source: Sophya/trunk/SophyaLib/Manual/piapp.tex@ 3443

Last change on this file since 3443 was 3443, checked in by ansari, 18 years ago

Encore qques modifs de detail ds piapp.tex - Reza 15/12/2007

File size: 76.2 KB
Line 
1\documentclass[twoside,10pt]{article}
2% \usepackage[latin1]{inputenc}
3% \usepackage[T1]{fontenc}
4\usepackage[francais]{babel}
5\usepackage{graphicx}
6
7\usepackage{amsmath}
8\usepackage{amssymb}
9\usepackage{latexsym}
10
11\usepackage{palatino}
12
13% Definition pour Docs Sophya
14\usepackage{defsophya}
15
16\usepackage{makeidx}
17
18\usepackage[ps2pdf,bookmarks,bookmarksnumbered,%
19 urlcolor=blue,citecolor=blue,linkcolor=blue,%
20 pagecolor=blue,%hyperindex,%
21 colorlinks=true,hyperfigures=true,hyperindex=true
22 ]{hyperref}
23
24\setlength{\textwidth}{15cm}
25\setlength{\textheight}{20.5cm}
26\setlength{\topmargin}{0.cm}
27\setlength{\oddsidemargin}{0.cm}
28\setlength{\evensidemargin}{0.cm}
29\setlength{\unitlength}{1mm}
30
31% \newcommand{\piacommand}[1]{
32% \framebox{\bf \Large #1 } \index{#1} % (Command)
33%}
34% \newcommand{\piahelpitem}[1]{
35% \framebox{\bf \Large #1 } \index{#1} (Help item)
36%}
37
38\newcommand{\rond}{$\bullet \ $}
39\newcommand{\etoile}{$\star \ $}
40\newcommand{\cercle}{$\circ \ $}
41\newcommand{\carre}{$\Box \ $}
42
43%%%% Definition des commandes pour l'aide en ligne
44\newcommand{\piacommand}[1]{
45$\blacksquare$ \hspace{3mm} {\bf \Large #1 } \index{#1} % (Command)
46}
47\newcommand{\piahelpitem}[1]{
48$\square$ \hspace{3mm} {\bf \Large #1 } \index{#1} (Help item)
49}
50
51\newcommand{\menubar}[1]{\hspace{1mm} \framebox{\it MenuBar::#1} \hspace{1mm}}
52
53\newcommand{\myppageref}[1]{ (p. \pageref{#1} ) }
54
55\makeindex % Constitution d'index
56
57\begin{document}
58\begin{titlepage}
59% The title page - top of the page with the title of the paper
60\titrehp{piapp \\ An interactive data analysis tool}
61% Authors list
62\auteurs{
63R. Ansari & ansari@lal.in2p3.fr \\
64E. Aubourg & aubourg@hep.saclay.cea.fr \\
65C. Magneville & cmv@hep.saclay.cea.fr \\
66O. Perdereau & perderos@lal.in2p3.fr \\
67}
68% \author{R. Ansari {\tt ansari@lal.in2p3.fr} \\
69% E. Aubourg {\tt aubourg@hep.saclay.cea.fr} \\
70% C. Magneville {\tt cmv@hep.saclay.cea.fr}
71% }
72\vspace{1cm}
73\begin{center}
74{\bf \Large piapp Version: 4.1 (V\_Nov2007) }
75\end{center}
76\titrebp{5}
77
78\end{titlepage}
79
80\newpage
81\tableofcontents
82\newpage
83
84\section{Introduction}
85\index{piapp}
86{\bf piapp} (or {\bf spiapp}) is an interactive data analysis
87and visualization program. It is based on the {\bf PI} GUI library
88and the {\bf SOPHYA} \footnote{see http://www.sophya.org}
89(or {\bf PEIDA++} \footnote{PEIDA++ has been used in EROS software.
90(http://eros.in2p3.fr). It is not maintained anymore.})
91C++ data analysis class library.
92\par
93{\bf piapp} is a powerful command oriented tool for visualising and analysing data.
94Its main features are summarised below:
95\begin{itemize}
96\item[\rond] Image, multiple 2D and few 3D representations
97\item[\rond] Highly interactive graphics, with postscript as export format
98\item[\rond] Capability to handle large data sets. Data can be imported and
99exported in different formats: ASCII, PPF and FITS.
100\item[\rond] Interactive analysis: 2D/3D distributions, histograms, FFT \ldots
101\item[\rond] Flexible c-shell inspired command interpreter.
102\item[\rond] Possibility to perform more complex operations in C++, on objects
103managed by the application through the on-the-fly compilation and execution
104of c++ code fragments in piapp.
105\item[\rond] piapp is a multi-threaded program with separate threads for graphics
106and command execution, ensuring interactive response, even while heavy
107computation is being performed. In addition, thread safe commands can be executed
108in separate threads, for taking advantage of multi CPU (or CPU-cores) workstations.
109\item[\rond] The application can be easily extended through modules which can be
110loaded at run time.
111\end{itemize}
112
113\subsection{Acknowlegments}
114Many people have contributed to the development SOPHYA and/or the PI library
115and (s)piapp interactive analysis tool.
116we are grateful to the following people:
117
118\begin{tabular}{lcl}
119Reza Ansari & \hspace{5mm} & (LAL-Univ.Paris Sud, Orsay) \\
120Eric Aubourg & & (DAPNIA-CEA/APC, Saclay) \\
121Sophie Henrot-Versille & & (LAL-IN2P3/CNRS, Orsay) \\
122Alex Kim & & (LBL, Berkeley) \\
123Guy Le Meur & & (LAL-IN2P3/CNRS, Orsay) \\
124Eric Lesquoy & & (DAPNIA-CEA, Saclay) \\
125Christophe Magneville & & (DAPNIA-CEA, Saclay) \\
126Bruno Mansoux & & (LAL-IN2P3/CNRS, Orsay) \\
127Olivier Perdereau & & (LAL-IN2P3/CNRS, Orsay) \\
128Nicolas Regnault & & (LPNHE-IN2P3/CNRS, Paris) \\
129Benoit Revenu & & (APC/Univ.Paris 7, Paris) \\
130Francois Touze & & (LAL-IN2P3/CNRS, Orsay) \\
131\end{tabular}
132
133We thank also the persons who have helped us by useful suggestions, among others : \\
134S. Bargot, S. Plasczczynski, C. Renault and D. Yvon.
135
136%%%
137\begin{figure}[ht!]
138\begin{center}
139\includegraphics[width=15cm]{piapp_mainwin.eps}
140\caption{piapp main window}
141\label{figmainwin}
142\end{center}
143\end{figure}
144\subsection{starting piapp}
145 {\bf piapp} can simply be started on the command line in a terminal window
146once the SOPHYA/piapp environment has been initialised.
147The environment variables {\tt SOPHYABASE} should contain the directory
148where SOPHYA/piapp has been installed. the shared library path
149{\tt LD\_LIBRARY\_PATH} must contain {\tt \$SOPHYABASE /slb} and the
150current directory {\tt .} and the executable search path {\tt PATH} must
151contain {\tt \$SOPHYABASE /exe}. Refer to the SOPHYA overview manual
152for more information on SOPHYA directory structure. \\
153\par
154{\tt (s)piapp -h} provides a brief help of the command line
155arguments. Xtoolkit options can also be specified as command line
156arguments. {\bf spiapp} is the name of SOPHYA/piapp executable,
157in order to distinguish it from PEIDA/piapp.
158\begin{verbatim}
159csh> spiapp -h
160 SophyaInitiator::SophyaInitiator() BaseTools Init
161 PIOPersist::Initialize() Starting Sophya Persistence management service
162SOPHYA Version 2.1 Revision 0 (V_Nov2007) -- Nov 24 2007 13:08:58 gcc 3.3
16320030304 (Apple Computer, Inc. build 1495)
164 piapp: Interactive data analysis and visualisation program
165 Usage: piapp [-nored] [-doublered] [-termread] [-term]
166 [-hidezswin] [-small] [-nosig] [-nosigfpe] [-nosigsegv]
167 [-tmpdir TmpDirectory] [-help2tex] [-exec file [args]]
168 -nored : Don't redirect stdout/stderr to piapp console
169 -doublered : Redirect stdout/stderr to piapp console AND the terminal
170 -termread : Read commands on terminal (stdin)
171 -term : equivalent to -nored -termread -small
172 -hidezswin : Hide Zoom/Stat/ColMap window
173 -small : Create small size main piapp window
174 -nosig : Don't catch SigFPE, SigSEGV
175 -nosigfpe -nosigsegv: Don t catch SigFPE / SigSEGV
176 -tmpdir TmpDirectory: defines TMDIR for temporary files
177 -help2tex: Create a LaTeX help file (piahelp.tex)
178 -exec file [args] : Execute command file (last option)
179\end{verbatim}
180Once {\bf piapp} is started, the main piapp window appears.
181It contains the menu bar, an upper part with the zoom and colormap
182widgets for image displays, memory and CPU usage and a terminal like
183widget (piapp console, see {\bf PIConsole} \myppageref{PIConsole})
184in the lower part. The figure \ref{figmainwin}
185shows an image of the piapp main window.
186{\tt stdout/cout, stderr/cerr} are redirected to the piapp console and
187commands can be entered in this widget. It is also possible to keep
188the terminal where piapp was started for {\tt stdout/stderr} (flag {\tt -nored}).
189The flag {\tt -term} activate a command reader on the terminal
190It is also possible to have a command reader on the terminal ({\tt stdin}). \\[1mm]
191
192\par
193In section 2, we present a quick tour of {\bf piapp}.
194a brief overview of piapp graphics, supported data formats, interactive
195analysis possibilities, the command interpreter and c++ execution
196are presented in the following sections.
197Section \ref{piappcmdref} contains a brief description of all piapp commands
198and help items. Various interactive control windows are described in appendix.
199
200\subsection{DemoPIApp and DemoData}
201The directory {\bf DemoPIApp} contains a number of example scripts, such as the
202{\tt demo.pic} and the associated data file {\tt demo.ppf}. It contains
203also examples of loadable modules for piapp. The DemoPIApp/CONTENT
204file contains a brief description of the different files. \\
205The {\bf DemoData} contains a number of data files, in PPF and FITS format, which are
206used for the examples in this document.
207
208\subsection{Warnings/Known problems}
209\begin{enumerate}
210\item It might be necessary to define the environment variable
211{\bf PIXKBMOMASK}, used by the libPI.a to map correctly
212the {\tt <Alt>} key with some X servers (in particular with
213X11 on MacOS X). \\
214{\tt csh> setenv PIXKBMODMASK 2 }
215However, the default value has been changed in PI/piapp V=4.1 and it should not be
216necessary anymore to define PIXKBMODMASK.
217%%
218\item The output redirection uses unix pipes. On Linux, with commands
219producing long outputs, the application may block because of incorrect management
220of pipes. If this happens, use piapp with {\tt -nored} flag. This problem has been
221in principle solved with SOPHYA V=2.1 / piapp V=4.1
222\end{enumerate}
223
224\newpage
225\section{A Tour of piapp}
226\subsection{Interacting with piapp, getting help}
227Users interact with piapp through commands entered in the piapp-console
228(or the unix terminal), and through the different menus.
