source: Sophya/trunk/SophyaLib/Manual/piapp.tex@ 3457

Last change on this file since 3457 was 3457, checked in by cmv, 18 years ago

add texte for autolut=hisrng cmv 12/02/2008

File size: 76.3 KB
Line 
1\documentclass[twoside,10pt]{article}
2% \usepackage[latin1]{inputenc}
3% \usepackage[T1]{fontenc}
4\usepackage[francais]{babel}
5\usepackage{graphicx}
6
7\usepackage{amsmath}
8\usepackage{amssymb}
9\usepackage{latexsym}
10
11\usepackage{palatino}
12
13% Definition pour Docs Sophya
14\usepackage{defsophya}
15
16\usepackage{makeidx}
17
18\usepackage[ps2pdf,bookmarks,bookmarksnumbered,%
19 urlcolor=blue,citecolor=blue,linkcolor=blue,%
20 pagecolor=blue,%hyperindex,%
21 colorlinks=true,hyperfigures=true,hyperindex=true
22 ]{hyperref}
23
24\setlength{\textwidth}{15cm}
25\setlength{\textheight}{20.5cm}
26\setlength{\topmargin}{0.cm}
27\setlength{\oddsidemargin}{0.cm}
28\setlength{\evensidemargin}{0.cm}
29\setlength{\unitlength}{1mm}
30
31% \newcommand{\piacommand}[1]{
32% \framebox{\bf \Large #1 } \index{#1} % (Command)
33%}
34% \newcommand{\piahelpitem}[1]{
35% \framebox{\bf \Large #1 } \index{#1} (Help item)
36%}
37
38\newcommand{\rond}{$\bullet \ $}
39\newcommand{\etoile}{$\star \ $}
40\newcommand{\cercle}{$\circ \ $}
41\newcommand{\carre}{$\Box \ $}
42
43%%%% Definition des commandes pour l'aide en ligne
44\newcommand{\piacommand}[1]{
45$\blacksquare$ \hspace{3mm} {\bf \Large #1 } \index{#1} % (Command)
46}
47\newcommand{\piahelpitem}[1]{
48$\square$ \hspace{3mm} {\bf \Large #1 } \index{#1} (Help item)
49}
50
51\newcommand{\menubar}[1]{\hspace{1mm} \framebox{\it MenuBar::#1} \hspace{1mm}}
52
53\newcommand{\myppageref}[1]{ (p. \pageref{#1} ) }
54
55\makeindex % Constitution d'index
56
57\begin{document}
58\begin{titlepage}
59% The title page - top of the page with the title of the paper
60\titrehp{piapp \\ An interactive data analysis tool}
61% Authors list
62\auteurs{
63R. Ansari & ansari@lal.in2p3.fr \\
64E. Aubourg & aubourg@hep.saclay.cea.fr \\
65C. Magneville & cmv@hep.saclay.cea.fr \\
66O. Perdereau & perderos@lal.in2p3.fr \\
67}
68% \author{R. Ansari {\tt ansari@lal.in2p3.fr} \\
69% E. Aubourg {\tt aubourg@hep.saclay.cea.fr} \\
70% C. Magneville {\tt cmv@hep.saclay.cea.fr}
71% }
72\vspace{1cm}
73\begin{center}
74{\bf \Large piapp Version: 4.1 (V\_Nov2007) }
75\end{center}
76\titrebp{5}
77
78\end{titlepage}
79
80\newpage
81\tableofcontents
82\newpage
83
84\section{Introduction}
85\index{piapp}
86{\bf piapp} (or {\bf spiapp}) is an interactive data analysis
87and visualization program. It is based on the {\bf PI} GUI library
88and the {\bf SOPHYA} \footnote{see http://www.sophya.org}
89(or {\bf PEIDA++} \footnote{PEIDA++ has been used in EROS software.
90(http://eros.in2p3.fr). It is not maintained anymore.})
91C++ data analysis class library.
92\par
93{\bf piapp} is a powerful command oriented tool for visualising and analysing data.
94Its main features are summarised below:
95\begin{itemize}
96\item[\rond] Image, multiple 2D and few 3D representations
97\item[\rond] Highly interactive graphics, with postscript as export format
98\item[\rond] Capability to handle large data sets. Data can be imported and
99exported in different formats: ASCII, PPF and FITS.
100\item[\rond] Interactive analysis: 2D/3D distributions, histograms, FFT \ldots
101\item[\rond] Flexible c-shell inspired command interpreter.
102\item[\rond] Possibility to perform more complex operations in C++, on objects
103managed by the application through the on-the-fly compilation and execution
104of c++ code fragments in piapp.
105\item[\rond] piapp is a multi-threaded program with separate threads for graphics
106and command execution, ensuring interactive response, even while heavy
107computation is being performed. In addition, thread safe commands can be executed
108in separate threads, for taking advantage of multi CPU (or CPU-cores) workstations.
109\item[\rond] The application can be easily extended through modules which can be
110loaded at run time.
111\end{itemize}
112
113\subsection{Acknowlegments}
114Many people have contributed to the development SOPHYA and/or the PI library
115and (s)piapp interactive analysis tool.
116we are grateful to the following people:
117
118\begin{tabular}{lcl}
119Reza Ansari & \hspace{5mm} & (LAL-Univ.Paris Sud, Orsay) \\
120Eric Aubourg & & (DAPNIA-CEA/APC, Saclay) \\
121Sophie Henrot-Versille & & (LAL-IN2P3/CNRS, Orsay) \\
122Alex Kim & & (LBL, Berkeley) \\
123Guy Le Meur & & (LAL-IN2P3/CNRS, Orsay) \\
124Eric Lesquoy & & (DAPNIA-CEA, Saclay) \\
125Christophe Magneville & & (DAPNIA-CEA, Saclay) \\
126Bruno Mansoux & & (LAL-IN2P3/CNRS, Orsay) \\
127Olivier Perdereau & & (LAL-IN2P3/CNRS, Orsay) \\
128Nicolas Regnault & & (LPNHE-IN2P3/CNRS, Paris) \\
129Benoit Revenu & & (APC/Univ.Paris 7, Paris) \\
130Francois Touze & & (LAL-IN2P3/CNRS, Orsay) \\
131\end{tabular}
132
133We thank also the persons who have helped us by useful suggestions, among others : \\
134S. Bargot, S. Plasczczynski, C. Renault and D. Yvon.
135
136%%%
137\begin{figure}[ht!]
138\begin{center}
139\includegraphics[width=15cm]{piapp_mainwin.eps}
140\caption{piapp main window}
141\label{figmainwin}
142\end{center}
143\end{figure}
144\subsection{starting piapp}
145 {\bf piapp} can simply be started on the command line in a terminal window
146once the SOPHYA/piapp environment has been initialised.
147The environment variables {\tt SOPHYABASE} should contain the directory
148where SOPHYA/piapp has been installed. the shared library path
149{\tt LD\_LIBRARY\_PATH} must contain {\tt \$SOPHYABASE /slb} and the
150current directory {\tt .} and the executable search path {\tt PATH} must
151contain {\tt \$SOPHYABASE /exe}. Refer to the SOPHYA overview manual
152for more information on SOPHYA directory structure. \\
153\par
154{\tt (s)piapp -h} provides a brief help of the command line
155arguments. Xtoolkit options can also be specified as command line
156arguments. {\bf spiapp} is the name of SOPHYA/piapp executable,
157in order to distinguish it from PEIDA/piapp.
158\begin{verbatim}
159csh> spiapp -h
160 SophyaInitiator::SophyaInitiator() BaseTools Init
161 PIOPersist::Initialize() Starting Sophya Persistence management service
162SOPHYA Version 2.1 Revision 0 (V_Nov2007) -- Nov 24 2007 13:08:58 gcc 3.3
16320030304 (Apple Computer, Inc. build 1495)
164 piapp: Interactive data analysis and visualisation program
165 Usage: piapp [-nored] [-doublered] [-termread] [-term]
166 [-hidezswin] [-small] [-nosig] [-nosigfpe] [-nosigsegv]
167 [-tmpdir TmpDirectory] [-help2tex] [-exec file [args]]
168 -nored : Don't redirect stdout/stderr to piapp console
169 -doublered : Redirect stdout/stderr to piapp console AND the terminal
170 -termread : Read commands on terminal (stdin)
171 -term : equivalent to -nored -termread -small
172 -hidezswin : Hide Zoom/Stat/ColMap window
173 -small : Create small size main piapp window
174 -nosig : Don't catch SigFPE, SigSEGV
175 -nosigfpe -nosigsegv: Don t catch SigFPE / SigSEGV
176 -tmpdir TmpDirectory: defines TMDIR for temporary files
177 -help2tex: Create a LaTeX help file (piahelp.tex)
178 -exec file [args] : Execute command file (last option)
179\end{verbatim}
180Once {\bf piapp} is started, the main piapp window appears.
181It contains the menu bar, an upper part with the zoom and colormap
182widgets for image displays, memory and CPU usage and a terminal like
183widget (piapp console, see {\bf PIConsole} \myppageref{PIConsole})
184in the lower part. The figure \ref{figmainwin}
185shows an image of the piapp main window.
186{\tt stdout/cout, stderr/cerr} are redirected to the piapp console and
187commands can be entered in this widget. It is also possible to keep
188the terminal where piapp was started for {\tt stdout/stderr} (flag {\tt -nored}).
189The flag {\tt -term} activate a command reader on the terminal
190It is also possible to have a command reader on the terminal ({\tt stdin}). \\[1mm]
191
192\par
193In section 2, we present a quick tour of {\bf piapp}.
194a brief overview of piapp graphics, supported data formats, interactive
195analysis possibilities, the command interpreter and c++ execution
196are presented in the following sections.
197Section \ref{piappcmdref} contains a brief description of all piapp commands
198and help items. Various interactive control windows are described in appendix.
199
200\subsection{DemoPIApp and DemoData}
201The directory {\bf DemoPIApp} contains a number of example scripts, such as the
202{\tt demo.pic} and the associated data file {\tt demo.ppf}. It contains
203also examples of loadable modules for piapp. The DemoPIApp/CONTENT
204file contains a brief description of the different files. \\
205The {\bf DemoData} contains a number of data files, in PPF and FITS format, which are
206used for the examples in this document.
207
208\subsection{Warnings/Known problems}
209\begin{enumerate}
210\item It might be necessary to define the environment variable
211{\bf PIXKBMOMASK}, used by the libPI.a to map correctly
212the {\tt <Alt>} key with some X servers (in particular with
213X11 on MacOS X). \\
214{\tt csh> setenv PIXKBMODMASK 2 }
215However, the default value has been changed in PI/piapp V=4.1 and it should not be
216necessary anymore to define PIXKBMODMASK.
217%%
218\item The output redirection uses unix pipes. On Linux, with commands
219producing long outputs, the application may block because of incorrect management
220of pipes. If this happens, use piapp with {\tt -nored} flag. This problem has been
221in principle solved with SOPHYA V=2.1 / piapp V=4.1
222\end{enumerate}
223
224\newpage
225\section{A Tour of piapp}
226\subsection{Interacting with piapp, getting help}
227Users interact with piapp through commands entered in the piapp-console
228(or the unix terminal), and through the different menus.
229Some of the possibilities of the piapp-console are described
230in {\bf PIConsole} help item, in the command reference section \myppageref{PIConsole}.
