[2615] | 1 | #include "sopnamsp.h"
|
---|
[729] | 2 | #include "lambdaBuilder.h"
|
---|
| 3 | #include "nbconst.h"
|
---|
| 4 |
|
---|
| 5 |
|
---|
[1218] | 6 | /*!
|
---|
| 7 | \class SOPHYA::Legendre
|
---|
| 8 | generate Legendre polynomials : use in two steps :
|
---|
| 9 |
|
---|
| 10 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
| 11 |
|
---|
| 12 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
|
---|
| 13 |
|
---|
| 14 | */
|
---|
| 15 |
|
---|
| 16 |
|
---|
[729] | 17 | Legendre::Legendre(r_8 x, int_4 lmax)
|
---|
| 18 | {
|
---|
[1428] | 19 | if (fabs(x) > 1. )
|
---|
[729] | 20 | {
|
---|
| 21 | throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
|
---|
| 22 | }
|
---|
| 23 | x_ = x;
|
---|
| 24 | array_init(lmax);
|
---|
| 25 | }
|
---|
[1218] | 26 |
|
---|
| 27 | /*! \fn void SOPHYA::Legendre::array_init(int_4 lmax)
|
---|
| 28 |
|
---|
| 29 | compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$
|
---|
| 30 | */
|
---|
[729] | 31 | void Legendre::array_init(int_4 lmax)
|
---|
| 32 | {
|
---|
| 33 | lmax_ = lmax;
|
---|
| 34 | Pl_.ReSize(lmax_+1);
|
---|
| 35 | Pl_(0)=1.;
|
---|
[2277] | 36 | if (lmax>0) Pl_(1)=x_;
|
---|
[729] | 37 | for (int k=2; k<Pl_.NElts(); k++)
|
---|
| 38 | {
|
---|
| 39 | Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
|
---|
| 40 | }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
[1756] | 43 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
|
---|
| 44 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_ = TriangularMatrix<r_8>();
|
---|
[729] | 45 | TVector<r_8>* LambdaLMBuilder::normal_l_ = NULL;
|
---|
| 46 |
|
---|
[1218] | 47 |
|
---|
| 48 |
|
---|
| 49 | /*! \class SOPHYA::LambdaLMBuilder
|
---|
| 50 |
|
---|
| 51 |
|
---|
| 52 | This class generate the coefficients :
|
---|
| 53 | \f[
|
---|
| 54 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
---|
| 55 | P_l^m(\cos{\theta})
|
---|
| 56 | \f]
|
---|
| 57 | where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
|
---|
| 58 | \f[
|
---|
| 59 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
|
---|
| 60 | \f]
|
---|
| 61 |
|
---|
| 62 | Each object has a fixed theta (radians), and maximum l and m to be calculated
|
---|
| 63 | (lmax and mmax).
|
---|
| 64 | use the class in two steps :
|
---|
| 65 | a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
| 66 | b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 |
|
---|
[729] | 70 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
|
---|
| 71 | {
|
---|
| 72 | cth_=cos(theta);
|
---|
| 73 | sth_=sin(theta);
|
---|
| 74 | array_init(lmax, mmax);
|
---|
| 75 | }
|
---|
[1683] | 76 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
|
---|
| 77 | {
|
---|
| 78 | cth_=costet;
|
---|
| 79 | sth_=sintet;
|
---|
| 80 | array_init(lmax, mmax);
|
---|
| 81 | }
|
---|
[729] | 82 | void LambdaLMBuilder::array_init(int lmax, int mmax)
|
---|
| 83 | {
|
---|
[2958] | 84 | updateArrayRecurrence(lmax);
|
---|
| 85 |
|
---|
[729] | 86 | lmax_=lmax;
|
---|
| 87 | mmax_=mmax;
|
---|
| 88 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
| 89 |
|
---|
| 90 | lambda_.ReSizeRow(lmax_+1);
|
---|
| 91 |
|
---|
| 92 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
| 93 |
|
---|
| 94 | for (int m=0; m<=mmax_;m++)
|
---|
| 95 | {
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 | lambda_(m,m)= lam_mm / bignorm2;
|
---|
| 99 |
|
---|
| 100 | r_8 lam_0=0.;
|
---|
| 101 | r_8 lam_1=1. /bignorm2 ;
|
---|
| 102 | // r_8 a_rec = LWK->a_recurr(m,m);
|
---|
[1756] | 103 | r_8 a_rec = a_recurrence_(m,m);
|
---|
[729] | 104 | r_8 b_rec = 0.;
|
---|
| 105 | for (int l=m+1; l<=lmax_; l++)
|
---|
| 106 | {
|
---|
| 107 | r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
|
---|
| 108 | lambda_(l,m) = lam_2*lam_mm;
|
---|
| 109 | b_rec=1./a_rec;
|
---|
| 110 | // a_rec= LWK->a_recurr(l,m);
|
---|
[1756] | 111 | a_rec= a_recurrence_(l,m);
|
---|
[729] | 112 | lam_0 = lam_1;
|
---|
| 113 | lam_1 = lam_2;
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
| 117 |
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
[2958] | 121 | /*!
