[717] | 1 | /*
|
---|
| 2 | ** FFT and FHT routines
|
---|
| 3 | ** Copyright 1988, 1993; Ron Mayer
|
---|
| 4 | **
|
---|
| 5 | ** fht(fz,n);
|
---|
| 6 | ** Does a hartley transform of "n" points in the array "fz".
|
---|
| 7 | ** fft(n,real,imag)
|
---|
| 8 | ** Does a fourier transform of "n" points of the "real" and
|
---|
| 9 | ** "imag" arrays.
|
---|
| 10 | ** ifft(n,real,imag)
|
---|
| 11 | ** Does an inverse fourier transform of "n" points of the "real"
|
---|
| 12 | ** and "imag" arrays.
|
---|
| 13 | ** realfft(n,real)
|
---|
| 14 | ** Does a real-valued fourier transform of "n" points of the
|
---|
| 15 | ** "real" array. The real part of the transform ends
|
---|
| 16 | ** up in the first half of the array and the imaginary part of the
|
---|
| 17 | ** transform ends up in the second half of the array.
|
---|
| 18 | ** realifft(n,real)
|
---|
| 19 | ** The inverse of the realfft() routine above.
|
---|
| 20 | **
|
---|
| 21 | **
|
---|
| 22 | ** NOTE: This routine uses at least 2 patented algorithms, and may be
|
---|
| 23 | ** under the restrictions of a bunch of different organizations.
|
---|
| 24 | ** Although I wrote it completely myself; it is kind of a derivative
|
---|
| 25 | ** of a routine I once authored and released under the GPL, so it
|
---|
| 26 | ** may fall under the free software foundation's restrictions;
|
---|
| 27 | ** it was worked on as a Stanford Univ project, so they claim
|
---|
| 28 | ** some rights to it; it was further optimized at work here, so
|
---|
| 29 | ** I think this company claims parts of it. The patents are
|
---|
| 30 | ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
|
---|
| 31 | ** trig generator), both at Stanford Univ.
|
---|
| 32 | ** If it were up to me, I'd say go do whatever you want with it;
|
---|
| 33 | ** but it would be polite to give credit to the following people
|
---|
| 34 | ** if you use this anywhere:
|
---|
| 35 | ** Euler - probable inventor of the fourier transform.
|
---|
| 36 | ** Gauss - probable inventor of the FFT.
|
---|
| 37 | ** Hartley - probable inventor of the hartley transform.
|
---|
| 38 | ** Buneman - for a really cool trig generator
|
---|
| 39 | ** Mayer(me) - for authoring this particular version and
|
---|
| 40 | ** including all the optimizations in one package.
|
---|
| 41 | ** Thanks,
|
---|
| 42 | ** Ron Mayer; mayer@acuson.com
|
---|
| 43 | **
|
---|
| 44 | */
|
---|
| 45 |
|
---|
| 46 | #include "fftmayer.h"
|
---|
| 47 |
|
---|
| 48 | #define GOOD_TRIG
|
---|
| 49 | #define REAL r_8
|
---|
| 50 | #include "trigtbl.h"
|
---|
| 51 |
|
---|
| 52 | char fht_r8_version[] = "Brcwl-Hrtly-Ron-dbld";
|
---|
| 53 |
|
---|
| 54 | #define SQRT2_2 0.70710678118654752440084436210484
|
---|
| 55 | #define SQRT2 2*0.70710678118654752440084436210484
|
---|
| 56 |
|
---|
| 57 | void fht_r8(r_8 *fz,int n)
|
---|
| 58 | {
|
---|
| 59 | r_8 a,b;
|
---|
| 60 | r_8 c1,s1,s2,c2,s3,c3,s4,c4;
|
---|
| 61 | r_8 f0,g0,f1,g1,f2,g2,f3,g3;
|
---|
| 62 | int i,k,k1,k2,k3,k4,kx;
|
---|
| 63 | r_8 *fi,*fn,*gi;
|
---|
| 64 | TRIG_VARS;
|
---|
| 65 |
|
---|
| 66 | for (k1=1,k2=0;k1<n;k1++)