231The description
232of the commands in available online using the help command.
233An online help window can be displayed by \menubar{File / Help}.
234Commands and help items are grouped in categories which can be
235selected using the OptionMenu in the Help window.
236\begin{verbatim}
237Cmd> help func
238Displays a function y=f(x) (Fills a vector with function values)
239 Usage: func f(x) xmin xmax [npt graphic_attributes]
240 Related commands: funcff func2d func2dff
241Cmd> func sin(x)/x 0.1 10 100 'red line=solid,2'
242---> Graphic display of the function
243\end{verbatim}
244The directory {\tt DemoPIApp} contains a number of example
245command script and sample data files.
246
247\subsection{The Object Manager (NamedObjMgr)}
248The {\bf piapp} application is built around an object manager
249(class {\tt NamedObjMgr}) and a graphic application
250(class {\tt PIStdImgApp}). Objects inheriting from
251the class {\tt AnyDataObj} can be managed through adapter
252classes (classes inheriting from {\tt NObjMgrAdapter}) by
253the object manager.
254\par
255User sees the objects (such as Sophya objects Histo, NTuple,
256Arrays, Images, SkyMaps, \ldots) kept in memory, organized
257in a single level tree structure. Four memory directories
258are automatically created and can not be removed: \\
259\centerline{\bf /home \hspace{10mm} /old \hspace{10mm} /tmp \hspace{10mm} /autoc}
260The default working directory (in memory) is {\bf /home}.
261Other directories can be created by the user.
262\begin{center}
263{\bf Warning:} These are only the directory
264structure managed by the piapp application and do not
265correspond to the file system directories
266\end{center}
267The window {\bf ObjMgr} shown in figure \ref{figobjmgrw}
268can be used to navigate in the memory directories and
269execute simple operations on objects. \\
270This window can be displayed using the menu command
271\menubar{Objects / ObjectManager}.
272The button \framebox{\small \bf SetCurObj} can be used to set the value
273of the interpreter's variable {\tt cobj} to the selected
274object name.
275Refer to the commands in group {\bf Object Management}
276for more information.
277
278\vspace*{5mm}
279\begin{figure}[ht!]
280\begin{center}
281\includegraphics[width=10cm]{piapp_objmgr.eps}
282\caption{The interactive object management window}
283\label{figobjmgrw}
284\end{center}
285\end{figure}
286
287\subsection{command language}
288A basic command interpreter ({\bf PIACmd/Commander}) is included in {\bf piapp} and
289other command interpreters can be inserted in the application
290framework.
291This interpreter ({\bf Commander} \myppageref{Commander})
292synthax is close to the c-shell
293(csh) shell script. It is possible to define and use variables
294({\tt set} command, {\tt \$varname}), and execute loops
295({\tt foreach,for}), as well as simple tests
296({\tt if test then ... else ... endif}).
297Commands from a file (default extension .pic) can be executed
298using the {\tt exec} command.
299Long commands can be put on several lines, by ending a line
300by the backslash \\ caracter, to signal that the command
301continues on the next line.
302
303The command macro below shows a sample piapp session, where
304data from the file {\tt demo.ppf} are displayed.
305\begin{verbatim}
306# Trace mode -> On
307traceon
308# Deleting all objects in the current directory
309delobjs *
310# Opening the PPF file demo.ppf
311openppf demo.ppf
312# Various displays in a graphic window, divided into 2x2 zones
313zone 2 2
314# 1D histogram display
315disp h1d blue
316# 2D histogram display
317disp h2d
318# Function display
319func sin(x)/x 0.1 10. 200 gold
320# Surface representation of a matrix
321surf mtx1 colbr32
322# Contour representation of a matrix
323contour mtx1 'colrj32 normalline ncont=7'
324# 3D representation of points using a PAW like command
325n/plot nt31.z%y%x ! ! win
326# 3D points superimposed on the previous display
327nt3d nt32 x y z ex ey ez - - 'same fcirclemarker7 red'
328\end{verbatim}
329
330\subsection{NTuple vue / PAW like commands}
331It is possible to plot various expressions of objects, seen as
332a 2D table, with named columns. This possibility exist not only
333for NTuples/DataTables, but also for most objects (from SOPHYA) handled
334by piapp. The related commands are grouped under {\bf Expr.Plotting} and
335{\bf pawCmd} and are described in section \ref{tableplot}.
336
337\subsection{C++ execution inside piapp}
338For more complex processings, where the full power of C++
339and the class libraries are necessary, {\bf piapp} provide
340the possibility of executing C++ code, without the burden
341of having to write a complete program. The objects
342present in the current directory are automatically
343declared. The communication with the piapp application
344is done by the {\bf NamedObjMgr} class.
345Two macros {\tt KeepObj()} and {\tt DisplayObj()}
346simplify the task of keeping newly created objects.
347In the example below, we first create a noisy signal
348in a vector, and we keep it in the application
349(Notice the use of multiline command) :
350
351\begin{verbatim}
352Cmd> c++exec c++exec Vector in(1024); \
353...? in = RandomSequence(RandomSequence::Gaussian, 0., 1.); \
354...? for(int kk=0; kk<in.Size(); kk++) \
355...? in(kk) += 2*sin(kk*0.05); \
356...? KeepObj(in);
357\end{verbatim}
358We can of course display the resulting vector:
359\begin{verbatim}
360Cmd> disp in
361\end{verbatim}
362
363And, at a subsequent stage, make a low pass filter
364on the vector in:
365\begin{verbatim}
366Cmd> c++exec Vector out(1024); \
367...? int w = 2; \
368...? for(int k=w; k<in.Size()-w; k++) \
369...? out(k) = in(Range(k-w, k+w)).Sum()/(2.*w+1.); \
370...? KeepObj(out);
371\end{verbatim}
372
373We can display the new vector {\tt out} overlayed
374on the previously displayed vector:
375\begin{verbatim}
376Cmd> disp out 'red same'
377\end{verbatim}
378
379See section \ref{flycplusplus} and command group {\bf CxxExecutorCmd}
380for more information.
381
382\subsection{Extending the application}
383The {\bf piapp} application can easily be extended by the user.
384This is done through shared libraries which can be opened
385and used by the application.
386Two main methods can be used (see command group
387{\bf ExternalModules}) :
388\begin{itemize}
389\item Creation of user functions. A shared library containing
390at least one user function with the following prototype
391should be created:
392\begin{verbatim}
393extern "C" {
394 void myfonction(vector<string>& args);
395}
396\end{verbatim}
397The class {\bf NameObjMgr} should be used to communicate with the
398application. The {\tt link} \myppageref{link} and {\tt call} \myppageref{call}
399should be used to load and execute user functions. An example of
400user function can be found in DemoPIApp/user.cc exlink.pic.
401
402\item Creation of loadable modules: Loadable modules can be
403used to extend the application possibilities in a way totally
404transparent to the user. It is possible to define new commands,
405handling of new object types, additional graphic functionalities
406in a loadable module.
407
408The class {\bf CmdExecutor} is the base class for extending piapp.
409A shared library should be built, containing two functions,for
410the activation and deactivation of the module, with the following
411prototype (where {\tt mymodule} is the module's name.
412\begin{verbatim}
413extern "C" {
414 void mymodule_init();
415 void mymodule_end();
416}
417\end{verbatim}
418
419\end{itemize}
420
421%%%%%%%%%% Section 3: Graphiques
422\newpage
423\section{Interactive graphics}
424\label{intgraphics}
425%%%
426\subsection{Display commands}
427Many objects managed by piapp have a default graphic representation. The
428{\bf disp} command \myppageref{disp} can be used to display the object, while
429other commands like {\bf surf} \myppageref{surf} , {\bf imag}
430or {\bf contour} \myppageref{contour} will try to force a given graphic representation.
431
432Data from table like objects can be plotted using commands like {\bf nt2d}
433\myppageref{nt2d} or {\bf nt3d} \myppageref{nt3d}. Most objects in piapp
434can also be manipulated like table for plotting purposes, using commands
435like {\bf plot2d} \myppageref{plot2d} , {\bf plot3d} \myppageref{plot3d}
436or {\bf n/plot} \myppageref{nZplot}. These commands are described in section
437\ref{tableplot}.
438
439Commands producing a graphic output have usually an optional argument called \\
440{\tt graphic\_attributes} or {\tt gr\_att}. \\
441This argument provide a flexible and easy
442way to change and customise the output graphic, as discussed in the paragraphs below.
443
444The piapp graphics can be exported in postscript (.ps) or encapsulated postscript
445(.eps) format. The commands {\bf w2ps} \myppageref{w2ps} and
446 {\bf w2eps} \myppageref{w2eps} as well the menu \menubar{PostScript} can
447 be used to export graphics. \\[2mm]
448The examples in the following pages illustrates the usage of some piapp graphic commands.
449% \newpage
450\begin{enumerate}
451\label{francetopo}
452\item Image display. The following example uses the data file francetopo.ppf
453which can be found in the {\bf DemoData} directory. This PPF file contains
454a TMatrix$<$int\_2$>$ (short integers) representing 30 arcmin gridded
455($\sim$ 1 km N-S $\times$ 0.7 km E-W) elevation (or altitude)
456for the area centered on France. It has been made using topographic
457data (DEM: Digital Elevation Model) available from the {\bf N}ational
458{\bf G}eophysical {\bf D}ata {\bf C}enter
459\href{http://www.ngdc.noaa.gov/mgg/topo/}{({\bf NGDC/GLOBE})}
460\footnote{NGDC web site: \hspace{5mm}
461http://www.ngdc.noaa.gov/ }.
462In section \ref{tableplot}, an example shows how to use this data set to
463create altitude distribution histogram for selected regions.
464\begin{verbatim}
465# Open a PPF file containing topographic data for france
466# as a TMatrix<short> 1332x1548
467# The file is in the directory DemoData/
468openppf francetopo.ppf
469# Display the matrix, whit a zoom factor, lut and color map
470disp francetopo 'zoom/3 lut=lin,-700,800 colbr128 win'
471w2eps francetopo.eps
472\end{verbatim}
473\begin{center}
474\includegraphics[width=13cm]{francetopo.eps}
475\end{center}
476
477\item Simple 2D graphics with vector displays
478\begin{verbatim}
479# Create and initialize two vectors - prevent display : nodisp
480Cmd> newvec vva 100 sin(x/10.+0.7)+cos(x/7.+1.4)*1.26 nodisp
481Cmd> newvec vvb 100 sin(x/10.)+cos(x/7.)*1.34 nodisp
482# Set axe drawing options
483Cmd> setaxesatt 'font=times,bold,16 minorticks tickslen=0.02,0.012'
484# Display the two vectors, with different graphic attributes
485Cmd> disp vva 'red line=solid,2 notitle'
486# Define a title for the graphic
487Cmd> settitle 'Example-1: 2 vectors' ' ' 'font=times,bolditalic,18'
488Cmd> disp vvb 'blue marker=box,7 same'
489# Save the graphic into an eps file
490Cmd> w2eps gr2vec.eps
491\end{verbatim}
492% \begin{figure}[ht!]