229Some of the possibilities of the piapp-console are described
230in {\bf PIConsole} help item, in the command reference section \myppageref{PIConsole}.
231The description
232of the commands in available online using the help command.
233An online help window can be displayed by \menubar{File / Help}.
234Commands and help items are grouped in categories which can be
235selected using the OptionMenu in the Help window.
236\begin{verbatim}
237Cmd> help func
238Displays a function y=f(x) (Fills a vector with function values)
239 Usage: func f(x) xmin xmax [npt graphic_attributes]
240 Related commands: funcff func2d func2dff
241Cmd> func sin(x)/x 0.1 10 100 'red line=solid,2'
242---> Graphic display of the function
243\end{verbatim}
244The directory {\tt DemoPIApp} contains a number of example
245command script and sample data files.
246
247\subsection{The Object Manager (NamedObjMgr)}
248The {\bf piapp} application is built around an object manager
249(class {\tt NamedObjMgr}) and a graphic application
250(class {\tt PIStdImgApp}). Objects inheriting from
251the class {\tt AnyDataObj} can be managed through adapter
252classes (classes inheriting from {\tt NObjMgrAdapter}) by
253the object manager.
254\par
255User sees the objects (such as Sophya objects Histo, NTuple,
256Arrays, Images, SkyMaps, \ldots) kept in memory, organized
257in a single level tree structure. Four memory directories
258are automatically created and can not be removed: \\
259\centerline{\bf /home \hspace{10mm} /old \hspace{10mm} /tmp \hspace{10mm} /autoc}
260The default working directory (in memory) is {\bf /home}.
261Other directories can be created by the user.
262\begin{center}
263{\bf Warning:} These are only the directory
264structure managed by the piapp application and do not
265correspond to the file system directories
266\end{center}
267The window {\bf ObjMgr} shown in figure \ref{figobjmgrw}
268can be used to navigate in the memory directories and
269execute simple operations on objects. \\
270This window can be displayed using the menu command
271\menubar{Objects / ObjectManager}.
272The button \framebox{\small \bf SetCurObj} can be used to set the value
273of the interpreter's variable {\tt cobj} to the selected
274object name.
275Refer to the commands in group {\bf Object Management}
276for more information.
277
278\vspace*{5mm}
279\begin{figure}[ht!]
280\begin{center}
281\includegraphics[width=10cm]{piapp_objmgr.eps}
282\caption{The interactive object management window}
283\label{figobjmgrw}
284\end{center}
285\end{figure}
286
287\subsection{command language}
288A basic command interpreter ({\bf PIACmd/Commander}) is included in {\bf piapp} and
289other command interpreters can be inserted in the application
290framework.
291This interpreter ({\bf Commander} \myppageref{Commander})
292synthax is close to the c-shell
293(csh) shell script. It is possible to define and use variables
294({\tt set} command, {\tt \$varname}), and execute loops
295({\tt foreach,for}), as well as simple tests
296({\tt if test then ... else ... endif}).
297Commands from a file (default extension .pic) can be executed
298using the {\tt exec} command.
299Long commands can be put on several lines, by ending a line
300by the backslash \\ caracter, to signal that the command
301continues on the next line.
302
303The command macro below shows a sample piapp session, where
304data from the file {\tt demo.ppf} are displayed.
305\begin{verbatim}
306# Trace mode -> On
307traceon
308# Deleting all objects in the current directory
309delobjs *
310# Opening the PPF file demo.ppf
311openppf demo.ppf
312# Various displays in a graphic window, divided into 2x2 zones
313zone 2 2
314# 1D histogram display
315disp h1d blue
316# 2D histogram display
317disp h2d
318# Function display
319func sin(x)/x 0.1 10. 200 gold
320# Surface representation of a matrix
321surf mtx1 colbr32
322# Contour representation of a matrix
323contour mtx1 'colrj32 normalline ncont=7'
324# 3D representation of points using a PAW like command
325n/plot nt31.z%y%x ! ! win
326# 3D points superimposed on the previous display
327nt3d nt32 x y z ex ey ez - - 'same fcirclemarker7 red'
328\end{verbatim}
329
330\subsection{NTuple vue / PAW like commands}
331It is possible to plot various expressions of objects, seen as
332a 2D table, with named columns. This possibility exist not only
333for NTuples/DataTables, but also for most objects (from SOPHYA) handled
334by piapp. The related commands are grouped under {\bf Expr.Plotting} and
335{\bf pawCmd} and are described in section \ref{tableplot}.
336
337\subsection{C++ execution inside piapp}
338For more complex processings, where the full power of C++
339and the class libraries are necessary, {\bf piapp} provide
340the possibility of executing C++ code, without the burden
341of having to write a complete program. The objects
342present in the current directory are automatically
343declared. The communication with the piapp application
344is done by the {\bf NamedObjMgr} class.
345Two macros {\tt KeepObj()} and {\tt DisplayObj()}
346simplify the task of keeping newly created objects.
347In the example below, we first create a noisy signal
348in a vector, and we keep it in the application
349(Notice the use of multiline command) :
350
351\begin{verbatim}
352Cmd> c++exec c++exec Vector in(1024); \
353...? in = RandomSequence(RandomSequence::Gaussian, 0., 1.); \
354...? for(int kk=0; kk<in.Size(); kk++) \
355...? in(kk) += 2*sin(kk*0.05); \
356...? KeepObj(in);
357\end{verbatim}
358We can of course display the resulting vector:
359\begin{verbatim}
360Cmd> disp in
361\end{verbatim}
362
363And, at a subsequent stage, make a low pass filter
364on the vector in:
365\begin{verbatim}
366Cmd> c++exec Vector out(1024); \
367...? int w = 2; \
368...? for(int k=w; k<in.Size()-w; k++) \
369...? out(k) = in(Range(k-w, k+w)).Sum()/(2.*w+1.); \
370...? KeepObj(out);
371\end{verbatim}
372
373We can display the new vector {\tt out} overlayed
374on the previously displayed vector:
375\begin{verbatim}
376Cmd> disp out 'red same'
377\end{verbatim}
378
379See section \ref{flycplusplus} and command group {\bf CxxExecutorCmd}
380for more information.
381
382\subsection{Extending the application}
383The {\bf piapp} application can easily be extended by the user.
384This is done through shared libraries which can be opened
385and used by the application.
386Two main methods can be used (see command group
387{\bf ExternalModules}) :
388\begin{itemize}
389\item Creation of user functions. A shared library containing
390at least one user function with the following prototype
391should be created:
392\begin{verbatim}
393extern "C" {
394 void myfonction(vector<string>& args);
395}
396\end{verbatim}
397The class {\bf NameObjMgr} should be used to communicate with the
398application. The {\tt link} \myppageref{link} and {\tt call} \myppageref{call}
399should be used to load and execute user functions. An example of
400user function can be found in DemoPIApp/user.cc exlink.pic.
401
402\item Creation of loadable modules: Loadable modules can be
403used to extend the application possibilities in a way totally
404transparent to the user. It is possible to define new commands,
405handling of new object types, additional graphic functionalities
406in a loadable module.
407
408The class {\bf CmdExecutor} is the base class for extending piapp.
409A shared library should be built, containing two functions,for
410the activation and deactivation of the module, with the following
411prototype (where {\tt mymodule} is the module's name.
412\begin{verbatim}
413extern "C" {
414 void mymodule_init();
415 void mymodule_end();
416}
417\end{verbatim}
418
419\end{itemize}
420
421%%%%%%%%%% Section 3: Graphiques
422\newpage
423\section{Interactive graphics}
424\label{intgraphics}
425%%%
426\subsection{Display commands}
427Many objects managed by piapp have a default graphic representation. The
428{\bf disp} command \myppageref{disp} can be used to display the object, while
429other commands like {\bf surf} \myppageref{surf} , {\bf imag}
430or {\bf contour} \myppageref{contour} will try to force a given graphic representation.
431
432Data from table like objects can be plotted using commands like {\bf nt2d}
433\myppageref{nt2d} or {\bf nt3d} \myppageref{nt3d}. Most objects in piapp
434can also be manipulated like table for plotting purposes, using commands
435like {\bf plot2d} \myppageref{plot2d} , {\bf plot3d} \myppageref{plot3d}
436or {\bf n/plot} \myppageref{nZplot}. These commands are described in section
437\ref{tableplot}.
438
439Commands producing a graphic output have usually an optional argument called \\
440{\tt graphic\_attributes} or {\tt gr\_att}. \\
441This argument provide a flexible and easy
442way to change and customise the output graphic, as discussed in the paragraphs below.
443
444The piapp graphics can be exported in postscript (.ps) or encapsulated postscript
445(.eps) format. The commands {\bf w2ps} \myppageref{w2ps} and
446 {\bf w2eps} \myppageref{w2eps} as well the menu \menubar{PostScript} can
447 be used to export graphics. \\[2mm]
448The examples in the following pages illustrates the usage of some piapp graphic commands.
449% \newpage
450\begin{enumerate}
451\label{francetopo}
452\item Image display. The following example uses the data file francetopo.ppf
453which can be found in the {\bf DemoData} directory. This PPF file contains
454a TMatrix$<$int\_2$>$ (short integers) representing 30 arcmin gridded
455($\sim$ 1 km N-S $\times$ 0.7 km E-W) elevation (or altitude)
456for the area centered on France. It has been made using topographic
457data (DEM: Digital Elevation Model) available from the {\bf N}ational
458{\bf G}eophysical {\bf D}ata {\bf C}enter
459\href{http://www.ngdc.noaa.gov/mgg/topo/}{({\bf NGDC/GLOBE})}
460\footnote{NGDC web site: \hspace{5mm}
461http://www.ngdc.noaa.gov/ }.
462In section \ref{tableplot}, an example shows how to use this data set to
463create altitude distribution histogram for selected regions.
464\begin{verbatim}
465# Open a PPF file containing topographic data for france
466# as a TMatrix<short> 1332x1548
467# The file is in the directory DemoData/
468openppf francetopo.ppf
469# Display the matrix, whit a zoom factor, lut and color map
470disp francetopo 'zoom/3 lut=lin,-700,800 colbr128 win'
471w2eps francetopo.eps
472\end{verbatim}
473\begin{center}
474\includegraphics[width=13cm]{francetopo.eps}
475\end{center}
476
477\item Simple 2D graphics with vector displays
478\begin{verbatim}
479# Create and initialize two vectors - prevent display : nodisp
480Cmd> newvec vva 100 sin(x/10.+0.7)+cos(x/7.+1.4)*1.26 nodisp
481Cmd> newvec vvb 100 sin(x/10.)+cos(x/7.)*1.34 nodisp
482# Set axe drawing options
483Cmd> setaxesatt 'font=times,bold,16 minorticks tickslen=0.02,0.012'
484# Display the two vectors, with different graphic attributes
485Cmd> disp vva 'red line=solid,2 notitle'
486# Define a title for the graphic
487Cmd> settitle 'Example-1: 2 vectors' ' ' 'font=times,bolditalic,18'
488Cmd> disp vvb 'blue marker=box,7 same'
489# Save the graphic into an eps file
490Cmd> w2eps gr2vec.eps
491\end{verbatim}
492% \begin{figure}[ht!]
