc= 1;
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | return rc;
|
---|
| 355 | }
|
---|