493\begin{center}
494\includegraphics[width=12cm]{gr2vec.eps}
495% \label{g22vec}
496\end{center}
497%%%
498\item Creating a comparison chart using {\bf bargraph}
499\begin{verbatim}
500# Representation du PNB (en $, 2003) pour quelques pays
501set pays ( Allemagne Espagne France Italie Pays-Bas Suisse UK USA )
502set pnbh ( 22670 14430 22010 18960 23960 37930 25250 35060 )
503setaxesatt 'font=times,bold,16'
504bargraph pnbh pays - 'blue horizontalbars nofill packfrac=0.65 font=helvetica,bold,14'
505setaxelabels 'PNB / Hab , $ 2003' ' ' 'font=times,bold,16'
506w2eps pnbargraph.eps
507\end{verbatim}
508\begin{center}
509\includegraphics[width=12cm]{pnbbargraph.eps}
510\end{center}
511%%%
512\item Displaying a matrix as a surface
513\begin{verbatim}
514openppf demo.ppf mtx1
515setaxesatt 'font=time,bold,16'
516surf mtx1 'colbr128 line=solid,1 grey'
517w2eps surfcol.eps
518\end{verbatim}
519\begin{center}
520\includegraphics[width=13cm]{surfcol.eps}
521\end{center}
522
523\end{enumerate}
524
525%%%%%%%%%%
526\subsection{Graphic objects in piapp}
527The piapp graphics is handled by the {\bf PI} \footnote {http://www.sophya.org/PI} library,
528which provide a large variety of 2D representations,
529few 3D graphics and powerful image display. \\
530Currently, all graphic representations, except for image displays, are handled
531through {\bf PIDrawers} which are managed by a viewer. A viewer can
532manage several {\bf PIDrawers} objects which correspond then to a multilayer
533graphic display. The viewers are also responsible for managing user
534interactions. \\
535Image displays are handled through a specific viewer
536{\bf PIImage} which is also capable of managing PIDrawer objects
537for multi-layer 2D overlay vector graphics. \\[2mm]
538%%
539Main piapp/PI graphic viewers, windows and drawer objects are described if
540the following sections.
541
542\subsubsection{PIScDrawWdg (2D display)}
543The {\bf PIScDrawWdg} handles a set of of 2-D drawers, managing
544the 2D coordinate system and interactive zoom. The axes drawing is
545handled by a specialised drawer, number 0, which also manages various added
546graphic elements (text \ldots). The list of various mouse and
547keyboard actions is described in the reference section, under {\bf PIScDrawWdg} \myppageref{PIScDrawWdg} title. In particular, mouse-button-2 can be used
548to zoom on a particular part, {\tt $<$Alt$>$A} activates the coordinates
549and axes manipulation window ({\bf PIAxesTools}) and {\tt $<$Alt$>$G}
550activates the PIDrawer graphic attributes control window ({\bf PIDrawerTools}).
551%%%
552\subsubsection{PIDraw3DWdg (3D display)}
553The {\bf PIDraw3DWdg} handles a set of of 3-D drawers, managing
554interactive camera/object rotation (mouse-button-2) and zoom (mouse-button-2).
555{\tt $<$Alt$>$G} to display/activate the PIDrawer graphic attributes
556control window ({\bf PIDrawerTools}).
557See {\bf PIDraw3DWdg} \myppageref{PIDraw3DWdg} for a complete list of mouse
558and keyboard actions.
559Drawer 0 handles axes drawing and graphic elements.
560%%%
561\subsubsection{PIImage (Image Display)}
562The display of 2-D arrays $A(i,j)$ as an image is managed by
563the {\bf PIImage} viewer/widget. The PI library interface {\bf P2DArrayAdapter} is used
564to represent a generic 2-D array. The array values are converted into an index, converted
565itself into a color by the use of a color-map or color-table {\bf PIColorMap}.
566$$ \mathrm{LUT:} A(i,j) \longrightarrow idx(i,j) \hspace{5mm} \mathrm{ColorMap:}
567 idx(i,j) \longrightarrow col(i,j) $$
568Currently index range is 0...255 with color-map having 32 or 128 distinct colors.
569PIImage viewers controls a zoom widget, as well as a global image view widget, and
570a color map view widget. A specific image control window can be activated using
571 {\tt $<$Alt$>$O}. See {\bf PIImage} \myppageref{PIImage} for
572a complete list of mouse and keyboard actions. A base drawer (number 0) can handle
573axes drawing and added graphic elements.
574%%%
575\subsubsection{Windows}
576The viewers described above are displayed in differnt kind of windows.
577The graphic option {\tt next,win,same,stack} can be used to control the way the
578type of windows used. Graphic windows can be divided into several zones
579(Command {\bf zone} \myppageref{zone}).
580
581When an object is diplayed in piapp, a widget (PIWdg) is created which manages
582the drawer or the 2d-array. The default name for this widget is the displayed
583object name. However, it is possible to specify a name using the graphic attribute: \\
584\hspace*{5mm} {\tt wname=WidgetName} \\
585It is possible to display multiple objects on a single widget, corresponding
586to the superposition of the different drawers. Displaying an object superimposed
587on the previously displayed object can be done using the graphic option
588{\tt same}. It is also possible to specify a target widget by its name, through
589the graphic option \\
590\hspace*{5mm} {\tt samew=WidgetName} \\
591It is also possible to specify the display of the drawer in a specified region
592of the last displayed widget \\
593\hspace*{5mm} {\tt same=fx1,fx2,fy1,fy2} \\
594where {\tt fx1,fx2,fy1,fy2} express X and Y limits, as fraction of widget size.
595
596Refer to the command reference section on windows ({\bf Windows}
597\myppageref{Windows})
598for information on the different type of windows used by piapp
599and their properties. \\
600
601%%%
602\subsubsection{Drawers}
603Graphical representation of most objects in piapp is
604handled through objects inheriting from the {\bf PIDrawer class}. A base drawer
605({\bf PIElDrawer}, number 0) is associated to the three viewers presented above,
606and manages the axes drawing as well as the added graphic elements
607(text, arrow, \ldots). A drawer management menu
608can be activated using {\tt $<$Alt$>$D}. This menu can be used to move and resize
609drawers, or to display a window for changing drawers graphic attributes.
610%%%
611\par
612In addition, a number of control windows can be used to examine and
613change view properties of differents viewers and drawers.
614\begin{itemize}
615\item[] {\bf PIDrawerTools} activated using {\tt $<$Alt$>$G} or
616\menubar{Tools/Show DrawerTools} on any viewer (see page \myppageref{secdrwtools})
617\item[] {\bf PIAxesTools} activated using {\tt $<$Alt$>$A} or
618\menubar{Tools/Show AxeTools} on PIScDrawWdg (see page \myppageref{secaxestools})
619\item[] {\bf PIImageTools} activated using {\tt $<$Alt$>$O} or
620\menubar{Tools/Show ImageTools} on PIImage
621(see page \myppageref{secimagetools})
622\item[] {\bf PIHisto2DTools} activated using {\tt $<$Alt$>$O} or through the PIDrawerTools
623for an active PIHisto2D drawer. (see page \myppageref{sech2dtools})
624\item[] {\bf PIContourTools} activated using {\tt $<$Alt$>$O} or through the PIDrawerTools
625for an active PIContourDrawer drawer. (see page \myppageref{secconttools})
626\end{itemize}
627These control tools are briefly described in appendix.
628
629%%%%%%%%%%
630\subsection{Graphic attributes}
631Graphic attributes are specified as a set of space separated strings. Use
632quotes to group them into a single argument parsed by the command
633interpreter. The options are decoded by the different objects handling the
634graphic (viewer widget, drawer, axe drawer). \\
635The complex decoding scheme
636is usually transparent for piapp users. However, there is an ambiguity when
637specifying some of the axes attributes, such as color or the font used for
638drawing the axes. The command {\bf setaxesatt} (\myppageref{setaxesatt})
639should thus be used to specify generic graphic attributes
640(color, font, line type) for axes.
641\subsubsection{PIScDrawWdg}
642The {\bf PIScDrawWdg} which handles 2d graphics recognizes the following options:
643\begin{verbatim}
644>> To define the 2D axes limits (in user coordinates)
645 xylimits=xmin,xmax,ymin,ymax
646>> To define the default drawing rectangle, in fraction of widget size
647 defdrrect=x1,x2,y1,y2 (default: x1=y1=0.1 x2=y2=0.9)
648>> Axes flags :
649 linx logx liny logy
650>> To change the background color (default=white)
651 wbgcol=colname
652
653\end{verbatim}
654%%%
655\subsubsection{PIDraw3DWdg}
656The {\bf PIDraw3DWdg} which handles 3d graphics recognizes the following options:
657\begin{verbatim}
658>> To define the 3D box limits :
659 xyzlimits=xmin,xmax,ymin,ymax,zmin,zmax
660 limit3dbox=xmin,xmax,ymin,ymax,zmin,zmax
661>> Autoscaling flags (rescaling of X/Y or X/Y/Z axes)
662 autoscale3dbox / noautoscale3dbox
663 autoscalexy3dbox / noautoscalexy3dbox
664 autoscalez3dbox / noautoscalez3dbox
665>> To change the background color (default=white)
666 wbgcol=colname
667
668\end{verbatim}
669%%%
670\subsubsection{PIImage}
671The {\bf PIImage} which handles image display recognizes the following options:
672\begin{verbatim}
673>> Define display zoomfactor
674 zoomxFact (zoomx2 zoomx3 ... zoomx9 ...)
675 zoom/Fact (zoom/2 zoom/3 ... )
676>> LUT (look-up table) definition (pixel value to index conversion)
677 lut=type,min,max (type=lin/log/sqrt/square)
678>> AutoLut selector : define the method for automatic determination
679 of LUT limits (min/max)
680 autolut=alt[,ns[,minp,maxp]] (minp<=pixels<=maxp)
681 - autolut=minmax[,Frac] 0<=Frac<=1
682 - autolut=meansig[,ns] --> mean +/- ns*sigma
683 - autolut=hispeak[,ns] --> around the peak of pixel values histogram
684 - autolut=histail[,ns] --> the tail of pixel values histogram
685 - autolut=hisrng[,Frac[,minp,maxp]] 0<=Frac<=1 --> the central pixel values
686>> Define color table and reversing color indexing flag
687 ColTableName revcmap
688 ==> Standard tables with 32 distinct colors:
689 grey32 invgrey32 colrj32 colbr32 colrv32
690 ==> Standard tables with 128 distinct colors:
691 grey128 invgrey128 colrj128 colbr128
692 ==> Shades of red/green/blue ...
693 red32cm green32cm blue32cm yellow32cm
694 orange32cm cyan32cm violet32cm
695 ==> Some of MIDAS color tables :
696 midas_pastel midas_heat midas_rainbow3
697 midas_bluered midas_bluewhite midas_stairs8
698 midas_stairs9 midas_staircase midas_color
699 midas_manycol midas_idl14 midas_idl15
700 ==> Other tables
701 multicol16 multicol64
702>> Viewed center position (image/array coordinates)
703 imagecenter=xc,yc
704>> Array axes to window axes mapping flags
705 invx invy exchxy
706>> To change the background color (default=black)
707 wbgcol=colname
708
709\end{verbatim}
710%%%
711\subsubsection{PIGraphicAtt}
712The {\bf PIGraphicAtt} Generic graphic attributes (color/font/line \ldots)
713decoded by all drawers:
714\begin{verbatim}
715>>> color=ColorName - fgcolor=ColorName - bgcolor=ColorName
716 ColorName: black white grey red blue green yellow
717 magenta cyan turquoise navyblue orange
718 siennared purple limegreen gold violet
719 violetred blueviolet darkviolet skyblue
720 royalblue forestgreen orangered brown
721>>> line=DashType,LineWidth
722 DashType: solid, dash, dotted, dashdotted Width: 1,2,...
723>>> font=FontName,FontAtt,FontSize
724 FontName: courier, helvetica, times, symbol
725 FontAtt: roman, bold, italic, bolditalic
726 FontSize: 6,8,10,12... (pts) - integer
727>>> marker=MarkerType,MarkerSize (MarkerSize: integer 3,5,7...