493\begin{center}
494\includegraphics[width=12cm]{gr2vec.eps}
495% \label{g22vec}
496\end{center}
497%%%
498\item Creating a comparison chart using {\bf bargraph}
499\begin{verbatim}
500# Representation du PNB (en $, 2003) pour quelques pays
501set pays ( Allemagne Espagne France Italie Pays-Bas Suisse UK USA )
502set pnbh ( 22670 14430 22010 18960 23960 37930 25250 35060 )
503setaxesatt 'font=times,bold,16'
504bargraph pnbh pays - 'blue horizontalbars nofill packfrac=0.65 font=helvetica,bold,14'
505setaxelabels 'PNB / Hab , $ 2003' ' ' 'font=times,bold,16'
506w2eps pnbargraph.eps
507\end{verbatim}
508\begin{center}
509\includegraphics[width=12cm]{pnbbargraph.eps}
510\end{center}
511%%%
512\item Displaying a matrix as a surface
513\begin{verbatim}
514openppf demo.ppf mtx1
515setaxesatt 'font=time,bold,16'
516surf mtx1 'colbr128 line=solid,1 grey'
517w2eps surfcol.eps
518\end{verbatim}
519\begin{center}
520\includegraphics[width=13cm]{surfcol.eps}
521\end{center}
522
523\end{enumerate}
524
525%%%%%%%%%%
526\subsection{Graphic objects in piapp}
527The piapp graphics is handled by the {\bf PI} \footnote {http://www.sophya.org/PI} library,
528which provide a large variety of 2D representations,
529few 3D graphics and powerful image display. \\
530Currently, all graphic representations, except for image displays, are handled
531through {\bf PIDrawers} which are managed by a viewer. A viewer can
532manage several {\bf PIDrawers} objects which correspond then to a multilayer
533graphic display. The viewers are also responsible for managing user
534interactions. \\
535Image displays are handled through a specific viewer
536{\bf PIImage} which is also capable of managing PIDrawer objects
537for multi-layer 2D overlay vector graphics. \\[2mm]
538%%
539Main piapp/PI graphic viewers, windows and drawer objects are described if
540the following sections.
541
542\subsubsection{PIScDrawWdg (2D display)}
543The {\bf PIScDrawWdg} handles a set of of 2-D drawers, managing
544the 2D coordinate system and interactive zoom. The axes drawing is
545handled by a specialised drawer, number 0, which also manages various added
546graphic elements (text \ldots). The list of various mouse and
547keyboard actions is described in the reference section, under {\bf PIScDrawWdg} \myppageref{PIScDrawWdg} title. In particular, mouse-button-2 can be used
548to zoom on a particular part, {\tt $<$Alt$>$A} activates the coordinates
549and axes manipulation window ({\bf PIAxesTools}) and {\tt $<$Alt$>$G}
550activates the PIDrawer graphic attributes control window ({\bf PIDrawerTools}).
551%%%
552\subsubsection{PIDraw3DWdg (3D display)}
553The {\bf PIDraw3DWdg} handles a set of of 3-D drawers, managing
554interactive camera/object rotation (mouse-button-2) and zoom (mouse-button-2).
555{\tt $<$Alt$>$G} to display/activate the PIDrawer graphic attributes
556control window ({\bf PIDrawerTools}).
557See {\bf PIDraw3DWdg} \myppageref{PIDraw3DWdg} for a complete list of mouse
558and keyboard actions.
559Drawer 0 handles axes drawing and graphic elements.
560%%%
561\subsubsection{PIImage (Image Display)}
562The display of 2-D arrays $A(i,j)$ as an image is managed by
563the {\bf PIImage} viewer/widget. The PI library interface {\bf P2DArrayAdapter} is used
564to represent a generic 2-D array. The array values are converted into an index, converted
565itself into a color by the use of a color-map or color-table {\bf PIColorMap}.
566$$ \mathrm{LUT:} A(i,j) \longrightarrow idx(i,j) \hspace{5mm} \mathrm{ColorMap:}
567 idx(i,j) \longrightarrow col(i,j) $$
568Currently index range is 0...255 with color-map having 32 or 128 distinct colors.
569PIImage viewers controls a zoom widget, as well as a global image view widget, and
570a color map view widget. A specific image control window can be activated using
571 {\tt $<$Alt$>$O}. See {\bf PIImage} \myppageref{PIImage} for
572a complete list of mouse and keyboard actions. A base drawer (number 0) can handle
573axes drawing and added graphic elements.
574%%%
575\subsubsection{Windows}
576The viewers described above are displayed in differnt kind of windows.
577The graphic option {\tt next,win,same,stack} can be used to control the way the
578type of windows used. Graphic windows can be divided into several zones
579(Command {\bf zone} \myppageref{zone}).
580
581When an object is diplayed in piapp, a widget (PIWdg) is created which manages
582the drawer or the 2d-array. The default name for this widget is the displayed
583object name. However, it is possible to specify a name using the graphic attribute: \\
584\hspace*{5mm} {\tt wname=WidgetName} \\
585It is possible to display multiple objects on a single widget, corresponding
586to the superposition of the different drawers. Displaying an object superimposed
587on the previously displayed object can be done using the graphic option
588{\tt same}. It is also possible to specify a target widget by its name, through
589the graphic option \\
590\hspace*{5mm} {\tt samew=WidgetName} \\
591It is also possible to specify the display of the drawer in a specified region
592of the last displayed widget \\
593\hspace*{5mm} {\tt same=fx1,fx2,fy1,fy2} \\
594where {\tt fx1,fx2,fy1,fy2} express X and Y limits, as fraction of widget size.
595
596Refer to the command reference section on windows ({\bf Windows}
597\myppageref{Windows})
598for information on the different type of windows used by piapp
599and their properties. \\
600
601%%%
602\subsubsection{Drawers}
603Graphical representation of most objects in piapp is
604handled through objects inheriting from the {\bf PIDrawer class}. A base drawer
605({\bf PIElDrawer}, number 0) is associated to the three viewers presented above,
606and manages the axes drawing as well as the added graphic elements
607(text, arrow, \ldots). A drawer management menu
608can be activated using {\tt $<$Alt$>$D}. This menu can be used to move and resize
609drawers, or to display a window for changing drawers graphic attributes.
610%%%
611\par
612In addition, a number of control windows can be used to examine and
613change view properties of differents viewers and drawers.
614\begin{itemize}
615\item[] {\bf PIDrawerTools} activated using {\tt $<$Alt$>$G} or
616\menubar{Tools/Show DrawerTools} on any viewer (see page \myppageref{secdrwtools})
617\item[] {\bf PIAxesTools} activated using {\tt $<$Alt$>$A} or
618\menubar{Tools/Show AxeTools} on PIScDrawWdg (see page \myppageref{secaxestools})
619\item[] {\bf PIImageTools} activated using {\tt $<$Alt$>$O} or
620\menubar{Tools/Show ImageTools} on PIImage
621(see page \myppageref{secimagetools})
622\item[] {\bf PIHisto2DTools} activated using {\tt $<$Alt$>$O} or through the PIDrawerTools
623for an active PIHisto2D drawer. (see page \myppageref{sech2dtools})
624\item[] {\bf PIContourTools} activated using {\tt $<$Alt$>$O} or through the PIDrawerTools
625for an active PIContourDrawer drawer. (see page \myppageref{secconttools})
626\end{itemize}
627These control tools are briefly described in appendix.
628
629%%%%%%%%%%
630\subsection{Graphic attributes}
631Graphic attributes are specified as a set of space separated strings. Use
632quotes to group them into a single argument parsed by the command
633interpreter. The options are decoded by the different objects handling the
634graphic (viewer widget, drawer, axe drawer). \\
635The complex decoding scheme
636is usually transparent for piapp users. However, there is an ambiguity when
637specifying some of the axes attributes, such as color or the font used for
638drawing the axes. The command {\bf setaxesatt} (\myppageref{setaxesatt})
639should thus be used to specify generic graphic attributes
640(color, font, line type) for axes.
641\subsubsection{PIScDrawWdg}
642The {\bf PIScDrawWdg} which handles 2d graphics recognizes the following options:
643\begin{verbatim}
644>> To define the 2D axes limits (in user coordinates)
645 xylimits=xmin,xmax,ymin,ymax
646>> To define the default drawing rectangle, in fraction of widget size
647 defdrrect=x1,x2,y1,y2 (default: x1=y1=0.1 x2=y2=0.9)
648>> Axes flags :
649 linx logx liny logy
650>> To change the background color (default=white)
651 wbgcol=colname
652
653\end{verbatim}
654%%%
655\subsubsection{PIDraw3DWdg}
656The {\bf PIDraw3DWdg} which handles 3d graphics recognizes the following options:
657\begin{verbatim}
658>> To define the 3D box limits :
659 xyzlimits=xmin,xmax,ymin,ymax,zmin,zmax
660 limit3dbox=xmin,xmax,ymin,ymax,zmin,zmax
661>> Autoscaling flags (rescaling of X/Y or X/Y/Z axes)
662 autoscale3dbox / noautoscale3dbox
663 autoscalexy3dbox / noautoscalexy3dbox
664 autoscalez3dbox / noautoscalez3dbox
665>> To change the background color (default=white)
666 wbgcol=colname
667
668\end{verbatim}
669%%%
670\subsubsection{PIImage}
671The {\bf PIImage} which handles image display recognizes the following options:
672\begin{verbatim}
673>> Define display zoomfactor
674 zoomxFact (zoomx2 zoomx3 ... zoomx9 ...)
675 zoom/Fact (zoom/2 zoom/3 ... )
676>> LUT (look-up table) definition (pixel value to index conversion)
677 lut=type,min,max (type=lin/log/sqrt/square)
678>> AutoLut selector : define the method for automatic determination
679 of LUT limits (min/max)
680 autolut=alt[,ns[,minp,maxp]] (minp<=pixels<=maxp)
681 - autolut=minmax[,Frac] 0<=Frac<=1
682 - autolut=meansig[,ns] --> mean +/- ns*sigma
683 - autolut=hispeak[,ns] --> around the peak of pixel values histogram
684 - autolut=histail[,ns] --> the tail of pixel values histogram
685>> Define color table and reversing color indexing flag
686 ColTableName revcmap
687 ==> Standard tables with 32 distinct colors:
688 grey32 invgrey32 colrj32 colbr32 colrv32
689 ==> Standard tables with 128 distinct colors:
690 grey128 invgrey128 colrj128 colbr128
691 ==> Shades of red/green/blue ...
692 red32cm green32cm blue32cm yellow32cm
693 orange32cm cyan32cm violet32cm
694 ==> Some of MIDAS color tables :
695 midas_pastel midas_heat midas_rainbow3
696 midas_bluered midas_bluewhite midas_stairs8
697 midas_stairs9 midas_staircase midas_color
698 midas_manycol midas_idl14 midas_idl15
699 ==> Other tables
700 multicol16 multicol64
701>> Viewed center position (image/array coordinates)
702 imagecenter=xc,yc
703>> Array axes to window axes mapping flags
704 invx invy exchxy
705>> To change the background color (default=black)
706 wbgcol=colname
707
708\end{verbatim}
709%%%
710\subsubsection{PIGraphicAtt}
711The {\bf PIGraphicAtt} Generic graphic attributes (color/font/line \ldots)
712decoded by all drawers:
713\begin{verbatim}
714>>> color=ColorName - fgcolor=ColorName - bgcolor=ColorName
715 ColorName: black white grey red blue green yellow
716 magenta cyan turquoise navyblue orange
717 siennared purple limegreen gold violet
718 violetred blueviolet darkviolet skyblue
719 royalblue forestgreen orangered brown
720>>> line=DashType,LineWidth
721 DashType: solid, dash, dotted, dashdotted Width: 1,2,...
722>>> font=FontName,FontAtt,FontSize
723 FontName: courier, helvetica, times, symbol
724 FontAtt: roman, bold, italic, bolditalic
725 FontSize: 6,8,10,12... (pts) - integer
726>>> marker=MarkerType,MarkerSize (MarkerSize: integer 3,5,7...