|
---|
| 67 | {
|
---|
| 68 | r_8 a;
|
---|
| 69 | for (k=n>>1; (!((k2^=k)&k)); k>>=1);
|
---|
| 70 | if (k1>k2)
|
---|
| 71 | {
|
---|
| 72 | a=fz[k1];fz[k1]=fz[k2];fz[k2]=a;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | for ( k=0 ; (1<<k)<n ; k++ );
|
---|
| 76 | k &= 1;
|
---|
| 77 | if (k==0)
|
---|
| 78 | {
|
---|
| 79 | for (fi=fz,fn=fz+n;fi<fn;fi+=4)
|
---|
| 80 | {
|
---|
| 81 | r_8 f0,f1,f2,f3;
|
---|
| 82 | f1 = fi[0 ]-fi[1 ];
|
---|
| 83 | f0 = fi[0 ]+fi[1 ];
|
---|
| 84 | f3 = fi[2 ]-fi[3 ];
|
---|
| 85 | f2 = fi[2 ]+fi[3 ];
|
---|
| 86 | fi[2 ] = (f0-f2);
|
---|
| 87 | fi[0 ] = (f0+f2);
|
---|
| 88 | fi[3 ] = (f1-f3);
|
---|
| 89 | fi[1 ] = (f1+f3);
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | else
|
---|
| 93 | {
|
---|
| 94 | for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8)
|
---|
| 95 | {
|
---|
| 96 | r_8 s1,c1,s2,c2,s3,c3,s4,c4,g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
| 97 | c1 = fi[0 ] - gi[0 ];
|
---|
| 98 | s1 = fi[0 ] + gi[0 ];
|
---|
| 99 | c2 = fi[2 ] - gi[2 ];
|
---|
| 100 | s2 = fi[2 ] + gi[2 ];
|
---|
| 101 | c3 = fi[4 ] - gi[4 ];
|
---|
| 102 | s3 = fi[4 ] + gi[4 ];
|
---|
| 103 | c4 = fi[6 ] - gi[6 ];
|
---|
| 104 | s4 = fi[6 ] + gi[6 ];
|
---|
| 105 | f1 = (s1 - s2);
|
---|
| 106 | f0 = (s1 + s2);
|
---|
| 107 | g1 = (c1 - c2);
|
---|
| 108 | g0 = (c1 + c2);
|
---|
| 109 | f3 = (s3 - s4);
|
---|
| 110 | f2 = (s3 + s4);
|
---|
| 111 | g3 = SQRT2*c4;
|
---|
| 112 | g2 = SQRT2*c3;
|
---|
| 113 | fi[4 ] = f0 - f2;
|
---|
| 114 | fi[0 ] = f0 + f2;
|
---|
| 115 | fi[6 ] = f1 - f3;
|
---|
| 116 | fi[2 ] = f1 + f3;
|
---|
| 117 | gi[4 ] = g0 - g2;
|
---|
| 118 | gi[0 ] = g0 + g2;
|
---|
| 119 | gi[6 ] = g1 - g3;
|
---|
| 120 | gi[2 ] = g1 + g3;
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | if (n<16) return;
|
---|
| 124 |
|
---|
| 125 | do
|
---|
| 126 | {
|
---|
| 127 | r_8 s1,c1;
|
---|
| 128 | k += 2;
|
---|
| 129 | k1 = 1 << k;
|
---|
| 130 | k2 = k1 << 1;
|
---|
| 131 | k4 = k2 << 1;
|
---|
| 132 | k3 = k2 + k1;
|
---|
| 133 | kx = k1 >> 1;
|
---|
| 134 | fi = fz;
|
---|
| 135 | gi = fi + kx;
|
---|
| 136 | fn = fz + n;
|
---|
| 137 | do
|
---|
| 138 | {
|
---|
| 139 | r_8 g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
| 140 | f1 = fi[0 ] - fi[k1];
|
---|
| 141 | f0 = fi[0 ] + fi[k1];
|
---|
| 142 | f3 = fi[k2] - fi[k3];
|
---|
| 143 | f2 = fi[k2] + fi[k3];
|
---|
| 144 | fi[k2] = f0 - f2;
|
---|
| 145 | fi[0 ] = f0 + f2;
|
---|
| 146 | fi[k3] = f1 - f3;
|
---|
| 147 | fi[k1] = f1 + f3;
|
---|
| 148 | g1 = gi[0 ] - gi[k1];
|
---|
| 149 | g0 = gi[0 ] + gi[k1];
|
---|
| 150 | g3 = SQRT2 * gi[k3];
|
---|
| 151 | g2 = SQRT2 * gi[k2];
|
---|
| 152 | gi[k2] = g0 - g2;
|
---|
| 153 | gi[0 ] = g0 + g2;
|
---|
| 154 | gi[k3] = g1 - g3;
|
---|
| 155 | gi[k1] = g1 + g3;
|
---|
| 156 | gi += k4;
|
---|
| 157 | fi += k4;
|
---|
| 158 | } while (fi<fn);
|
---|
| 159 | TRIG_INIT(k,c1,s1);
|
---|
| 160 | for (i=1;i<kx;i++)
|
---|
| 161 | {
|
---|
| 162 | r_8 c2,s2;
|
---|
| 163 | TRIG_NEXT(k,c1,s1);
|
---|
| 164 | c2 = c1*c1 - s1*s1;
|
---|
| 165 | s2 = 2*(c1*s1);