728 MarkerType: dot, plus, cross, circle, fcircle, box, fbox
729 triangle, ftriangle, star, fstar
730>>> arrow=ArrowType,ArrowSize (ArrowSize: integer 3,5,7...
731 ArrowType: basic, triangle, ftriangle,
732 arrowshaped, farrowshaped
733>>> ColorTables: defcmap grey32 invgrey32 colrj32 colbr32
734 grey128 invgrey128 colrj128 colbr128
735 red32cm green32cm blue32cm yellow32cm
736 orange32cm cyan32cm violet32cm
737 midas_pastel midas_heat midas_rainbow3 midas_bluered
738 midas_bluewhite midas_redwhite
739 multicol16 multicol64
740> revcmap : This flag reverses ColorMap indexing
741------- Old style graphic att ----------
742>> Lines: defline normalline thinline thickline dashedline thindashedline
743 thickdashedline dottedline thindottedline thickdottedline
744>> Font Att: deffontatt normalfont boldfont italicfont bolditalicfont
745 smallfont smallboldfont smallitalicfont smallbolditalicfont
746 bigfont bigboldfont bigitalicfont bigbolditalicfont
747 hugefont hugeboldfont hugeitalicfont hugebolditalicfont
748>> Font Names: deffont courierfont helveticafont timesfont symbolfont
749>> Marker: dotmarker<S> plusmarker<S> crossmarker<S> circlemarker <S>
750 fcirclemarker<S> boxmarker<S> fboxmarker<S> trianglemarker<S>
751 ftrianglemarker<S> starmarker<S> fstarmarker<S>
752 with <S> = 1 3 5 7 9 , Example fboxmarker5 , plusmarker9 ...
753
754\end{verbatim}
755%%%%
756\subsubsection{PIElDrawer}
757The {\bf PIElDrawer} decodes axe drawing attributes:
758\begin{verbatim}
759 >> Axe and grid configuration flags:
760 axesnone stdaxes defaxes
761 boxaxes boxaxesgrid fineaxes fineaxesgrid
762 centeredaxes finecenteredaxes centeredaxesgrid
763 finecenteredaxesgrid grid/nogrid
764 >> Centered axes position: axescenter=xc,yc
765 >> Axe ticks/labels (h=horizontal/x, v=vertical/y):
766 labels/nolabels hlabels/nohlabels vlabels/novlabels
767 ticks/noticks minorticks/nominorticks
768 extticks/intticks/extintticks nbticks=X_NbTicks,Y_NbTicks
769 tickslen=MajorTickLenFrac,MinorTickLenFraC
770 >> Axe label font size:
771 autofontsize=FontSizeFrac fixedfontsize
772 >> Up/Down title: title tit notitle notit
773 ... Color/Font/line attributes :
774
775\end{verbatim}
776The {\bf PINTuple} handles most 2D plotting : \\
777\begin{verbatim}
778 sta,stat,stats: activate statistic display
779 nsta,nstat,nostat,nostats: deactivate statistic display
780 statposoff=OffsetX,OffsetY : Position offset for Stats drawing
781 as a fraction of total size
782 connectpoints: The points are connected by a line
783 noconnectpoints (this is the default)
784 colorscale/nocolorscale (Use color scale for weight)
785 sizescale/sizescale=nbins/nosizescale (Use marker size for weight)
786 (and usual color/line/marker/... attribute decoding)
787
788\end{verbatim}
789%%%
790\subsubsection{PIHisto, PIHisto2D}
791{\bf PIHisto} and {\bf PIHisto2D} handle1D and 2D histograms display. \\
792The following options are recognised by {\bf PIHisto}: \\
793\begin{verbatim}
794 ---- PIHisto options help info :
795 sta,stat,stats: activate statistic display
796 nsta,nstat,nostat,nostats: deactivate statistic display
797 err / noerr,nerr : draw, do not draw error bars
798 autoerr : draw error bars if Marker drawing requested OR Profile histo
799 fill / nofill,nfill : fill, do not fill bars with selected color
800 statposoff=OffsetX,OffsetY : Position offset for Stats drawing
801 as a fraction of total size
802 ---- HistoWrapper options :
803 hbincont: select bin content as Y value for display (default)
804 hbinerr: select bin error as Y value for display
805 hbinent: select bin entries as Y value for display
806 hscale=value : multiplicative factor for Y value
807 hoffset=value : additive coefficient for Y value
808 hs1: set hscale=1 hoffset=0 (default)
809 hscale=value : multiplicative factor (in Y)
810
811\end{verbatim}
812The following options are recognised by {\bf PIHisto2D}: \\
813\begin{verbatim}
814- sta,stat,stats: activate statistic display
815 nsta,nstat,nostat,nostats: deactivate statistic display
816- h2disp=typ[,fracpts]: choose display type
817 typ=var: variable size boxes
818 typ=hbk: "a la hbook2"
819 typ=img: image like (use "h2col" for color map)
820 typ=pts: point clouds (fracpts=max possible fraction
821 of used pixels per bin [0,1])
822- h2scale=lin/log[,logscale]: choose linear or logarithmic scale
823- h2dyn=[hmin][,hmax]: choose histogramme range for display
824- use general key to define color table (ex: grey32,midas_heat,...)
825 (see general graphicatt description)
826- use key "revcmap" to reverse color table
827- h2frac=[fmin][,fmax]: choose sub-range display [0,1]
828 ---- HistoWrapper options : (see HistoWrapper above)
829
830\end{verbatim}
831%%%%
832\subsubsection{PINTuple3D , PISurfaceDrawer}
833The {\bf PINTuple3D} and {\bf PISurfaceDrawer}
834handles basic 3D plotting and can decode the common 3D box options:
835\begin{verbatim}
836 X/Y,Z axis rescaling option (-> cubic 3D box)
837 rescale=autoscale/ norescale=noautoscale : X/Y and Z axis
838 rescalexy=autoscalexy / norescalexy=noautoscalexy : X/Y axis
839 rescalexy=autoscalexy / norescalexy=noautoscalexy : Z axis
840\end{verbatim}
841The {\bf PINTuple3D} decodes in addition the following options:
842\begin{verbatim}
843 connectpoints: The points are connected by a line
844 noconnectpoints (this is the default)
845 colorscale/nocolorscale (Use color scale for weight)
846 sizescale/sizescale=nbins/nosizescale (Use marker size for weight)
847
848\end{verbatim}
849
850\subsubsection{PIContourDrawer}
851The {\bf PIContourDrawer} decodes the following options : \\
852\begin{verbatim}
853 autolevels : automatic selection of levels and number of contours
854 ncont=nLevel (or nc=NLevel) : sets the number of contour
855 lev=v1,v2,v3... (or niv=v1,v2,v3...) set the number and levels of contours
856 lstep=nLev,start,step : define incremental levels
857 labon/laboff : display of contour level values on/off
858 linear/bspline/cubicspl=3spl : select contour kind
859
860\end{verbatim}
861
862\subsubsection{PIBarGraph , PITextDrawer}
863{\bf PIBarGraph} is used by the {\tt bargraph} \myppageref{bargraph}
864command and has the following graphic options:
865\begin{verbatim}
866 ---- PIBarGraph options help info :
867 fill/nofill: set bar fill option
868 horizontalbars/verticalbars: set bar orientation
869 packfrac=value : set bar packing fraction (0..1)
870 barvaluelabel/nobarvaluelabel: Use/Don't use bar value as labels
871 --- + Usual colr/line/font attribute decoding ...
872 \end{verbatim}
873The command {\tt textdrawer} \myppageref{textdrawer} uses the
874{\bf PITextDrawer} which has the following options : \\
875\hspace*{10mm} {\tt frame,noframe: enable/disable frame drawing}
876
877
878%%%%%%%%%%%%%%% Section 4 : I/O
879\newpage
880\section{Data formats and input-output (I/O)}
881The data file formats recognized by piapp are the ones supported by the
882SOPHYA library or its extension.
883\begin{itemize}
884\item[\bul] ASCII files - Data can be imported from ascii (text) files as
885datatables or arrays. These objects can also be exported as text files.
886\item[\bul] FITS files - FITS is a popular format used in particular in astronomy.
887\href{http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html}
888Data is usually read from FITS files as vectors, images, cubes or tables.
889A subset of SOPHYA objects can be imported or exported in FITS format.
890\item[\bul] PPF (Portable Persistence file Format) is the native SOPHYA
891data format.
892\item[\bul] PostScript - All graphic output produced by piapp can be exported
893as postscript (.ps) or encapsulated postscript (.eps) files.
894\end{itemize}
895
896\subsection{Text files}
897Text (or ascii) files can be read into array or datatable objects by spiapp.
898
899{\bf Arrays :} \\
900Arrays can be written to to files in text/ascii format using the {\tt arrtoascii}
901 \myppageref{arrtoascii} command. Double precision matrices and vectors
902 can be read from text files using the commands
903 {\tt mtxfrascii} \myppageref{mtxfrascii} and
904 {\tt vecfrascii} \myppageref{vecfrascii} . \\
905The menu-bar command \menubar{File/Open-ASCII} reads in a text
906file as a matrix.
907\begin{verbatim}
908# Create and initialize a matrix
909newmtx arr 250 150 x+3*y
910# Save the file in the text file arr.txt
911arrtoascii arr arr.txt
912# Read the previously created file and fill a matrix
913mtxfrascii mxa arr.txt
914# Print and display the matrix
915print mxa
916disp mxa zoomx2
917\end{verbatim}
918It is possible to specify the field separator in the input file, as well as the marker for the comment
919lines.
920
921{\bf DataTable :} \\
922Text files can also be read as a 2-D table (NTuple or DataTable). The table should be
923created using the {\tt newnt} \myppageref{newnt} or
924{\tt newdt} \myppageref{newdt} command.
925The command {\tt ntfrascii} \myppageref{ntfrascii} can then be used to append
926data from the file to the datatable.
927
928\subsection{PPF}
929%%%
930PPF (Portable Persistence file Format) is the the native persistence
931format of SOPHYA and thus is fully handled by spiapp. PPF files can
932be opened through the menu-bar \menubar{File/Open-PPF}, or through
933the {\tt openppf} \myppageref{openppf}.
934
935If the PPF file contains NameTags, only the objects marked with nametags are read and given
936the corresponding names. Otherwise, all objects are red sequentially, with their names
937formed by the filename followed by a sequence number. It is also possible to force the sequential
938reading specifying the {\tt -s} flag for openppf.
939
940The objects managed in spiapp by the {\bf NamedObjMgr} can be saved to PPF files, with their
941names as NameTags. The commands {\tt saveppf} \myppageref{saveppf} or
942 {\tt saveall} \myppageref{saveall} can be used to this end.