727 MarkerType: dot, plus, cross, circle, fcircle, box, fbox
728 triangle, ftriangle, star, fstar
729>>> arrow=ArrowType,ArrowSize (ArrowSize: integer 3,5,7...
730 ArrowType: basic, triangle, ftriangle,
731 arrowshaped, farrowshaped
732>>> ColorTables: defcmap grey32 invgrey32 colrj32 colbr32
733 grey128 invgrey128 colrj128 colbr128
734 red32cm green32cm blue32cm yellow32cm
735 orange32cm cyan32cm violet32cm
736 midas_pastel midas_heat midas_rainbow3 midas_bluered
737 midas_bluewhite midas_redwhite
738 multicol16 multicol64
739> revcmap : This flag reverses ColorMap indexing
740------- Old style graphic att ----------
741>> Lines: defline normalline thinline thickline dashedline thindashedline
742 thickdashedline dottedline thindottedline thickdottedline
743>> Font Att: deffontatt normalfont boldfont italicfont bolditalicfont
744 smallfont smallboldfont smallitalicfont smallbolditalicfont
745 bigfont bigboldfont bigitalicfont bigbolditalicfont
746 hugefont hugeboldfont hugeitalicfont hugebolditalicfont
747>> Font Names: deffont courierfont helveticafont timesfont symbolfont
748>> Marker: dotmarker<S> plusmarker<S> crossmarker<S> circlemarker <S>
749 fcirclemarker<S> boxmarker<S> fboxmarker<S> trianglemarker<S>
750 ftrianglemarker<S> starmarker<S> fstarmarker<S>
751 with <S> = 1 3 5 7 9 , Example fboxmarker5 , plusmarker9 ...
752
753\end{verbatim}
754%%%%
755\subsubsection{PIElDrawer}
756The {\bf PIElDrawer} decodes axe drawing attributes:
757\begin{verbatim}
758 >> Axe and grid configuration flags:
759 axesnone stdaxes defaxes
760 boxaxes boxaxesgrid fineaxes fineaxesgrid
761 centeredaxes finecenteredaxes centeredaxesgrid
762 finecenteredaxesgrid grid/nogrid
763 >> Centered axes position: axescenter=xc,yc
764 >> Axe ticks/labels (h=horizontal/x, v=vertical/y):
765 labels/nolabels hlabels/nohlabels vlabels/novlabels
766 ticks/noticks minorticks/nominorticks
767 extticks/intticks/extintticks nbticks=X_NbTicks,Y_NbTicks
768 tickslen=MajorTickLenFrac,MinorTickLenFraC
769 >> Axe label font size:
770 autofontsize=FontSizeFrac fixedfontsize
771 >> Up/Down title: title tit notitle notit
772 ... Color/Font/line attributes :
773
774\end{verbatim}
775The {\bf PINTuple} handles most 2D plotting : \\
776\begin{verbatim}
777 sta,stat,stats: activate statistic display
778 nsta,nstat,nostat,nostats: deactivate statistic display
779 statposoff=OffsetX,OffsetY : Position offset for Stats drawing
780 as a fraction of total size
781 connectpoints: The points are connected by a line
782 noconnectpoints (this is the default)
783 colorscale/nocolorscale (Use color scale for weight)
784 sizescale/sizescale=nbins/nosizescale (Use marker size for weight)
785 (and usual color/line/marker/... attribute decoding)
786
787\end{verbatim}
788%%%
789\subsubsection{PIHisto, PIHisto2D}
790{\bf PIHisto} and {\bf PIHisto2D} handle1D and 2D histograms display. \\
791The following options are recognised by {\bf PIHisto}: \\
792\begin{verbatim}
793 ---- PIHisto options help info :
794 sta,stat,stats: activate statistic display
795 nsta,nstat,nostat,nostats: deactivate statistic display
796 err / noerr,nerr : draw, do not draw error bars
797 autoerr : draw error bars if Marker drawing requested OR Profile histo
798 fill / nofill,nfill : fill, do not fill bars with selected color
799 statposoff=OffsetX,OffsetY : Position offset for Stats drawing
800 as a fraction of total size
801 ---- HistoWrapper options :
802 hbincont: select bin content as Y value for display (default)
803 hbinerr: select bin error as Y value for display
804 hbinent: select bin entries as Y value for display
805 hscale=value : multiplicative factor for Y value
806 hoffset=value : additive coefficient for Y value
807 hs1: set hscale=1 hoffset=0 (default)
808 hscale=value : multiplicative factor (in Y)
809
810\end{verbatim}
811The following options are recognised by {\bf PIHisto2D}: \\
812\begin{verbatim}
813- sta,stat,stats: activate statistic display
814 nsta,nstat,nostat,nostats: deactivate statistic display
815- h2disp=typ[,fracpts]: choose display type
816 typ=var: variable size boxes
817 typ=hbk: "a la hbook2"
818 typ=img: image like (use "h2col" for color map)
819 typ=pts: point clouds (fracpts=max possible fraction
820 of used pixels per bin [0,1])
821- h2scale=lin/log[,logscale]: choose linear or logarithmic scale
822- h2dyn=[hmin][,hmax]: choose histogramme range for display
823- use general key to define color table (ex: grey32,midas_heat,...)
824 (see general graphicatt description)
825- use key "revcmap" to reverse color table
826- h2frac=[fmin][,fmax]: choose sub-range display [0,1]
827 ---- HistoWrapper options : (see HistoWrapper above)
828
829\end{verbatim}
830%%%%
831\subsubsection{PINTuple3D , PISurfaceDrawer}
832The {\bf PINTuple3D} and {\bf PISurfaceDrawer}
833handles basic 3D plotting and can decode the common 3D box options:
834\begin{verbatim}
835 X/Y,Z axis rescaling option (-> cubic 3D box)
836 rescale=autoscale/ norescale=noautoscale : X/Y and Z axis
837 rescalexy=autoscalexy / norescalexy=noautoscalexy : X/Y axis
838 rescalexy=autoscalexy / norescalexy=noautoscalexy : Z axis
839\end{verbatim}
840The {\bf PINTuple3D} decodes in addition the following options:
841\begin{verbatim}
842 connectpoints: The points are connected by a line
843 noconnectpoints (this is the default)
844 colorscale/nocolorscale (Use color scale for weight)
845 sizescale/sizescale=nbins/nosizescale (Use marker size for weight)
846
847\end{verbatim}
848
849\subsubsection{PIContourDrawer}
850The {\bf PIContourDrawer} decodes the following options : \\
851\begin{verbatim}
852 autolevels : automatic selection of levels and number of contours
853 ncont=nLevel (or nc=NLevel) : sets the number of contour
854 lev=v1,v2,v3... (or niv=v1,v2,v3...) set the number and levels of contours
855 lstep=nLev,start,step : define incremental levels
856 labon/laboff : display of contour level values on/off
857 linear/bspline/cubicspl=3spl : select contour kind
858
859\end{verbatim}
860
861\subsubsection{PIBarGraph , PITextDrawer}
862{\bf PIBarGraph} is used by the {\tt bargraph} \myppageref{bargraph}
863command and has the following graphic options:
864\begin{verbatim}
865 ---- PIBarGraph options help info :
866 fill/nofill: set bar fill option
867 horizontalbars/verticalbars: set bar orientation
868 packfrac=value : set bar packing fraction (0..1)
869 barvaluelabel/nobarvaluelabel: Use/Don't use bar value as labels
870 --- + Usual colr/line/font attribute decoding ...
871 \end{verbatim}
872The command {\tt textdrawer} \myppageref{textdrawer} uses the
873{\bf PITextDrawer} which has the following options : \\
874\hspace*{10mm} {\tt frame,noframe: enable/disable frame drawing}
875
876
877%%%%%%%%%%%%%%% Section 4 : I/O
878\newpage
879\section{Data formats and input-output (I/O)}
880The data file formats recognized by piapp are the ones supported by the
881SOPHYA library or its extension.
882\begin{itemize}
883\item[\bul] ASCII files - Data can be imported from ascii (text) files as
884datatables or arrays. These objects can also be exported as text files.
885\item[\bul] FITS files - FITS is a popular format used in particular in astronomy.
886\href{http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html}
887Data is usually read from FITS files as vectors, images, cubes or tables.
888A subset of SOPHYA objects can be imported or exported in FITS format.
889\item[\bul] PPF (Portable Persistence file Format) is the native SOPHYA
890data format.
891\item[\bul] PostScript - All graphic output produced by piapp can be exported
892as postscript (.ps) or encapsulated postscript (.eps) files.
893\end{itemize}
894
895\subsection{Text files}
896Text (or ascii) files can be read into array or datatable objects by spiapp.
897
898{\bf Arrays :} \\
899Arrays can be written to to files in text/ascii format using the {\tt arrtoascii}
900 \myppageref{arrtoascii} command. Double precision matrices and vectors
901 can be read from text files using the commands
902 {\tt mtxfrascii} \myppageref{mtxfrascii} and
903 {\tt vecfrascii} \myppageref{vecfrascii} . \\
904The menu-bar command \menubar{File/Open-ASCII} reads in a text
905file as a matrix.
906\begin{verbatim}
907# Create and initialize a matrix
908newmtx arr 250 150 x+3*y
909# Save the file in the text file arr.txt
910arrtoascii arr arr.txt
911# Read the previously created file and fill a matrix
912mtxfrascii mxa arr.txt
913# Print and display the matrix
914print mxa
915disp mxa zoomx2
916\end{verbatim}
917It is possible to specify the field separator in the input file, as well as the marker for the comment
918lines.
919
920{\bf DataTable :} \\
921Text files can also be read as a 2-D table (NTuple or DataTable). The table should be
922created using the {\tt newnt} \myppageref{newnt} or
923{\tt newdt} \myppageref{newdt} command.
924The command {\tt ntfrascii} \myppageref{ntfrascii} can then be used to append
925data from the file to the datatable.
926
927\subsection{PPF}
928%%%
929PPF (Portable Persistence file Format) is the the native persistence
930format of SOPHYA and thus is fully handled by spiapp. PPF files can
931be opened through the menu-bar \menubar{File/Open-PPF}, or through
932the {\tt openppf} \myppageref{openppf}.
933
934If the PPF file contains NameTags, only the objects marked with nametags are read and given
935the corresponding names. Otherwise, all objects are red sequentially, with their names
936formed by the filename followed by a sequence number. It is also possible to force the sequential
937reading specifying the {\tt -s} flag for openppf.
938
939The objects managed in spiapp by the {\bf NamedObjMgr} can be saved to PPF files, with their
940names as NameTags. The commands {\tt saveppf} \myppageref{saveppf} or
941 {\tt saveall} \myppageref{saveall} can be used to this end.