|
---|
| 166 | fn = fz + n;
|
---|
| 167 | fi = fz +i;
|
---|
| 168 | gi = fz +k1-i;
|
---|
| 169 | do
|
---|
| 170 | {
|
---|
| 171 | r_8 a,b,g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
| 172 | b = s2*fi[k1] - c2*gi[k1];
|
---|
| 173 | a = c2*fi[k1] + s2*gi[k1];
|
---|
| 174 | f1 = fi[0 ] - a;
|
---|
| 175 | f0 = fi[0 ] + a;
|
---|
| 176 | g1 = gi[0 ] - b;
|
---|
| 177 | g0 = gi[0 ] + b;
|
---|
| 178 | b = s2*fi[k3] - c2*gi[k3];
|
---|
| 179 | a = c2*fi[k3] + s2*gi[k3];
|
---|
| 180 | f3 = fi[k2] - a;
|
---|
| 181 | f2 = fi[k2] + a;
|
---|
| 182 | g3 = gi[k2] - b;
|
---|
| 183 | g2 = gi[k2] + b;
|
---|
| 184 | b = s1*f2 - c1*g3;
|
---|
| 185 | a = c1*f2 + s1*g3;
|
---|
| 186 | fi[k2] = f0 - a;
|
---|
| 187 | fi[0 ] = f0 + a;
|
---|
| 188 | gi[k3] = g1 - b;
|
---|
| 189 | gi[k1] = g1 + b;
|
---|
| 190 | b = c1*g2 - s1*f3;
|
---|
| 191 | a = s1*g2 + c1*f3;
|
---|
| 192 | gi[k2] = g0 - a;
|
---|
| 193 | gi[0 ] = g0 + a;
|
---|
| 194 | fi[k3] = f1 - b;
|
---|
| 195 | fi[k1] = f1 + b;
|
---|
| 196 | gi += k4;
|
---|
| 197 | fi += k4;
|
---|
| 198 | } while (fi<fn);
|
---|
| 199 | }
|
---|
| 200 | TRIG_RESET(k,c1,s1);
|
---|
| 201 | } while (k4<n);
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 |
|
---|
| 205 | void ifft_r8(int n, r_8 *real, r_8 *imag)
|
---|
| 206 | {
|
---|
| 207 | r_8 a,b,c,d;
|
---|
| 208 | r_8 q,r,s,t;
|
---|
| 209 | int i,j,k;
|
---|
| 210 | fht_r8(real,n);
|
---|
| 211 | fht_r8(imag,n);
|
---|
| 212 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
| 213 | a = real[i]; b = real[j]; q=a+b; r=a-b;
|
---|
| 214 | c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
---|
| 215 | imag[i] = (s+r)*0.5; imag[j] = (s-r)*0.5;
|
---|
| 216 | real[i] = (q-t)*0.5; real[j] = (q+t)*0.5;
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | void realfft_r8(int n, r_8 *real)
|
---|
| 221 | {
|
---|
| 222 | r_8 a,b,c,d;
|
---|
| 223 | int i,j,k;
|
---|
| 224 | fht_r8(real,n);
|
---|
| 225 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
| 226 | a = real[i];
|
---|
| 227 | b = real[j];
|
---|
| 228 | real[j] = (a-b)*0.5;
|
---|
| 229 | real[i] = (a+b)*0.5;
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | void fft_r8(int n, r_8 *real,r_8 *imag)
|
---|
| 234 | {
|
---|
| 235 | r_8 a,b,c,d;
|
---|
| 236 | r_8 q,r,s,t;
|
---|
| 237 | int i,j,k;
|
---|
| 238 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
| 239 | a = real[i]; b = real[j]; q=a+b; r=a-b;
|
---|
| 240 | c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
---|
| 241 | real[i] = (q+t)*.5; real[j] = (q-t)*.5;
|
---|
| 242 | imag[i] = (s-r)*.5; imag[j] = (s+r)*.5;
|
---|
| 243 | }
|
---|
| 244 | fht_r8(real,n);
|
---|
| 245 | fht_r8(imag,n);
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | void realifft_r8(int n,r_8 *real)
|
---|
| 249 | {
|
---|
| 250 | r_8 a,b,c,d;
|
---|
| 251 | int i,j,k;
|
---|
| 252 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
| 253 | a = real[i];
|
---|
| 254 | b = real[j];
|
---|
| 255 | real[j] = (a-b);
|
---|
| 256 | real[i] = (a+b);
|
---|
| 257 | }
|
---|
| 258 | fht_r8(real,n);
|
---|
| 259 | }
|
---|