943
944\begin{verbatim}
945# Create two vectors and two matrices
946newvec va1 150 sin(sqrt(x))
947newvec vb2 150 sin(sqrt(x))*sqrt(x*0.1)
948newmtx mxa 250 150 x+2.*y
949newmtx mxb 250 150 sin(sqrt(x))*cos(sqrt(y))
950# List of the objects in memory
951listobjs
952# Save the two vectors in the file vecab.ppf
953saveppf v* vecab.ppf
954# Save the two matrices in the file mxab.ppf
955saveppf m* mxab.ppf
956\end{verbatim}
957
958\subsection{FITS}
959FITS files may contain three types of data structures
960\begin{enumerate}
961\item Image or array data structure : {\tt IMAGE\_HDU}
962\item Binary table : {\tt BINARY\_TBL}
963\item ascii table : {\tt ASCII\_TBL}
964\end{enumerate}
965The {\bf FitsIOServer} module contain FitsHandler classes which
966can map many SOPHYA classes on FITS data structures.
967Generic {\tt IMAGE\_HDU} correspond to the SOPHYA \tcls{TArray}
968class, while {\tt BINARY\_TBL} or {\tt ASCII\_TBL} is mapped
969to NTuple or DataTable.
970
971FITS format files can be read through the menu command \menubar{File/Open-Fits},
972or using {\tt readfits/openfits} \myppageref{readfits} command.
973Objects can be exported to FITS using the {\tt writefits/savefits}
974\myppageref{writefits} command.
975
976\begin{verbatim}
977# Open the PPF file created by the commands above
978openppf vecab.ppf
979# Export the two vector objects to file vecab.fits
980# Note that the '!' forces c-fitsio to overwrite the file, if it exists
981writefits v?? !vecab.fits
982\end{verbatim}
983
984There are two commands useful
985when analyzing large catalogs (BINARY\_TBL) in FITS format, which avoid reading the whole
986table in memory. {\tt swfitstable}\myppageref{swfitstable} reads a specified HDU
987as a {\bf SwFitsDataTable} object which uses the FITS file as swap space.
988The {\tt fitsadapt}\myppageref{fitsadapt} can also be used for similar purposes.
989
990The following commands shows how to open a FITS file containing a synchrotron map
991of our galaxy. This file contains sky emission at 408 MHz,
992as brightness temperature, represented as a SOPHYA spherical map
993(SphereHEALPix$<$r\_4$>$) in \href{http://healpix.jpl.nasa.gov/}{\bf HEALPix}
994format \footnote{HEALPix home page: \hspace{5mm} http://healpix.jpl.nasa.gov/}.
995It has been made, by rebinning, from the Haslam 408 MHz
996all sky survey map, available from the NASA CMB data repository
997\href{http://lambda.gsfc.nasa.gov/}{\bf LAMBDA}
998\footnote{LAMBDA web site: \hspace{5mm} http://lambda.gsfc.nasa.gov/}.
999\label{syncmap}
1000\begin{verbatim}
1001# Open the fits file : the map is in HEALPix format
1002readfits syncmap.fits
1003# Create a window with the appropriate size
1004newwin 1 1 800 400
1005# Display the map, specifying the colormap
1006disp syncmap 'lut=lin,2,50 midas_bluered'
1007\end{verbatim}
1008\begin{figure}[h]
1009\begin{center}
1010\includegraphics[width=15cm]{syncmap.eps}
1011\caption{Synchron map of our Galaxy, displayed in Molleweide projection.
1012The underlying SOPHYA object is a \tcls{SphereHEALPix} }
1013\end{center}
1014\end{figure}
1015
1016\subsection{Graphic export in postscript}
1017%%
1018Postscript a page description language widely used for printing and
1019graphic output, developed by Adobe systems. Refer to
1020\href{http://www.adobe.com/products/postscript/}{Adobe/PostScript3}
1021for more detail.
1022
1023Piapp graphic output can be exported in postscript (level 2) or
1024encapsulated postscript format, preserving the full precision
1025of vector graphics.
1026Postscript (.ps) files my contain several pages, each vue or window
1027corresponding to one page and are suitable for direct printing.
1028An Encapsulated Postscript (.eps) file contains a single page,
1029corresponding to a window and is suitable for inclusion in
1030other document.
1031
1032Postscript file can easily be converted to other formats,
1033PDF or image formats (jpeg \ldots) using converters like
1034{\bf ps2pdf} or {\bf imagemagick}.
1035
1036The menu items under \menubar{PostScript} can be used to export
1037graphics in postscript. The default file name is {\tt pia.ps}
1038or {\tt pia1.eps} {\tt pia2.eps} \ldots
1039The following commands can also be used to create postscriot file
1040from the display in the current graphic window:
1041\begin{itemize}
1042\item {\tt w2ps} \myppageref{w2ps} to add the current graphic
1043output as a new page to the output postscript file.
1044The current output postscript file (default = w2ps.ps)
1045should be closed before being used. Exiting piapp closes automatically
1046all postscript files.
1047\item {\tt psclosefile} \myppageref{psclosefile} to close the current
1048output postscript file.
1049\item {\tt pssetfilename} \myppageref{pssetfilename} To define
1050the output postscript file name for the subsequent {\tt w2ps} commands.
1051\item {\tt w2eps} \myppageref{w2eps} to export the current
1052graphic display, in Encapsulated Postscript format to the specified file.
1053\begin{verbatim}
1054# Open the PPF file created by the commands above
1055openppf vecab.ppf
1056# Display one of the vectors
1057setaxesatt 'font=helvetica,bold,18 fixedfontsize'
1058disp va1 'blue marker=box,5'
1059# Export the graphic to file va1.eps
1060w2eps va1.eps
1061# The created file can be viewed using gv
1062\end{verbatim}
1063\end{itemize}
1064
1065%%%%%%%%%%%%%%% Section 5 : analyse a la paw
1066\newpage
1067\section{Tables and Expression Plotting}
1068\label{tableplot}
1069A powerful data analysis technic available in piapp is
10702D, 3D plot, and histogramming applied to arbitrary analytical
1071expression of table columns.
1072This analysis technic has been introduced by the popular
1073CERN \href{http://paw.web.cern.ch/paw/}{\bf PAW}
1074({\bf P}hysics {\bf A}nalysis {\bf Workstation})
1075\footnote{PAW home page : http://paw.web.cern.ch/paw/ } program
1076and the underlying HBOOK fortran library.
1077Compared to PAW, piapp extends in many respects this capability,
1078piapp offers in particular the possibility to manipulate many
1079objects as if they where a DataTable, or NTuple.
1080There are also additional 2D and 3D representations e.g.
1081{\tt plot2de} \myppageref{plot2de},
1082{\tt plot2dw} \myppageref{plot2dw},
1083{\tt plot2dc} \myppageref{plot2dc} and
1084{\tt plot3dw} \myppageref{plot3dw}.
1085
1086\subsection{How does it work ?}
1087
1088The Expression.Plotting commands in piapp operate on objects through the
1089{\bf NTupleInterface} class methods. Some classes like NTuple or BaseDataTable
1090inherit from NTupleInterface, while for the other classes, the corresponding
1091NObjMgrAdapter class exposes an object conforming to NTupleInterface through the
1092method : \\
1093\hspace*{5mm} {\tt NTupleInterface* NObjMgrAdapter::GetNTupleInterface()} \\
1094A C file (PIATmp\_xxx/expf\_pia\_dl.c) is created by piapp containing the
1095specified expressions, which should conform to the C-language syntax.
1096In addition to the functions in {\tt math.h} (sin, cos, log \ldots),
1097the following functions are defined by piapp and can be used:
1098\begin{itemize}
1099\item Flat random number generators: {\tt drand01() , drandpm1() }
1100\item Gaussian random number generator: {\tt GauRand() }
1101\item Angle conversion: {\tt deg2rad(double d), rad2deg(double r) }
1102\item $(\theta,\varphi)$ to Molleweide X,Y projection: \\
1103\hspace*{5mm}{\tt double tetphi2mollX(double theta, double phi)} \\
1104\hspace*{5mm}{\tt double tetphi2mollY(double theta)}
1105\item Longitude(0..360) deg., Latitude(-90..90) deg. conversion to Molleweide X,Y: \\
1106\hspace*{5mm}{\tt double longlat2mollX(double longit, double lat) } \\
1107\hspace*{5mm}{\tt double longlat2mollY(double lat) }
1108\end{itemize}
1109
1110The processing steps for an Expression.Plotting in piapp :
1111\begin{enumerate}
1112\item Creation of the C-file.
1113\item On the fly compilation of the generated file.
1114\item The resulting shared-object is loaded and linked with the application
1115\item Loop over the NTupleInterface object rows. The created function is called
1116with the data from each row
1117\item The return values are used to fill an histogram, or a matrix/vector or
1118another NTuple or to produce a 2D or 3D graphic display.
1119\end{enumerate}
1120
1121Although rather complex, the efficiency gain during processing data easily compensates
1122for the overhead of the compilation step.
1123
1124\subsection{Column/variable names}
1125
1126When working with real 2-D tables (NTuple, DataTable \ldots), the column names
1127are the name of the variables which can be used in the C-expressions.
1128There is an additional variable, called {\tt \_nl}, automatically
1129provided by piapp, corresponding the table row number, starting from 0.
1130
1131For the other objects in piapp, the variable names are listed below:
1132\begin{itemize}
1133\item[\rond] For 2D table objects {\bf (NTuple,DataTable,\ldots)}: ColumnNames,\_nl
1134\item[\rond] For FITS files opened through {\tt fitsadapt} command: FITSColumnNames,\_nl
1135\item[\rond] For {\bf Histo1D/HProf} objects : i,x,val,err,nb,\_nl
1136\item[\rond] For {\bf Histo2D} objects : i,j,x,y,val,err,\_nl
1137\item[\rond] For {\bf HistoErr} objects : i,x,val,err2,nb,\_nl
1138\item[\rond] For {\bf Histo2DErr} objects : i,j,x,y,val,err2,nb,\_nl
1139\item[\rond] For {\bf \tcls{TVector}, \tcls{TMatrix} , \tcls{Image} } objects : \\
1140 \hspace*{10mm} n,r,c,val,real,imag,mod,phas,\_nl
1141\item[\rond] For {\bf \tcls{TArray}} objects : n,x,y,z,t,u,val,real,imag,mod,phas,\_nl
1142\item[\rond] For {\bf GeneralFitData} objects : x0,ex0 x1,ex1 ... xn,exn y,ey ,ok,\_nl
1143\item[\rond] For {\bf \tcls{SphereHEALPix} , \tcls{SphereThetaPhi} , \tcls{SphereECP}
1144\tcls{LocalMap} } objects : \hspace{10mm} i,k,val,real,imag,mod,phas,teta,phi,\_nl
1145\end{itemize}
1146
1147%%%%%
1148\subsection{Examples}
1149The following examples illustrates the use of some Expression Plotting commands
1150(see the command groups {\bf Expr. Plotting} \myppageref{ExprZZPlotting} and
1151 {\bf pawCmd} \myppageref{pawCmd}).
1152The {\bf pawCmd} defines a number of operations with command name and syntax
1153similar to the CERN PAW program.