942
943\begin{verbatim}
944# Create two vectors and two matrices
945newvec va1 150 sin(sqrt(x))
946newvec vb2 150 sin(sqrt(x))*sqrt(x*0.1)
947newmtx mxa 250 150 x+2.*y
948newmtx mxb 250 150 sin(sqrt(x))*cos(sqrt(y))
949# List of the objects in memory
950listobjs
951# Save the two vectors in the file vecab.ppf
952saveppf v* vecab.ppf
953# Save the two matrices in the file mxab.ppf
954saveppf m* mxab.ppf
955\end{verbatim}
956
957\subsection{FITS}
958FITS files may contain three types of data structures
959\begin{enumerate}
960\item Image or array data structure : {\tt IMAGE\_HDU}
961\item Binary table : {\tt BINARY\_TBL}
962\item ascii table : {\tt ASCII\_TBL}
963\end{enumerate}
964The {\bf FitsIOServer} module contain FitsHandler classes which
965can map many SOPHYA classes on FITS data structures.
966Generic {\tt IMAGE\_HDU} correspond to the SOPHYA \tcls{TArray}
967class, while {\tt BINARY\_TBL} or {\tt ASCII\_TBL} is mapped
968to NTuple or DataTable.
969
970FITS format files can be read through the menu command \menubar{File/Open-Fits},
971or using {\tt readfits/openfits} \myppageref{readfits} command.
972Objects can be exported to FITS using the {\tt writefits/savefits}
973\myppageref{writefits} command.
974
975\begin{verbatim}
976# Open the PPF file created by the commands above
977openppf vecab.ppf
978# Export the two vector objects to file vecab.fits
979# Note that the '!' forces c-fitsio to overwrite the file, if it exists
980writefits v?? !vecab.fits
981\end{verbatim}
982
983There are two commands useful
984when analyzing large catalogs (BINARY\_TBL) in FITS format, which avoid reading the whole
985table in memory. {\tt swfitstable}\myppageref{swfitstable} reads a specified HDU
986as a {\bf SwFitsDataTable} object which uses the FITS file as swap space.
987The {\tt fitsadapt}\myppageref{fitsadapt} can also be used for similar purposes.
988
989The following commands shows how to open a FITS file containing a synchrotron map
990of our galaxy. This file contains sky emission at 408 MHz,
991as brightness temperature, represented as a SOPHYA spherical map
992(SphereHEALPix$<$r\_4$>$) in \href{http://healpix.jpl.nasa.gov/}{\bf HEALPix}
993format \footnote{HEALPix home page: \hspace{5mm} http://healpix.jpl.nasa.gov/}.
994It has been made, by rebinning, from the Haslam 408 MHz
995all sky survey map, available from the NASA CMB data repository
996\href{http://lambda.gsfc.nasa.gov/}{\bf LAMBDA}
997\footnote{LAMBDA web site: \hspace{5mm} http://lambda.gsfc.nasa.gov/}.
998\label{syncmap}
999\begin{verbatim}
1000# Open the fits file : the map is in HEALPix format
1001readfits syncmap.fits
1002# Create a window with the appropriate size
1003newwin 1 1 800 400
1004# Display the map, specifying the colormap
1005disp syncmap 'lut=lin,2,50 midas_bluered'
1006\end{verbatim}
1007\begin{figure}[h]
1008\begin{center}
1009\includegraphics[width=15cm]{syncmap.eps}
1010\caption{Synchron map of our Galaxy, displayed in Molleweide projection.
1011The underlying SOPHYA object is a \tcls{SphereHEALPix} }
1012\end{center}
1013\end{figure}
1014
1015\subsection{Graphic export in postscript}
1016%%
1017Postscript a page description language widely used for printing and
1018graphic output, developed by Adobe systems. Refer to
1019\href{http://www.adobe.com/products/postscript/}{Adobe/PostScript3}
1020for more detail.
1021
1022Piapp graphic output can be exported in postscript (level 2) or
1023encapsulated postscript format, preserving the full precision
1024of vector graphics.
1025Postscript (.ps) files my contain several pages, each vue or window
1026corresponding to one page and are suitable for direct printing.
1027An Encapsulated Postscript (.eps) file contains a single page,
1028corresponding to a window and is suitable for inclusion in
1029other document.
1030
1031Postscript file can easily be converted to other formats,
1032PDF or image formats (jpeg \ldots) using converters like
1033{\bf ps2pdf} or {\bf imagemagick}.
1034
1035The menu items under \menubar{PostScript} can be used to export
1036graphics in postscript. The default file name is {\tt pia.ps}
1037or {\tt pia1.eps} {\tt pia2.eps} \ldots
1038The following commands can also be used to create postscriot file
1039from the display in the current graphic window:
1040\begin{itemize}
1041\item {\tt w2ps} \myppageref{w2ps} to add the current graphic
1042output as a new page to the output postscript file.
1043The current output postscript file (default = w2ps.ps)
1044should be closed before being used. Exiting piapp closes automatically
1045all postscript files.
1046\item {\tt psclosefile} \myppageref{psclosefile} to close the current
1047output postscript file.
1048\item {\tt pssetfilename} \myppageref{pssetfilename} To define
1049the output postscript file name for the subsequent {\tt w2ps} commands.
1050\item {\tt w2eps} \myppageref{w2eps} to export the current
1051graphic display, in Encapsulated Postscript format to the specified file.
1052\begin{verbatim}
1053# Open the PPF file created by the commands above
1054openppf vecab.ppf
1055# Display one of the vectors
1056setaxesatt 'font=helvetica,bold,18 fixedfontsize'
1057disp va1 'blue marker=box,5'
1058# Export the graphic to file va1.eps
1059w2eps va1.eps
1060# The created file can be viewed using gv
1061\end{verbatim}
1062\end{itemize}
1063
1064%%%%%%%%%%%%%%% Section 5 : analyse a la paw
1065\newpage
1066\section{Tables and Expression Plotting}
1067\label{tableplot}
1068A powerful data analysis technic available in piapp is
10692D, 3D plot, and histogramming applied to arbitrary analytical
1070expression of table columns.
1071This analysis technic has been introduced by the popular
1072CERN \href{http://paw.web.cern.ch/paw/}{\bf PAW}
1073({\bf P}hysics {\bf A}nalysis {\bf Workstation})
1074\footnote{PAW home page : http://paw.web.cern.ch/paw/ } program
1075and the underlying HBOOK fortran library.
1076Compared to PAW, piapp extends in many respects this capability,
1077piapp offers in particular the possibility to manipulate many
1078objects as if they where a DataTable, or NTuple.
1079There are also additional 2D and 3D representations e.g.
1080{\tt plot2de} \myppageref{plot2de},
1081{\tt plot2dw} \myppageref{plot2dw},
1082{\tt plot2dc} \myppageref{plot2dc} and
1083{\tt plot3dw} \myppageref{plot3dw}.
1084
1085\subsection{How does it work ?}
1086
1087The Expression.Plotting commands in piapp operate on objects through the
1088{\bf NTupleInterface} class methods. Some classes like NTuple or BaseDataTable
1089inherit from NTupleInterface, while for the other classes, the corresponding
1090NObjMgrAdapter class exposes an object conforming to NTupleInterface through the
1091method : \\
1092\hspace*{5mm} {\tt NTupleInterface* NObjMgrAdapter::GetNTupleInterface()} \\
1093A C file (PIATmp\_xxx/expf\_pia\_dl.c) is created by piapp containing the
1094specified expressions, which should conform to the C-language syntax.
1095In addition to the functions in {\tt math.h} (sin, cos, log \ldots),
1096the following functions are defined by piapp and can be used:
1097\begin{itemize}
1098\item Flat random number generators: {\tt drand01() , drandpm1() }
1099\item Gaussian random number generator: {\tt GauRand() }
1100\item Angle conversion: {\tt deg2rad(double d), rad2deg(double r) }
1101\item $(\theta,\varphi)$ to Molleweide X,Y projection: \\
1102\hspace*{5mm}{\tt double tetphi2mollX(double theta, double phi)} \\
1103\hspace*{5mm}{\tt double tetphi2mollY(double theta)}
1104\item Longitude(0..360) deg., Latitude(-90..90) deg. conversion to Molleweide X,Y: \\
1105\hspace*{5mm}{\tt double longlat2mollX(double longit, double lat) } \\
1106\hspace*{5mm}{\tt double longlat2mollY(double lat) }
1107\end{itemize}
1108
1109The processing steps for an Expression.Plotting in piapp :
1110\begin{enumerate}
1111\item Creation of the C-file.
1112\item On the fly compilation of the generated file.
1113\item The resulting shared-object is loaded and linked with the application
1114\item Loop over the NTupleInterface object rows. The created function is called
1115with the data from each row
1116\item The return values are used to fill an histogram, or a matrix/vector or
1117another NTuple or to produce a 2D or 3D graphic display.
1118\end{enumerate}
1119
1120Although rather complex, the efficiency gain during processing data easily compensates
1121for the overhead of the compilation step.
1122
1123\subsection{Column/variable names}
1124
1125When working with real 2-D tables (NTuple, DataTable \ldots), the column names
1126are the name of the variables which can be used in the C-expressions.
1127There is an additional variable, called {\tt \_nl}, automatically
1128provided by piapp, corresponding the table row number, starting from 0.
1129
1130For the other objects in piapp, the variable names are listed below:
1131\begin{itemize}
1132\item[\rond] For 2D table objects {\bf (NTuple,DataTable,\ldots)}: ColumnNames,\_nl
1133\item[\rond] For FITS files opened through {\tt fitsadapt} command: FITSColumnNames,\_nl
1134\item[\rond] For {\bf Histo1D/HProf} objects : i,x,val,err,nb,\_nl
1135\item[\rond] For {\bf Histo2D} objects : i,j,x,y,val,err,\_nl
1136\item[\rond] For {\bf HistoErr} objects : i,x,val,err2,nb,\_nl
1137\item[\rond] For {\bf Histo2DErr} objects : i,j,x,y,val,err2,nb,\_nl
1138\item[\rond] For {\bf \tcls{TVector}, \tcls{TMatrix} , \tcls{Image} } objects : \\
1139 \hspace*{10mm} n,r,c,val,real,imag,mod,phas,\_nl
1140\item[\rond] For {\bf \tcls{TArray}} objects : n,x,y,z,t,u,val,real,imag,mod,phas,\_nl
1141\item[\rond] For {\bf GeneralFitData} objects : x0,ex0 x1,ex1 ... xn,exn y,ey ,ok,\_nl
1142\item[\rond] For {\bf \tcls{SphereHEALPix} , \tcls{SphereThetaPhi} , \tcls{SphereECP}
1143\tcls{LocalMap} } objects : \hspace{10mm} i,k,val,real,imag,mod,phas,teta,phi,\_nl
1144\end{itemize}
1145
1146%%%%%
1147\subsection{Examples}
1148The following examples illustrates the use of some Expression Plotting commands
1149(see the command groups {\bf Expr. Plotting} \myppageref{ExprZZPlotting} and
1150 {\bf pawCmd} \myppageref{pawCmd}).
1151The {\bf pawCmd} defines a number of operations with command name and syntax
1152similar to the CERN PAW program.
1153The graphic output from the examples below are shown in the figures
1154\ref{exhis2dpl} and \ref{uzcpos}.
1155\begin{enumerate}
1156\item 2D plot with error bars \\[1mm]
1157\begin{verbatim}
1158# Set the axes attibute (the font used for axes ...)
1159setaxesatt 'font=helvetica,bold,16 minorticks fixedfontsize'
1160# Open the file demo.ppf (in DemoPIApp)
1161openppf demo.ppf
1162print nt21
1163print nt22
1164# 2D plot directly from the NTuple columns (nt2d)
1165# nt2d DO NOT use a compiled c file
1166nt2d nt21 x y - - - - 'font=helvetica,bold,16'
1167# Overlay a plot with scaled error bars from nt22
1168plot2de nt22 x y ex*0.3 ey*0.5 1 \
1169 'same marker=box,7 red font=helvetica,bold,16 '
1170\end{verbatim}
1171\vspace*{4mm}
1172\item Compute the histogram of pixel values for a \tcls{SphreHEALPix}.
1173The data come from the synchrotron map (syncmap.fits), described page \pageref{syncmap}.
1174\begin{verbatim}
1175# Open the synchrotron map file (HEALPix format spherical map)
1176# The file can be found in directory DemoData/
1177readfits syncmap.fits
1178newwin 1 1 800 400
1179disp syncmap 'lut=lin,2,50 midas_bluered'
1180newwin 1 2
1181# Compute and display the pixel value histogram (brightness temperature)
1182n/plot syncmap.val val<200 ! ! 'font=helvetica,bold,16 notit'
1183settitle 'Sky brightness @ 408 MHz' ' ' 'font=helvetica,bold,16'
1184# display the pixel value histogram in the galactic plane
1185n/plot syncmap.val val<200&&(fabs(teta-M_PI/2)<0.025) ! ! 'red notit'
1186settitle '408 MHz - Galactic plane' ' ' 'font=helvetica,bold,16 red'
1187\end{verbatim}
1188\vspace*{4mm}
1189\item Sources (galaxies) distribution over the sky. The data used below (uzc.ppf)
1190has been extracted from the {\bf U}pdated {\bf Z}wicky {\bf C}atalog of Galaxies,
1191available from the Harvard-Smithsonian Center For Astrophysics
1192\href{http://tdc-www.harvard.edu/uzc/}{CfA/UZC web site}.
1193\footnote{CfA web site: \hspace{5mm} http://tdc-www.harvard.edu/uzc/} \\[1mm]
1194%%%
1195\begin{verbatim}
1196# Keep the synchrotron map
1197# Open the Updated Zwicky Catalog of galaxies (in DemoData)
1198openppf uzc.ppf
1199zone 1 2
1200# Draw a longitude-latitude grid in Molleweide projection
1201mollgrid 5 7 'axesnone black font=helvetica,roman,12 notit'
1202# Overlay the sources distribution from UZC, for bright objects (mag<14)
1203plot2d uzc longlat2mollX(ra*15,dec) longlat2mollY(dec) mag<14 \
1204 'same red marker=circle,5'
1205# Change the plot title
1206settitle 'RA-Dec in degrees UZC (Updated Zwicky Catalog)' ' ' \
1207 'font=helvetica,bold,16 red'
1208# Display the synchrotron map
1209disp syncmap 'lut=lin,2,40 grey128'
1210# Add the source distribution in Galactic coordinates
1211plot2d uzc longlat2mollX(glong,glat) longlat2mollY(glat) mag<14 \
1212 'same nsta red marker=circle,5'
1213\end{verbatim}
1214%%%%%%%%%%%%%%%%
1215%%%%%%%%%%%%%%%%
1216\item Analysis of elevation (altitude) data for france. We use the francetopo.ppf
1217data set described page \pageref{francetopo}.
1218\begin{verbatim}
1219# open and display the topographic data for france
1220openppf francetopo.ppf (in DemoData/ directory)
1221print francetoto
1222#--- TMatrix<s>(NRows=1332, NCols=1548) ND=2 SizeX*Y*...= 1548x1332 ---
1223disp francetopo 'zoom/2 imagecenter=750,700 lut=lin,-700,800 colbr128'
1224# Compute the altitude distribution
1225newh1d altf 0. 4000 100
1226projh1d altf francetopo val val>0.1
1227# Display the histogram overlayed on the topographic map
1228disp altf 'white line=solid,2 font=helvetica,bold,14 inset=0.1,0.6,0.45,0.9'
1229# Compute altitude distribution for the massif central (Auvergne)
1230newh1d altmc 0. 2000 100
1231# We select the region as a circle of radius 200, centered on x=c=970,y=r=920
1232set regcut (sqrt((c-970)*(c-970)+(r-920)*(r-920))<200)
1233projh1d altmc francetopo val (val>0.1)&&$regcut
1234# Create a new window and display the two histograms
1235newwin 1 2
1236setaxesatt 'font=helvetica,bold,16 fixedfontsize'
1237disp altf 'notit'
1238settitle 'Elevation (altitude) distribution over France' ' ' \
1239 'font=helvetica,bold,16'
1240disp altmc 'notit'
1241settitle 'Elevation (altitude) distribution over MassifCentral' ' ' \
1242 'font=helvetica,bold,16'
1243\end{verbatim}
1244\end{enumerate}
1245
1246\begin{figure}[hp]
1247\includegraphics[width=15cm]{exhis2dpl.eps}
1248\caption{
1249top: 2d plot example with error bars \hspace{5mm}
1250bottom: Histogram of pixel values from the synchrotron map
1251of our galaxy}
1252\label{exhis2dpl}
1253\end{figure}
1254
1255\begin{figure}[p]
1256\includegraphics[width=15cm]{uzcpos.eps}
1257\caption{UZC: Updated Zwicky Catalog. \hspace{5mm}
1258top: The galaxy position distribution in equatorial
1259$(\alpha, \delta)$ coordinates. \hspace{5mm}
1260bottom: Position distribution in Galactic coordinates, superimposed on
1261the synchrotron map.}
1262\label{uzcpos}
1263\end{figure}
1264
1265%%%%%%%%%%%%%%% Section 6 : command interpreter
1266\newpage
1267\section{Command interpreter}
1268piapp uses the class {\bf PIACmd} which extends slightly the
1269SOPHYA class {\bf Commander} as the command interpreter.
1270{\bf Commander} is a c-shell inspired, string oriented command
1271interpreter. Although it has many limitations compared to
1272c-shell, or Tcl , it provides some interesting possibilities:
1273\begin{itemize}
1274\item Extended arithmetic operations (c-like and RPN)
1275\item Simple and vector variables
1276\item Script definition
1277\item Command execution in separate threads
1278\item Dynamic Load
1279\end{itemize}
1280
1281We describe below the {\bf Commander} possibilities,
1282as well as the few {\bf PIACmd} extensions.
1283
1284\subsection{Variables}
1285The SOPHYA::Commander interpreter manages non typed set of variables.
1286Environment variables are also accessible through
1287the usual {\tt \$varenvname}, unless shadowed by a Commander
1288variable. All Commander variables are vector of strings, and are
1289extended as necessary. {\tt \$varname} is the string formed by all
1290the vector elements. Except when performing arithmetic operations,
1291variables are treated as strings.
1292\par
1293An application level set of variables is also managed
1294by Commander, through redefinition of \\
1295{\tt Commander::GetVarApp() / GetVarApp() \ldots } methods. \\
1296The {\bf PIACmd} in piapp redefines the {\tt GetVarApp() }
1297in order to provide an easy access to some of objects attributes or methods,
1298managed by {\bf NamedObjMgr} (See below).
1299
1300\subsubsection{Interpreter/Commander variables}
1301\begin{itemize}
1302\item[\rond] {\bf Definition and initialisation of variables }
1303\begin{verbatim}
1304# Notice that the set command has no = sign
1305Cmd> set sv StringValue
1306# Clearing/removing of a variable : unset or clearvar
1307Cmd> unset sv
1308
1309# Definition of a multi element variable (vector type)
1310# Notice that spaces before / after '(' and ')' are mandatory
1311Cmd> set vecv ( mot1 mot2 mot3 mot4 mot5 )
1312# Arithmetic expression : C language syntax - spaces
1313# before/after '=' are mandatory
1314Cmd> a = 2+3*sqrt(4)
1315# The '=' operator can also be used to initialize a variable with a string
1316Cmd> a = 'Bonjour Madame'
1317# A vector element can be specified in the left hand side
1318Cmd> vecv[2] = 'coucou'
1319# Or using an interpreter variable as index :
1320Cmd> i = 3
1321Cmd> vecv[i] = 'Ooohhh'
1322\end{verbatim}
1323
1324On the right hand side, the value of a variable should be accessed using
1325the \$ character. \\
1326A string can be parsed into words using {\tt var2words}
1327\begin{verbatim}
1328Cmd> var2words varname wordvarname [separateur]
1329\end{verbatim}
1330
1331\item[\rond] {\bf Accessing variable contents } \\
1332The \$ character is used to access the content of a variable {\tt \$varname} .
1333Substitution rules :
1334The {\tt \$xxx} is replaced by the value of variable xxx.
1335No substitution is performed for strings enclosed in simple quotes {\tt ' ... \$xxx '},
1336but substitution is done in strings enclosed in double quotes.
1337Parenthesis or brackets can be used to specify the variable name, inside a string
1338without white space: {\tt \${vname} } ou {\tt \$(vname)}.
1339\begin{verbatim}
1340Cmd> x = 'Hello'
1341Cmd> echo $x
1342# Size of a vector variable : $#vname
1343Cmd> set vx ( 111 2222 3333 444444 )
1344Cmd> echo $#vx
1345# Accessing vector elements
1346Cmd> echo $vx[0] $vx[1]
1347# or using an interpreter variable as index :
1348Cmd> i = 2
1349Cmd> echo $vx[i]
1350# Special syntax: $[vname] is replaced by the content
1351# of a variable whose name is $vname
1352Cmd> zzz = 'Commander'
1353Cmd> xxx = 'zzz'
1354Cmd> echo '---> $[xxx]= ' $[xxx]
1355---> $[xxx]= Commander
1356\end{verbatim}
1357
1358\par
1359\end{itemize}
1360
1361\subsubsection{Special variables}
1362\begin{itemize}
1363\item {\tt \$retval} ou {\tt \$retstr} : the string specified in the last {\bf return} statement
1364\item {\tt \$status} : Return code from the last executed command.
1365Arguments of scripts (see below) or file executed through {\bf exec} command.
1366\item {\tt \$\# } : number of arguments, except \$0
1367\item {\tt \$0} : Script or file name
1368\item {\tt \$1 \$2 \$3} .... : Arguments (for scripts and .pic files (exec))
1369\end{itemize}
1370
1371\subsubsection{Environment variables}
1372Environment variables can simply be accessed by {\tt \$varenvname}.
1373However, the environment variables have the lowest priority during substitution.
1374Interpreter's variables have the highest priority, followed
1375by the application level variables.
1376
1377\subsubsection{Objects/Application level variables}
1378For some classes managed by NamedObjMgr,
1379PIACmd provide acces to some of the attributes of the object by
1380{\tt \${objname.attname} }. This mechanism has been implemented in particular for
1381TArrays, TMatrix/TVector, Histograms, NTuples and DataTables.