1154The graphic output from the examples below are shown in the figures
1155\ref{exhis2dpl} and \ref{uzcpos}.
1156\begin{enumerate}
1157\item 2D plot with error bars \\[1mm]
1158\begin{verbatim}
1159# Set the axes attibute (the font used for axes ...)
1160setaxesatt 'font=helvetica,bold,16 minorticks fixedfontsize'
1161# Open the file demo.ppf (in DemoPIApp)
1162openppf demo.ppf
1163print nt21
1164print nt22
1165# 2D plot directly from the NTuple columns (nt2d)
1166# nt2d DO NOT use a compiled c file
1167nt2d nt21 x y - - - - 'font=helvetica,bold,16'
1168# Overlay a plot with scaled error bars from nt22
1169plot2de nt22 x y ex*0.3 ey*0.5 1 \
1170 'same marker=box,7 red font=helvetica,bold,16 '
1171\end{verbatim}
1172\vspace*{4mm}
1173\item Compute the histogram of pixel values for a \tcls{SphreHEALPix}.
1174The data come from the synchrotron map (syncmap.fits), described page \pageref{syncmap}.
1175\begin{verbatim}
1176# Open the synchrotron map file (HEALPix format spherical map)
1177# The file can be found in directory DemoData/
1178readfits syncmap.fits
1179newwin 1 1 800 400
1180disp syncmap 'lut=lin,2,50 midas_bluered'
1181newwin 1 2
1182# Compute and display the pixel value histogram (brightness temperature)
1183n/plot syncmap.val val<200 ! ! 'font=helvetica,bold,16 notit'
1184settitle 'Sky brightness @ 408 MHz' ' ' 'font=helvetica,bold,16'
1185# display the pixel value histogram in the galactic plane
1186n/plot syncmap.val val<200&&(fabs(teta-M_PI/2)<0.025) ! ! 'red notit'
1187settitle '408 MHz - Galactic plane' ' ' 'font=helvetica,bold,16 red'
1188\end{verbatim}
1189\vspace*{4mm}
1190\item Sources (galaxies) distribution over the sky. The data used below (uzc.ppf)
1191has been extracted from the {\bf U}pdated {\bf Z}wicky {\bf C}atalog of Galaxies,
1192available from the Harvard-Smithsonian Center For Astrophysics
1193\href{http://tdc-www.harvard.edu/uzc/}{CfA/UZC web site}.
1194\footnote{CfA web site: \hspace{5mm} http://tdc-www.harvard.edu/uzc/} \\[1mm]
1195%%%
1196\begin{verbatim}
1197# Keep the synchrotron map
1198# Open the Updated Zwicky Catalog of galaxies (in DemoData)
1199openppf uzc.ppf
1200zone 1 2
1201# Draw a longitude-latitude grid in Molleweide projection
1202mollgrid 5 7 'axesnone black font=helvetica,roman,12 notit'
1203# Overlay the sources distribution from UZC, for bright objects (mag<14)
1204plot2d uzc longlat2mollX(ra*15,dec) longlat2mollY(dec) mag<14 \
1205 'same red marker=circle,5'
1206# Change the plot title
1207settitle 'RA-Dec in degrees UZC (Updated Zwicky Catalog)' ' ' \
1208 'font=helvetica,bold,16 red'
1209# Display the synchrotron map
1210disp syncmap 'lut=lin,2,40 grey128'
1211# Add the source distribution in Galactic coordinates
1212plot2d uzc longlat2mollX(glong,glat) longlat2mollY(glat) mag<14 \
1213 'same nsta red marker=circle,5'
1214\end{verbatim}
1215%%%%%%%%%%%%%%%%
1216%%%%%%%%%%%%%%%%
1217\item Analysis of elevation (altitude) data for france. We use the francetopo.ppf
1218data set described page \pageref{francetopo}.
1219\begin{verbatim}
1220# open and display the topographic data for france
1221openppf francetopo.ppf (in DemoData/ directory)
1222print francetoto
1223#--- TMatrix<s>(NRows=1332, NCols=1548) ND=2 SizeX*Y*...= 1548x1332 ---
1224disp francetopo 'zoom/2 imagecenter=750,700 lut=lin,-700,800 colbr128'
1225# Compute the altitude distribution
1226newh1d altf 0. 4000 100
1227projh1d altf francetopo val val>0.1
1228# Display the histogram overlayed on the topographic map
1229disp altf 'white line=solid,2 font=helvetica,bold,14 inset=0.1,0.6,0.45,0.9'
1230# Compute altitude distribution for the massif central (Auvergne)
1231newh1d altmc 0. 2000 100
1232# We select the region as a circle of radius 200, centered on x=c=970,y=r=920
1233set regcut (sqrt((c-970)*(c-970)+(r-920)*(r-920))<200)
1234projh1d altmc francetopo val (val>0.1)&&$regcut
1235# Create a new window and display the two histograms
1236newwin 1 2
1237setaxesatt 'font=helvetica,bold,16 fixedfontsize'
1238disp altf 'notit'
1239settitle 'Elevation (altitude) distribution over France' ' ' \
1240 'font=helvetica,bold,16'
1241disp altmc 'notit'
1242settitle 'Elevation (altitude) distribution over MassifCentral' ' ' \
1243 'font=helvetica,bold,16'
1244\end{verbatim}
1245\end{enumerate}
1246
1247\begin{figure}[hp]
1248\includegraphics[width=15cm]{exhis2dpl.eps}
1249\caption{
1250top: 2d plot example with error bars \hspace{5mm}
1251bottom: Histogram of pixel values from the synchrotron map
1252of our galaxy}
1253\label{exhis2dpl}
1254\end{figure}
1255
1256\begin{figure}[p]
1257\includegraphics[width=15cm]{uzcpos.eps}
1258\caption{UZC: Updated Zwicky Catalog. \hspace{5mm}
1259top: The galaxy position distribution in equatorial
1260$(\alpha, \delta)$ coordinates. \hspace{5mm}
1261bottom: Position distribution in Galactic coordinates, superimposed on
1262the synchrotron map.}
1263\label{uzcpos}
1264\end{figure}
1265
1266%%%%%%%%%%%%%%% Section 6 : command interpreter
1267\newpage
1268\section{Command interpreter}
1269piapp uses the class {\bf PIACmd} which extends slightly the
1270SOPHYA class {\bf Commander} as the command interpreter.
1271{\bf Commander} is a c-shell inspired, string oriented command
1272interpreter. Although it has many limitations compared to
1273c-shell, or Tcl , it provides some interesting possibilities:
1274\begin{itemize}
1275\item Extended arithmetic operations (c-like and RPN)
1276\item Simple and vector variables
1277\item Script definition
1278\item Command execution in separate threads
1279\item Dynamic Load
1280\end{itemize}
1281
1282We describe below the {\bf Commander} possibilities,
1283as well as the few {\bf PIACmd} extensions.
1284
1285\subsection{Variables}
1286The SOPHYA::Commander interpreter manages non typed set of variables.
1287Environment variables are also accessible through
1288the usual {\tt \$varenvname}, unless shadowed by a Commander
1289variable. All Commander variables are vector of strings, and are
1290extended as necessary. {\tt \$varname} is the string formed by all
1291the vector elements. Except when performing arithmetic operations,
1292variables are treated as strings.
1293\par
1294An application level set of variables is also managed
1295by Commander, through redefinition of \\
1296{\tt Commander::GetVarApp() / GetVarApp() \ldots } methods. \\
1297The {\bf PIACmd} in piapp redefines the {\tt GetVarApp() }
1298in order to provide an easy access to some of objects attributes or methods,
1299managed by {\bf NamedObjMgr} (See below).
1300
1301\subsubsection{Interpreter/Commander variables}
1302\begin{itemize}
1303\item[\rond] {\bf Definition and initialisation of variables }
1304\begin{verbatim}
1305# Notice that the set command has no = sign
1306Cmd> set sv StringValue
1307# Clearing/removing of a variable : unset or clearvar
1308Cmd> unset sv
1309
1310# Definition of a multi element variable (vector type)
1311# Notice that spaces before / after '(' and ')' are mandatory
1312Cmd> set vecv ( mot1 mot2 mot3 mot4 mot5 )
1313# Arithmetic expression : C language syntax - spaces
1314# before/after '=' are mandatory
1315Cmd> a = 2+3*sqrt(4)
1316# The '=' operator can also be used to initialize a variable with a string
1317Cmd> a = 'Bonjour Madame'
1318# A vector element can be specified in the left hand side
1319Cmd> vecv[2] = 'coucou'
1320# Or using an interpreter variable as index :
1321Cmd> i = 3
1322Cmd> vecv[i] = 'Ooohhh'
1323\end{verbatim}
1324
1325On the right hand side, the value of a variable should be accessed using
1326the \$ character. \\
1327A string can be parsed into words using {\tt var2words}
1328\begin{verbatim}
1329Cmd> var2words varname wordvarname [separateur]
1330\end{verbatim}
1331
1332\item[\rond] {\bf Accessing variable contents } \\
1333The \$ character is used to access the content of a variable {\tt \$varname} .
1334Substitution rules :
1335The {\tt \$xxx} is replaced by the value of variable xxx.
1336No substitution is performed for strings enclosed in simple quotes {\tt ' ... \$xxx '},
1337but substitution is done in strings enclosed in double quotes.
1338Parenthesis or brackets can be used to specify the variable name, inside a string
1339without white space: {\tt \${vname} } ou {\tt \$(vname)}.
1340\begin{verbatim}
1341Cmd> x = 'Hello'
1342Cmd> echo $x
1343# Size of a vector variable : $#vname
1344Cmd> set vx ( 111 2222 3333 444444 )
1345Cmd> echo $#vx
1346# Accessing vector elements
1347Cmd> echo $vx[0] $vx[1]
1348# or using an interpreter variable as index :
1349Cmd> i = 2
1350Cmd> echo $vx[i]
1351# Special syntax: $[vname] is replaced by the content
1352# of a variable whose name is $vname
1353Cmd> zzz = 'Commander'
1354Cmd> xxx = 'zzz'
1355Cmd> echo '---> $[xxx]= ' $[xxx]
1356---> $[xxx]= Commander
1357\end{verbatim}
1358
1359\par
1360\end{itemize}
1361
1362\subsubsection{Special variables}
1363\begin{itemize}
1364\item {\tt \$retval} ou {\tt \$retstr} : the string specified in the last {\bf return} statement
1365\item {\tt \$status} : Return code from the last executed command.
1366Arguments of scripts (see below) or file executed through {\bf exec} command.
1367\item {\tt \$\# } : number of arguments, except \$0
1368\item {\tt \$0} : Script or file name
1369\item {\tt \$1 \$2 \$3} .... : Arguments (for scripts and .pic files (exec))
1370\end{itemize}
1371
1372\subsubsection{Environment variables}
1373Environment variables can simply be accessed by {\tt \$varenvname}.
1374However, the environment variables have the lowest priority during substitution.
1375Interpreter's variables have the highest priority, followed
1376by the application level variables.
1377
1378\subsubsection{Objects/Application level variables}
1379For some classes managed by NamedObjMgr,
1380PIACmd provide acces to some of the attributes of the object by
1381{\tt \${objname.attname} }. This mechanism has been implemented in particular for
1382TArrays, TMatrix/TVector, Histograms, NTuples and DataTables.