1382In addition, when brackets are used ($\${vname}$), the priority level between interpreter variables
1383and application level variable is changed. If {\tt vname} exist at the application level,
1384{\tt \${vname} } is replaced by its value, even if an interpreter variable with the
1385same name has been defined.
1386\begin{itemize}
1387\item[\rond] Accessing object attributes
1388\begin{verbatim}
1389# -------- Example with a Vector
1390piapp[1] newvec va 12
1391piapp[2] echo $va
1392TVector<d>(12) (nr=12, nc=1)
1393# ------- An undefined attribute, such as ? might be
1394# used to get list of valid attributes
1395piapp[3] echo ${va.?}
1396TMatrix.Att: rank size/nelts nrow/nrows ncol/ncols sum sumsq norm min ...
1397# Compound names, in the form name.att must be inclosed in
1398# braces {name.att}
1399piapp[4] echo ${va.size}
140012
1401# -------- Example with an histogram
1402piapp[8] newh1d his 0. 20. 40
1403piapp[10] echo ${his.?}
1404Histo1D: nbin binw mean sigma over under nentries ndata
1405 xmin xmax vmin vmax imin imax
1406piapp[11] echo ${his.nbin}
140740
1408\end{verbatim}
1409
1410\item[\rond] Accessing object.Info() \\
1411For objects having an DVList Info() object (TArray/TVector/TMatrix , NTuple, DataTable, SwPPFDataTable, it is possible to access DVList members by the corresponding names : \\
1412\hspace*{10mm} {\tt \$\{objName.info.varName\} }
1413\item[\rond] Getting DataTable rows \\
1414For NTuple and BaseDataTable objects (DataTable, SwPPFDataTable, SwFitsDataTable), it is
1415possible to get a string representation of a given row, by specifying
1416\$\{tableName.row\} followed by the row number (starting from 0) : \\
1417\hspace*{10mm} {\tt \$\{tableName.row.num\} }
1418\end{itemize}
1419
1420
1421
1422\subsection{Control structures}
1423
1424\begin{itemize}
1425\item[\rond] Enumerated loop:
1426\begin{verbatim}
1427foreach f ( w1 w2 w3 ... )
1428 ...
1429 echo $f
1430end
1431\end{verbatim}
1432
1433Note that spaces before/after '(' et and ')' are mandatory.
1434An alternative form uses a vector variable name :
1435\begin{verbatim}
1436foreach v vecname
1437 ...
1438 echo $v
1439end
1440\end{verbatim}
1441
1442\item[\rond] Integer type loop:
1443\begin{verbatim}
1444for i startInt:endInt[:stepInt]
1445 ....
1446 echo $i
1447end
1448\end{verbatim}
1449
1450\item[\rond] Integer type loop:
1451\begin{verbatim}
1452for f startFloat:endFloat[:stepFloat]
1453 ....
1454 echo $f
1455end
1456\end{verbatim}
1457
1458\item[\rond] Loop over lines of a file
1459\begin{verbatim}
1460forinfile line FileName
1461 ...
1462 echo $line
1463end
1464\end{verbatim}
1465
1466\item[\rond] The {\tt break} instruction can be used to exit from a loop
1467
1468\item[\rond] {\bf if then else} Conditional execution:
1469\begin{verbatim}
1470if ( test ) then
1471endif
1472
1473if ( test ) then
1474 ....
1475else
1476 ....
1477endif
1478\end{verbatim}
1479Note that spaces before/after '(' et and ')' are mandatory.
1480
1481test is in the form {\tt a == b} OR {\tt a != b} OR {\tt a < b} OR {\tt a > b}
1482OR {\tt a <= b} OR {\tt a >= b}. Comparison operators should be delimited
1483by spaces.
1484{\tt ==} et {\tt !=} make a string comparison, while
1485{\tt < , > , <= , >=} compare the values obtained after string to double conversion.
1486\end{itemize}
1487
1488\subsection{Script definition}
1489A script is a sequence of commands. It is very similar to the execution of commands
1490from a file ({\bf exec filename}). Once a script has been defined, it can be called specifying
1491specifying the script name followed by its arguments.
1492\begin{verbatim}
1493# Script definition :
1494defscript scriptname [description ]
1495 ....
1496endscript
1497
1498# Executing the script
1499Cmd> scriptname arg1 arg2 arg3 ....
1500\end{verbatim}
1501
1502The {\tt return} instruction stops the execution and returns from a script, or from a command
1503file called through {\bf exec}. \\
1504The commands {\bf listscript } and {\bf clearscript scriptname} can be used
1505to obtain the list of already defined script, or to clear a script definition.
1506
1507\subsection{Other built-in commands}
1508\begin{itemize}
1509\item[\rond] Instruction {\bf echo } to write the line to cout/stdout
1510\item[\rond] Instruction {\bf echo2file} to write (append) the line to file ({\tt echo2file filename ....})
1511\item[\rond] Instruction {\bf sleep nsec} wait for {\tt nsec} seconds
1512\item[\rond] Instructions {\bf timingon , timingoff , traceon , traceoff } \\
1513%
1514\item[\rond] {\bf exec filename [arg1 arg2 ... ] } to execute command from
1515the file named {\tt filename}. {\tt .pic} is the default extension for the interpreter
1516command files.
1517\item[\rond] {\bf help} and {help keyword/commandname }
1518\item[\rond] {\bf listvars , listcommands } to print the list of defined variables and known
1519commands
1520\item[\rond] An alias for a command by {\bf alias aliasname 'string ' }. Alias substitution
1521occurs for the first word in a command line. {\bf listalias} prints the list of all
1522defined aliases.
1523\item[\rond] Execution control (piapp/PIACmd extension):
1524It is possible to stop the interpreter execution in a loop, a script or
1525a command file by the {\bf stop} command, or using
1526 {\tt <Cntrl C>} in the piapp console (PIConsole) \\
1527\end{itemize}
1528
1529\subsection {Command execution in separate threads}
1530It is possible to create new threads to execute commands
1531( for non built-in interpreter commands). The syntax is similar
1532to unix shell background tasks: an {\&} should be added at the end
1533of the command line. A new thread is then created for the
1534execution of the command, if declared as thread safe \\
1535(see {\tt CmdExecutor::IsThreadable() }.
1536\par
1537Thread management commands:
1538\begin{itemize}
1539\item[\rond] {\bf thrlist }Print current list of threads, with the associated command
1540the thread identifier (integer ThrId) and its status.
1541\item[\rond] {\bf cleanthrlist } Removes all finished threads from the list.
1542An automatic cleanup is performed periodically.
1543\item[\rond] {\bf cancelthr ThId } / {\bf killthr ThId } Stops/kills the thread with
1544the identifier ThId. Avoid using theses commands as the cleanup does
1545not release some resources associated with
1546the thread (memory, mutex \ldots).
1547\end{itemize}
1548
1549Executing commands in a separate thread is useful for CPU or data intensive
1550commands. Most {\bf Expr.Plotting}
1551(plot2d, plot2dw, plot2de, plot3d, ntloop, fillvec, fillmtx \ldots)
1552and some of the {\bf pawCmd} (n/plot n/proj) are thread safe. However, due to the
1553current mutex lock management for these Expr.Plotting/pawCmd commands, only one
1554such command can run concurrently with other piapp threads.
1555Some of the commands in the {\bf CxxExecutorCmd} (
1556c++exec, c++execfrf, c++create, c++createfrf, c++compile, c++link) are also thread safe.
1557The same remark concerning lock management applies to these commands, while
1558CxxExecutorCmd commands can run in parallel with Expr.Plotting commands.
1559
1560
1561%%%%%%%%%%%%%%% Section 7 : c++ execution
1562\newpage
1563\section{On the fly C++ execution}
1564\label{flycplusplus}
1565Piapp operates on the underlying SOPHYA class library objects.
1566Obviously, only a small fraction of functionalities in the libraries
1567are directly available through the commands. On the fly C++ compilation
1568and execution in piapp provides an easy access to the whole class library.
1569
1570The {\bf NamedObjMgr} class handles most of the communication between different
1571component of the application, including user c++ code.
1572The NamedObjMgr class implements a singleton scheme, where all instances of the
1573class operate on the same data.
1574Most operations, in particular directory and object management are thread-safe.
1575The most usefull NamedObjMgr methods in user code are:
1576\begin{itemize}
1577\item Adding an object using its pointer. The object should be created using new. \\
1578{\tt \small bool NamedObjMgr::AddObj(AnyDataObj* obj, string \& nom, bool crd=false) }
1579\item Adding an object using its reference. The Object Adapter is used to Clone
1580the object. For classes like TArray or Spherical maps, implementing reference sharing,
1581the cloned object shares its data with the original object.
1582The Cloned object is then added to the list. \\
1583{\tt \small bool NamedObjMgr::AddObj(AnyDataObj\& obj, string \& nom, bool crd=false)}
1584\item Object display methods : \\
1585{\tt \small NamedObjMgr::DisplayObj(string \& nom, string dopt="") \\
1586NamedObjMgr::DisplayImage(string \& nom, \ldots ) \\
1587NamedObjMgr::DisplayNT(string \& nom, \ldots )} \\
1588\ldots
1589\item Access to other parts of the piapp application : \\
1590{\tt \small PIStdImgApp* NamedObjMgr::GetImgApp() \\
1591PIACmd* PIStdImgApp::CmdInterpreter() }
1592\end{itemize}
1593
1594\subsection{How does it work ?}
1595When one the {\bf CxxExecutorCmd} \myppageref{CxxExecutorCmd} commands
1596({\tt c++exec} or {\tt c++execfrf}) is invoked, piapp performs the
1597following operations:
1598\begin{itemize}
1599\item Create a c++ file, and includes the usual libstc++ and SOPHYA header files
1600(file named PIATmp\_xxx/cxx\_spiapp.cc)
1601\item The user code is put in a c++ function: \\
1602{\small \tt int usercxx( vector<string> \& args ) }
1603\item References to all objects present in the current working NamedObjMgr directory
1604(default=/home) are declared and initialized. Objects in the current directory can
1605thus be easily accessed through variables bearing the corresponding object name
1606in piapp.
1607\item The c++ source file is compiled and linked with SOPHYA libraries,
1608and any additional library, specified through {\tt c++mylibs} \myppageref{cZZmylibs}).
1609The compilation and link steps are carried by the SOPHYA class {\b CxxCompilerLinker}.
1610\item The resulting shared object is loaded by piapp and the function
1611{\tt usercxx()} is called.
1612\end{itemize}
1613
1614To facilitate communication with piapp/NamedObjMgr, two CPP macros are defined:
1615\begin{itemize}
1616\item[\rond] {\bf KeepObj(VarName) } where VarName is a user declared
1617c++ variable, corresponding to an object inheriting from AnyDataObj.
1618When this macro is called, the corresponding object is cloned by the object
1619Adapter and added to the list managed by NamedObjMgr,
1620with VarName as the object name.
1621\item[\rond] {\bf DisplayObj(VarName, graphic\_att) } adds the object and
1622request its display.