1383In addition, when brackets are used ($\${vname}$), the priority level between interpreter variables
1384and application level variable is changed. If {\tt vname} exist at the application level,
1385{\tt \${vname} } is replaced by its value, even if an interpreter variable with the
1386same name has been defined.
1387\begin{itemize}
1388\item[\rond] Accessing object attributes
1389\begin{verbatim}
1390# -------- Example with a Vector
1391piapp[1] newvec va 12
1392piapp[2] echo $va
1393TVector<d>(12) (nr=12, nc=1)
1394# ------- An undefined attribute, such as ? might be
1395# used to get list of valid attributes
1396piapp[3] echo ${va.?}
1397TMatrix.Att: rank size/nelts nrow/nrows ncol/ncols sum sumsq norm min ...
1398# Compound names, in the form name.att must be inclosed in
1399# braces {name.att}
1400piapp[4] echo ${va.size}
140112
1402# -------- Example with an histogram
1403piapp[8] newh1d his 0. 20. 40
1404piapp[10] echo ${his.?}
1405Histo1D: nbin binw mean sigma over under nentries ndata
1406 xmin xmax vmin vmax imin imax
1407piapp[11] echo ${his.nbin}
140840
1409\end{verbatim}
1410
1411\item[\rond] Accessing object.Info() \\
1412For objects having an DVList Info() object (TArray/TVector/TMatrix , NTuple, DataTable, SwPPFDataTable, it is possible to access DVList members by the corresponding names : \\
1413\hspace*{10mm} {\tt \$\{objName.info.varName\} }
1414\item[\rond] Getting DataTable rows \\
1415For NTuple and BaseDataTable objects (DataTable, SwPPFDataTable, SwFitsDataTable), it is
1416possible to get a string representation of a given row, by specifying
1417\$\{tableName.row\} followed by the row number (starting from 0) : \\
1418\hspace*{10mm} {\tt \$\{tableName.row.num\} }
1419\end{itemize}
1420
1421
1422
1423\subsection{Control structures}
1424
1425\begin{itemize}
1426\item[\rond] Enumerated loop:
1427\begin{verbatim}
1428foreach f ( w1 w2 w3 ... )
1429 ...
1430 echo $f
1431end
1432\end{verbatim}
1433
1434Note that spaces before/after '(' et and ')' are mandatory.
1435An alternative form uses a vector variable name :
1436\begin{verbatim}
1437foreach v vecname
1438 ...
1439 echo $v
1440end
1441\end{verbatim}
1442
1443\item[\rond] Integer type loop:
1444\begin{verbatim}
1445for i startInt:endInt[:stepInt]
1446 ....
1447 echo $i
1448end
1449\end{verbatim}
1450
1451\item[\rond] Integer type loop:
1452\begin{verbatim}
1453for f startFloat:endFloat[:stepFloat]
1454 ....
1455 echo $f
1456end
1457\end{verbatim}
1458
1459\item[\rond] Loop over lines of a file
1460\begin{verbatim}
1461forinfile line FileName
1462 ...
1463 echo $line
1464end
1465\end{verbatim}
1466
1467\item[\rond] The {\tt break} instruction can be used to exit from a loop
1468
1469\item[\rond] {\bf if then else} Conditional execution:
1470\begin{verbatim}
1471if ( test ) then
1472endif
1473
1474if ( test ) then
1475 ....
1476else
1477 ....
1478endif
1479\end{verbatim}
1480Note that spaces before/after '(' et and ')' are mandatory.
1481
1482test is in the form {\tt a == b} OR {\tt a != b} OR {\tt a < b} OR {\tt a > b}
1483OR {\tt a <= b} OR {\tt a >= b}. Comparison operators should be delimited
1484by spaces.
1485{\tt ==} et {\tt !=} make a string comparison, while
1486{\tt < , > , <= , >=} compare the values obtained after string to double conversion.
1487\end{itemize}
1488
1489\subsection{Script definition}
1490A script is a sequence of commands. It is very similar to the execution of commands
1491from a file ({\bf exec filename}). Once a script has been defined, it can be called specifying
1492specifying the script name followed by its arguments.
1493\begin{verbatim}
1494# Script definition :
1495defscript scriptname [description ]
1496 ....
1497endscript
1498
1499# Executing the script
1500Cmd> scriptname arg1 arg2 arg3 ....
1501\end{verbatim}
1502
1503The {\tt return} instruction stops the execution and returns from a script, or from a command
1504file called through {\bf exec}. \\
1505The commands {\bf listscript } and {\bf clearscript scriptname} can be used
1506to obtain the list of already defined script, or to clear a script definition.
1507
1508\subsection{Other built-in commands}
1509\begin{itemize}
1510\item[\rond] Instruction {\bf echo } to write the line to cout/stdout
1511\item[\rond] Instruction {\bf echo2file} to write (append) the line to file ({\tt echo2file filename ....})
1512\item[\rond] Instruction {\bf sleep nsec} wait for {\tt nsec} seconds
1513\item[\rond] Instructions {\bf timingon , timingoff , traceon , traceoff } \\
1514%
1515\item[\rond] {\bf exec filename [arg1 arg2 ... ] } to execute command from
1516the file named {\tt filename}. {\tt .pic} is the default extension for the interpreter
1517command files.
1518\item[\rond] {\bf help} and {help keyword/commandname }
1519\item[\rond] {\bf listvars , listcommands } to print the list of defined variables and known
1520commands
1521\item[\rond] An alias for a command by {\bf alias aliasname 'string ' }. Alias substitution
1522occurs for the first word in a command line. {\bf listalias} prints the list of all
1523defined aliases.
1524\item[\rond] Execution control (piapp/PIACmd extension):
1525It is possible to stop the interpreter execution in a loop, a script or
1526a command file by the {\bf stop} command, or using
1527 {\tt <Cntrl C>} in the piapp console (PIConsole) \\
1528\end{itemize}
1529
1530\subsection {Command execution in separate threads}
1531It is possible to create new threads to execute commands
1532( for non built-in interpreter commands). The syntax is similar
1533to unix shell background tasks: an {\&} should be added at the end
1534of the command line. A new thread is then created for the
1535execution of the command, if declared as thread safe \\
1536(see {\tt CmdExecutor::IsThreadable() }.
1537\par
1538Thread management commands:
1539\begin{itemize}
1540\item[\rond] {\bf thrlist }Print current list of threads, with the associated command
1541the thread identifier (integer ThrId) and its status.
1542\item[\rond] {\bf cleanthrlist } Removes all finished threads from the list.
1543An automatic cleanup is performed periodically.
1544\item[\rond] {\bf cancelthr ThId } / {\bf killthr ThId } Stops/kills the thread with
1545the identifier ThId. Avoid using theses commands as the cleanup does
1546not release some resources associated with
1547the thread (memory, mutex \ldots).
1548\end{itemize}
1549
1550Executing commands in a separate thread is useful for CPU or data intensive
1551commands. Most {\bf Expr.Plotting}
1552(plot2d, plot2dw, plot2de, plot3d, ntloop, fillvec, fillmtx \ldots)
1553and some of the {\bf pawCmd} (n/plot n/proj) are thread safe. However, due to the
1554current mutex lock management for these Expr.Plotting/pawCmd commands, only one
1555such command can run concurrently with other piapp threads.
1556Some of the commands in the {\bf CxxExecutorCmd} (
1557c++exec, c++execfrf, c++create, c++createfrf, c++compile, c++link) are also thread safe.
1558The same remark concerning lock management applies to these commands, while
1559CxxExecutorCmd commands can run in parallel with Expr.Plotting commands.
1560
1561
1562%%%%%%%%%%%%%%% Section 7 : c++ execution
1563\newpage
1564\section{On the fly C++ execution}
1565\label{flycplusplus}
1566Piapp operates on the underlying SOPHYA class library objects.
1567Obviously, only a small fraction of functionalities in the libraries
1568are directly available through the commands. On the fly C++ compilation
1569and execution in piapp provides an easy access to the whole class library.
1570
1571The {\bf NamedObjMgr} class handles most of the communication between different
1572component of the application, including user c++ code.
1573The NamedObjMgr class implements a singleton scheme, where all instances of the
1574class operate on the same data.
1575Most operations, in particular directory and object management are thread-safe.
1576The most usefull NamedObjMgr methods in user code are:
1577\begin{itemize}
1578\item Adding an object using its pointer. The object should be created using new. \\
1579{\tt \small bool NamedObjMgr::AddObj(AnyDataObj* obj, string \& nom, bool crd=false) }
1580\item Adding an object using its reference. The Object Adapter is used to Clone
1581the object. For classes like TArray or Spherical maps, implementing reference sharing,
1582the cloned object shares its data with the original object.
1583The Cloned object is then added to the list. \\
1584{\tt \small bool NamedObjMgr::AddObj(AnyDataObj\& obj, string \& nom, bool crd=false)}
1585\item Object display methods : \\
1586{\tt \small NamedObjMgr::DisplayObj(string \& nom, string dopt="") \\
1587NamedObjMgr::DisplayImage(string \& nom, \ldots ) \\
1588NamedObjMgr::DisplayNT(string \& nom, \ldots )} \\
1589\ldots
1590\item Access to other parts of the piapp application : \\
1591{\tt \small PIStdImgApp* NamedObjMgr::GetImgApp() \\
1592PIACmd* PIStdImgApp::CmdInterpreter() }
1593\end{itemize}
1594
1595\subsection{How does it work ?}
1596When one the {\bf CxxExecutorCmd} \myppageref{CxxExecutorCmd} commands
1597({\tt c++exec} or {\tt c++execfrf}) is invoked, piapp performs the
1598following operations:
1599\begin{itemize}
1600\item Create a c++ file, and includes the usual libstc++ and SOPHYA header files
1601(file named PIATmp\_xxx/cxx\_spiapp.cc)
1602\item The user code is put in a c++ function: \\
1603{\small \tt int usercxx( vector<string> \& args ) }
1604\item References to all objects present in the current working NamedObjMgr directory
1605(default=/home) are declared and initialized. Objects in the current directory can
1606thus be easily accessed through variables bearing the corresponding object name
1607in piapp.
1608\item The c++ source file is compiled and linked with SOPHYA libraries,
1609and any additional library, specified through {\tt c++mylibs} \myppageref{cZZmylibs}).
1610The compilation and link steps are carried by the SOPHYA class {\b CxxCompilerLinker}.
1611\item The resulting shared object is loaded by piapp and the function
1612{\tt usercxx()} is called.
1613\end{itemize}
1614
1615To facilitate communication with piapp/NamedObjMgr, two CPP macros are defined:
1616\begin{itemize}
1617\item[\rond] {\bf KeepObj(VarName) } where VarName is a user declared
1618c++ variable, corresponding to an object inheriting from AnyDataObj.
1619When this macro is called, the corresponding object is cloned by the object
1620Adapter and added to the list managed by NamedObjMgr,
1621with VarName as the object name.
1622\item[\rond] {\bf DisplayObj(VarName, graphic\_att) } adds the object and
1623request its display.
1624\end{itemize}
1625
1626\subsection{Examples}
1627
1628\begin{enumerate}
1629\item Computation using TimeStamp object. \\[1mm]
1630%%
1631$\longrightarrow$ File compdate.cc :
1632\begin{verbatim}
1633 TimeStamp now; // Current date
1634 TimeStamp y2000(2000,1,1,12,0,0.); // 1 jan 2000, 12:00
1635 cout << " Y2000=" << y2000 << " --> Now: " << now << endl;
1636 cout << " From Y2000 to Now= " << now.ToDays() - y2000.ToDays() << " days" << endl;
1637\end{verbatim}
1638$\longrightarrow$ piapp commands : \\
1639{\tt piapp> c++execfrf compdate.cc} \\
1640$\longrightarrow$ The result : \\
1641\begin{verbatim}
1642PIABaseExecutor: Call usercxx( ... )
1643 Y2000= 01/01/2000 12:00:0.0 UT --> Now: 13/12/2007 14:20:50.0 UT
1644 From Y2000 to Now= 2903.1 days
1645\end{verbatim}
1646%%%%
1647\item Working with objects in piapp: \\[1mm]
1648\begin{verbatim}
1649# We create three vectors
1650newvec va 256 sin(x/5.)
1651newvec vb 256 cos(x/18.)*exp(-x/150.)
1652newvec vc 256
1653# We call c++exec to make an operation on these vectors
1654c++exec vc=va+3.*vb;
1655# Display the resulting vector
1656disp vc
1657\end{verbatim}
1658%%%
1659\item Creating and adding new objects \\[1mm]
1660$\longrightarrow$ File myf\_fft.h :
1661\begin{verbatim}
1662inline double myf(double x)
1663{
1664return(3*sin(0.2*x)+4*cos(x)+5*sin(4*x+0.25)
1665 +3.5*cos(9*x+0.45) + 0.05*x);
1666}
1667\end{verbatim}
1668$\longrightarrow$ File myf\_fft.h :
1669\begin{verbatim}
1670TVector<r_8> in(4048);
1671TVector<r_8> noise(4048);
1672TVector< complex<r_8> > out;
1673in = RegularSequence(0., 0.05);
1674noise = RandomSequence(RandomSequence::Gaussian, 0., 4.);
1675MathArray<r_8> ma;
1676ma.ApplyFunctionInPlace(in, myf);
1677in += noise;
1678FFTPackServer FFTServ;
1679cout << " Calling FFT " << endl;
1680FFTServ.FFTForward(in, out);
1681DisplayObj(in, "");
1682DisplayObj(out, "red");
1683\end{verbatim}
1684$\longrightarrow$ piapp commands :
1685\begin{verbatim}
1686# Remove existing in/out objects
1687rm in out
1688# Divide then graphic window in two regions
1689zone 1 2
1690# Compile and execute the c++ code
1691c++execfrf fft.icc myf_fft.h
1692listobjs
1693\end{verbatim}
1694\end{enumerate}
1695
1696\subsection{Include files, libraries \ldots}
1697\begin{itemize}
1698\item[\rond] The different steps of c++exec or c++execfrf
1699can be performed by the following commands: {\tt c++create , c++createfrf,
1700c++compile, c++link, call}. This is useful when the same code
1701has to be executed multiple times.
1702\item[\rond] An interactive editing / c++ execution window can be
1703displayed through the menu-bar, \menubar{Tools/CxxExecutorWindow}
1704\item[\rond] The {\tt c++import} \myppageref{cZZimport}
1705activate inclusion of header files for additional SOPHYA modules,
1706such as Samba SkyMap SkyT FitsIOServe \ldots.
1707\item[\rond] The inclusion of additional header files and libraries
1708can be specified using the {\tt c++include} \myppageref{cZZinclude}
1709and {\tt c++mylibs} \myppageref{cZZmylibs}.
1710\item[\rond] A dialog window for changing various c++ compile and link
1711options can be displayed by through the menu-bar
1712\menubar{Special/CxxExecOption}
1713\end{itemize}
1714
1715
1716%%%%%%%%%%%%%%% Section 8 : command reference
1717\newpage
1718\section{piapp command reference}
1719\label{piappcmdref}
1720This section contains the description of piapp commands. This information
1721is available on-line, through the help command, or through a graphic
1722window, accessible by \menubar{File / Help}.
1723The help items and command are divided into different sections,
1724where related commands are grouped. \\[10mm]
1725
1726% \include{piahelp}
1727\input{piahelp.tex}
1728
1729% La partie des appendix
1730\appendix
1731\newpage
1732\section{Interactive control windows}
1733\subsection{DrawerTools} \index{DrawerTools}
1734\label{secdrwtools}
1735The {\bf PIDrawerTools}, shown in the figure \ref{figdrwtools} can be
1736used to change the graphic attributes (color, font, marker, \ldots)
1737of the Drawers displayed in 2D displays
1738({\bf PIScDrawWdg} \myppageref{PIScDrawWdg}) or 3D displays
1739({\bf PIDraw3DWdg} \myppageref{PIDraw3DWdg}), as well in image displays
1740{\bf PIImage} (\myppageref{PIImage}). The PIDrawerTools can be activated
1741either using {\tt Alt<G>} on a PIScDrawWdg,PIDraw3DWdg,PIImage,
1742or through the \menubar{Tools/Show DrawerTools}.
1743A given drawer can be selected through the DrawerId selector (+ / - buttons)
1744
1745\vspace*{5mm}
1746\begin{figure}[ht!]
1747\begin{center}
1748\includegraphics[width=8cm]{piapp_drwtools.eps}
1749\caption{PIDrawerTools}
1750\label{figdrwtools}
1751\end{center}
1752\end{figure}
1753%%%%
1754\subsection{AxesTools} \index{AxesTools}
1755\label{secaxestools}
1756The {\bf PIAxesTools}, shown in the figure \ref{figaxestools} can be used to
1757control and change the setting of axes on 2D displays
1758({\bf PIScDrawWdg} \myppageref{PIScDrawWdg}).
1759The PIAxesTools can be activated
1760either using {\tt Alt<A>} on a PIScDrawWdg or through
1761the \menubar{Tools/Show AxesTools}.
1762
1763\vspace*{5mm}
1764\begin{figure}[ht!]
1765\begin{center}
1766\includegraphics[width=8cm]{piapp_axestools.eps}
1767\caption{PIAxesTools}
1768\label{figaxestools}
1769\end{center}
1770\end{figure}
1771%%%%%
1772\subsection{ImageTools} \index{ImageTools}
1773\label{secimagetools}
1774The {\bf PIImageTools}, shown in the figure \ref{figimgtools} can be used to
1775manipulate a display of type image. Image display are handled by the
1776{\bf PIImage} (\myppageref{PIImage}). The PIImageTools can be activated
1777either using {\tt Alt<O>} on a PIImage, or through the
1778\menubar{Tools/Show ImageTools}.
1779
1780\vspace*{5mm}
1781\begin{figure}[ht!]
1782\begin{center}
1783\includegraphics[width=8cm]{piapp_imgtools.eps}
1784\caption{PIImageTools}
1785\label{figimgtools}
1786\end{center}
1787\end{figure}
1788
1789\subsection{Histo2DTools} \index{Histo2DTools}
1790\label{sech2dtools}
1791The {\bf PIHisto2DTools}, shown in the figure \ref{figh2dtools} can be
1792used to control and change the display caracteristics of 2D histograms.
1793PIHisto2DTools can be activated
1794either using {\tt Alt<O>} on a PIScDrawWdg, when the active
1795drawer is a PIHisto2DDrawer, or through the generic drawer tool
1796PIDrawerTools.
1797
1798\vspace*{5mm}
1799\begin{figure}[ht!]
1800\begin{center}
1801\includegraphics[width=8cm]{piapp_h2dtools.eps}
1802\caption{PIHisto2DTools}
1803\label{figh2dtools}
1804\end{center}
1805\end{figure}
1806
1807\subsection{ContourTools} \index{ContourTools}
1808\label{secconttools}
1809The {\bf PIContourTools}, shown in the figure \ref{figconttools} can be
1810used to control and change the caracteristics of contour displays.
1811PIContourTools can be activated
1812either using {\tt Alt<O>} on a PIScDrawWdg, when the active
1813drawer is a PIContDrawer, or through the generic drawer tool
1814PIDrawerTools.
1815
1816\vspace*{10mm}
1817\begin{figure}[ht!]
1818\begin{center}
1819\includegraphics[width=11cm]{piapp_conttools.eps}
1820\caption{PIContourTools}
1821\label{figconttools}
1822\end{center}
1823\end{figure}
1824
1825
1826
1827Both drawing options (e.g. color, line type, fonts...) and contour
1828determination parameters (e.g. contour number and levels) are controlled
1829by {\bf PIContourTools}.
1830
1831\subsubsection{Drawing options}
1832The top choices in {\bf PIContourTools}
1833concern the color map (left choice) or color (right choice) of the contours.
1834If a color map has been chosen, it is used to give each contour a color
1835(according to its level). If no color map has been chosen, contours may be
1836given a color using the left choice box.
1837
1838Contour are by default traced by lines.
1839Alternatively (or in addition) the user may ask to trace them by markers
1840or to put numeric labels (with the contour's level) aside the contour.
1841These options are enabled/disabled by the {\tt LineON}, {\tt MarkerON} and {\tt LabelON}
1842buttons from {\bf PIContourTools}.
1843
1844Options may be recovered ({\tt GetAtt}) or set ({\tt SetAtt})
1845from/to a drawer. Setting an option which adds to the screen will be immediately visible
1846whereas unsetting it requires a {\tt Refresh} to be visible.
1847
1848
1849\subsubsection{Contour options}
1850The contouring routines in {\tt spiapp} are based on a hack of the {\tt GNUPlot}
1851routines. Contours are determined from a grid of values
1852using an interpolation scheme. Three schemes may be used
1853(selected by the left menu) :
1854\begin{enumerate}
1855\item Linear interpolation (default), selected by the {\tt Int. Lin.} option
1856\item A cubic spline algorithm, selected by the {\tt CubicSpl} option
1857\item A 2d BSpline algorihm, selected by the {\tt B-Spline} option
1858\end{enumerate}
1859
1860Contour levels and number are automatically
1861determined by the program. They may be specified differently,
1862 through command-line options
1863(see section \ref{piappcmdref} for the help of the contour/ntcont commands)
1864or the lower part of the {\bf PIContourTools} window.
1865
1866The user may specify one of the following alternatives :
1867\begin{enumerate}
1868\item the number of contour (their level beeing automatically set).
1869To do this, select {\tt LevelNum} in the right menu and enter the contour number
1870in the left box below.
1871\item the levels of the contours, through an array of numerical values
1872(e.g. 1,4,6,9,27,4.5 will result in 6 contour lines being drawn, if possible and necessary).
1873To do this, select {\tt LevelDisc} and enter the contour number (left box)
1874and the values (right box) separated by ``{\tt ,}''.
1875\item the levels of the contours through an initial (lower) value and an increment.
1876For this, select {\tt LevelInc} and enter the contour number (left box)
1877and the initial value and increment in the right box, as above.
1878\item come back to the default situation, by choosing {\tt LevelAuto}
1879\end{enumerate}
1880
1881Once these options are set, it is necessary the the program recomputes
1882the contour lines. This is commanded by the {\tt SetParm} button.
1883
1884
1885\newpage
1886\addcontentsline{toc}{section}{Index}
1887\printindex
1888
1889\end{document}
Note: See TracBrowser for help on using the repository browser.