1623\end{itemize}
1624
1625\subsection{Examples}
1626
1627\begin{enumerate}
1628\item Computation using TimeStamp object. \\[1mm]
1629%%
1630$\longrightarrow$ File compdate.cc :
1631\begin{verbatim}
1632 TimeStamp now; // Current date
1633 TimeStamp y2000(2000,1,1,12,0,0.); // 1 jan 2000, 12:00
1634 cout << " Y2000=" << y2000 << " --> Now: " << now << endl;
1635 cout << " From Y2000 to Now= " << now.ToDays() - y2000.ToDays() << " days" << endl;
1636\end{verbatim}
1637$\longrightarrow$ piapp commands : \\
1638{\tt piapp> c++execfrf compdate.cc} \\
1639$\longrightarrow$ The result : \\
1640\begin{verbatim}
1641PIABaseExecutor: Call usercxx( ... )
1642 Y2000= 01/01/2000 12:00:0.0 UT --> Now: 13/12/2007 14:20:50.0 UT
1643 From Y2000 to Now= 2903.1 days
1644\end{verbatim}
1645%%%%
1646\item Working with objects in piapp: \\[1mm]
1647\begin{verbatim}
1648# We create three vectors
1649newvec va 256 sin(x/5.)
1650newvec vb 256 cos(x/18.)*exp(-x/150.)
1651newvec vc 256
1652# We call c++exec to make an operation on these vectors
1653c++exec vc=va+3.*vb;
1654# Display the resulting vector
1655disp vc
1656\end{verbatim}
1657%%%
1658\item Creating and adding new objects \\[1mm]
1659$\longrightarrow$ File myf\_fft.h :
1660\begin{verbatim}
1661inline double myf(double x)
1662{
1663return(3*sin(0.2*x)+4*cos(x)+5*sin(4*x+0.25)
1664 +3.5*cos(9*x+0.45) + 0.05*x);
1665}
1666\end{verbatim}
1667$\longrightarrow$ File myf\_fft.h :
1668\begin{verbatim}
1669TVector<r_8> in(4048);
1670TVector<r_8> noise(4048);
1671TVector< complex<r_8> > out;
1672in = RegularSequence(0., 0.05);
1673noise = RandomSequence(RandomSequence::Gaussian, 0., 4.);
1674MathArray<r_8> ma;
1675ma.ApplyFunctionInPlace(in, myf);
1676in += noise;
1677FFTPackServer FFTServ;
1678cout << " Calling FFT " << endl;
1679FFTServ.FFTForward(in, out);
1680DisplayObj(in, "");
1681DisplayObj(out, "red");
1682\end{verbatim}
1683$\longrightarrow$ piapp commands :
1684\begin{verbatim}
1685# Remove existing in/out objects
1686rm in out
1687# Divide then graphic window in two regions
1688zone 1 2
1689# Compile and execute the c++ code
1690c++execfrf fft.icc myf_fft.h
1691listobjs
1692\end{verbatim}
1693\end{enumerate}
1694
1695\subsection{Include files, libraries \ldots}
1696\begin{itemize}
1697\item[\rond] The different steps of c++exec or c++execfrf
1698can be performed by the following commands: {\tt c++create , c++createfrf,
1699c++compile, c++link, call}. This is useful when the same code
1700has to be executed multiple times.
1701\item[\rond] An interactive editing / c++ execution window can be
1702displayed through the menu-bar, \menubar{Tools/CxxExecutorWindow}
1703\item[\rond] The {\tt c++import} \myppageref{cZZimport}
1704activate inclusion of header files for additional SOPHYA modules,
1705such as Samba SkyMap SkyT FitsIOServe \ldots.
1706\item[\rond] The inclusion of additional header files and libraries
1707can be specified using the {\tt c++include} \myppageref{cZZinclude}
1708and {\tt c++mylibs} \myppageref{cZZmylibs}.
1709\item[\rond] A dialog window for changing various c++ compile and link
1710options can be displayed by through the menu-bar
1711\menubar{Special/CxxExecOption}
1712\end{itemize}
1713
1714
1715%%%%%%%%%%%%%%% Section 8 : command reference
1716\newpage
1717\section{piapp command reference}
1718\label{piappcmdref}
1719This section contains the description of piapp commands. This information
1720is available on-line, through the help command, or through a graphic
1721window, accessible by \menubar{File / Help}.
1722The help items and command are divided into different sections,
1723where related commands are grouped. \\[10mm]
1724
1725% \include{piahelp}
1726\input{piahelp.tex}
1727
1728% La partie des appendix
1729\appendix
1730\newpage
1731\section{Interactive control windows}
1732\subsection{DrawerTools} \index{DrawerTools}
1733\label{secdrwtools}
1734The {\bf PIDrawerTools}, shown in the figure \ref{figdrwtools} can be
1735used to change the graphic attributes (color, font, marker, \ldots)
1736of the Drawers displayed in 2D displays
1737({\bf PIScDrawWdg} \myppageref{PIScDrawWdg}) or 3D displays
1738({\bf PIDraw3DWdg} \myppageref{PIDraw3DWdg}), as well in image displays
1739{\bf PIImage} (\myppageref{PIImage}). The PIDrawerTools can be activated
1740either using {\tt Alt<G>} on a PIScDrawWdg,PIDraw3DWdg,PIImage,
1741or through the \menubar{Tools/Show DrawerTools}.
1742A given drawer can be selected through the DrawerId selector (+ / - buttons)
1743
1744\vspace*{5mm}
1745\begin{figure}[ht!]
1746\begin{center}
1747\includegraphics[width=8cm]{piapp_drwtools.eps}
1748\caption{PIDrawerTools}
1749\label{figdrwtools}
1750\end{center}
1751\end{figure}
1752%%%%
1753\subsection{AxesTools} \index{AxesTools}
1754\label{secaxestools}
1755The {\bf PIAxesTools}, shown in the figure \ref{figaxestools} can be used to
1756control and change the setting of axes on 2D displays
1757({\bf PIScDrawWdg} \myppageref{PIScDrawWdg}).
1758The PIAxesTools can be activated
1759either using {\tt Alt<A>} on a PIScDrawWdg or through
1760the \menubar{Tools/Show AxesTools}.
1761
1762\vspace*{5mm}
1763\begin{figure}[ht!]
1764\begin{center}
1765\includegraphics[width=8cm]{piapp_axestools.eps}
1766\caption{PIAxesTools}
1767\label{figaxestools}
1768\end{center}
1769\end{figure}
1770%%%%%
1771\subsection{ImageTools} \index{ImageTools}
1772\label{secimagetools}
1773The {\bf PIImageTools}, shown in the figure \ref{figimgtools} can be used to
1774manipulate a display of type image. Image display are handled by the
1775{\bf PIImage} (\myppageref{PIImage}). The PIImageTools can be activated
1776either using {\tt Alt<O>} on a PIImage, or through the
1777\menubar{Tools/Show ImageTools}.
1778
1779\vspace*{5mm}
1780\begin{figure}[ht!]
1781\begin{center}
1782\includegraphics[width=8cm]{piapp_imgtools.eps}
1783\caption{PIImageTools}
1784\label{figimgtools}
1785\end{center}
1786\end{figure}
1787
1788\subsection{Histo2DTools} \index{Histo2DTools}
1789\label{sech2dtools}
1790The {\bf PIHisto2DTools}, shown in the figure \ref{figh2dtools} can be
1791used to control and change the display caracteristics of 2D histograms.
1792PIHisto2DTools can be activated
1793either using {\tt Alt<O>} on a PIScDrawWdg, when the active
1794drawer is a PIHisto2DDrawer, or through the generic drawer tool
1795PIDrawerTools.
1796
1797\vspace*{5mm}
1798\begin{figure}[ht!]
1799\begin{center}
1800\includegraphics[width=8cm]{piapp_h2dtools.eps}
1801\caption{PIHisto2DTools}
1802\label{figh2dtools}
1803\end{center}
1804\end{figure}
1805
1806\subsection{ContourTools} \index{ContourTools}
1807\label{secconttools}
1808The {\bf PIContourTools}, shown in the figure \ref{figconttools} can be
1809used to control and change the caracteristics of contour displays.
1810PIContourTools can be activated
1811either using {\tt Alt<O>} on a PIScDrawWdg, when the active
1812drawer is a PIContDrawer, or through the generic drawer tool
1813PIDrawerTools.
1814
1815\vspace*{10mm}
1816\begin{figure}[ht!]
1817\begin{center}
1818\includegraphics[width=11cm]{piapp_conttools.eps}
1819\caption{PIContourTools}
1820\label{figconttools}
1821\end{center}
1822\end{figure}
1823
1824
1825
1826Both drawing options (e.g. color, line type, fonts...) and contour
1827determination parameters (e.g. contour number and levels) are controlled
1828by {\bf PIContourTools}.
1829
1830\subsubsection{Drawing options}
1831The top choices in {\bf PIContourTools}
1832concern the color map (left choice) or color (right choice) of the contours.
1833If a color map has been chosen, it is used to give each contour a color
1834(according to its level). If no color map has been chosen, contours may be
1835given a color using the left choice box.
1836
1837Contour are by default traced by lines.
1838Alternatively (or in addition) the user may ask to trace them by markers
1839or to put numeric labels (with the contour's level) aside the contour.
1840These options are enabled/disabled by the {\tt LineON}, {\tt MarkerON} and {\tt LabelON}
1841buttons from {\bf PIContourTools}.
1842
1843Options may be recovered ({\tt GetAtt}) or set ({\tt SetAtt})
1844from/to a drawer. Setting an option which adds to the screen will be immediately visible
1845whereas unsetting it requires a {\tt Refresh} to be visible.
1846
1847
1848\subsubsection{Contour options}
1849The contouring routines in {\tt spiapp} are based on a hack of the {\tt GNUPlot}
1850routines. Contours are determined from a grid of values
1851using an interpolation scheme. Three schemes may be used
1852(selected by the left menu) :
1853\begin{enumerate}
1854\item Linear interpolation (default), selected by the {\tt Int. Lin.} option
1855\item A cubic spline algorithm, selected by the {\tt CubicSpl} option
1856\item A 2d BSpline algorihm, selected by the {\tt B-Spline} option
1857\end{enumerate}
1858
1859Contour levels and number are automatically
1860determined by the program. They may be specified differently,
1861 through command-line options
1862(see section \ref{piappcmdref} for the help of the contour/ntcont commands)
1863or the lower part of the {\bf PIContourTools} window.
1864
1865The user may specify one of the following alternatives :
1866\begin{enumerate}
1867\item the number of contour (their level beeing automatically set).
1868To do this, select {\tt LevelNum} in the right menu and enter the contour number
1869in the left box below.
1870\item the levels of the contours, through an array of numerical values
1871(e.g. 1,4,6,9,27,4.5 will result in 6 contour lines being drawn, if possible and necessary).
1872To do this, select {\tt LevelDisc} and enter the contour number (left box)
1873and the values (right box) separated by ``{\tt ,}''.
1874\item the levels of the contours through an initial (lower) value and an increment.
1875For this, select {\tt LevelInc} and enter the contour number (left box)
1876and the initial value and increment in the right box, as above.
1877\item come back to the default situation, by choosing {\tt LevelAuto}
1878\end{enumerate}
1879
1880Once these options are set, it is necessary the the program recomputes
1881the contour lines. This is commanded by the {\tt SetParm} button.
1882
1883
1884\newpage
1885\addcontentsline{toc}{section}{Index}
1886\printindex
1887
1888\end{document}
Note: See TracBrowser for help on using the repository browser.