|
---|
| 122 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
| 123 | Computes bm(m) = Sum_l>=m [ lambda(l,m) * alm(l,m) ]
|
---|
| 124 | See SphericalTransformServer<T>::GenerateFromAlm(map, pixsize, alm)
|
---|
| 125 | */
|
---|
| 126 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
| 127 | const Alm<r_8>& alm, Bm< complex<r_8> >& bm)
|
---|
| 128 | {
|
---|
| 129 | updateArrayRecurrence(lmax);
|
---|
| 130 | r_8 cth = cos(theta);
|
---|
| 131 | r_8 sth = sin(theta);
|
---|
| 132 |
|
---|
| 133 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
| 134 |
|
---|
| 135 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
[2966] | 136 | register r_8 lam_0, lam_1, lam_2;
|
---|
[729] | 137 |
|
---|
[2966] | 138 | int_4 l, m, k;
|
---|
[2958] | 139 |
|
---|
| 140 | for (m=0; m<=mmax;m++) {
|
---|
[2966] | 141 | const complex<r_8>* almp = alm.columnData(m);
|
---|
[2958] | 142 | complex<r_8>* bmp = &(bm(m));
|
---|
[2966] | 143 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
| 144 | *bmp = (lam_mm / bignorm2)*almp[0]; almp++;
|
---|
[2958] | 145 |
|
---|
| 146 | lam_0=0.;
|
---|
| 147 | lam_1=1. /bignorm2 ;
|
---|
| 148 |
|
---|
[2966] | 149 | // for (l=m+1; l<=lmax; l++) {
|
---|
| 150 | for (k=0; k<lmax-m; k++) {
|
---|
| 151 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
| 152 | lam_0 = lam_1/arecp[k];
|
---|
[2958] | 153 | lam_1 = lam_2;
|
---|
[2966] | 154 |
|
---|
| 155 | *bmp += (lam_2*lam_mm)*almp[k];
|
---|
[2958] | 156 | }
|
---|
| 157 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /*!
|
---|
| 162 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
| 163 | */
|
---|
| 164 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
| 165 | const Alm<r_4>& alm, Bm< complex<r_4> >& bm)
|
---|
| 166 | {
|
---|
| 167 | Alm<r_8> alm8(alm.Lmax());
|
---|
| 168 | for(sa_size_t k=0; k<alm8.Size(); k++)
|
---|
| 169 | alm8(k) = complex<r_8>((r_8)alm(k).real() , (r_8)alm(k).imag());
|
---|
| 170 | Bm< complex<r_8> > bm8(bm.Mmax());
|
---|
| 171 | ComputeBmFrAlm(theta, lmax, mmax, alm8, bm8);
|
---|
| 172 | for(sa_size_t kk=-bm.Mmax(); kk<=bm.Mmax(); kk++)
|
---|
| 173 | bm(kk)= complex<r_4>((r_4)bm8(kk).real() , (r_4)bm8(kk).imag());
|
---|
| 174 | return;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | /*!
|
---|
| 179 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
| 180 | Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ]
|
---|
| 181 | See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm)
|
---|
| 182 | */
|
---|
| 183 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
| 184 | TVector< complex<r_8> >& phase, Alm<r_8> & alm)
|
---|
| 185 | {
|
---|
| 186 | updateArrayRecurrence(lmax);
|
---|
| 187 | r_8 cth = cos(theta);
|
---|
| 188 | r_8 sth = sin(theta);
|
---|
| 189 |
|
---|
| 190 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
| 191 |
|
---|
| 192 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
[2966] | 193 | register r_8 lam_0, lam_1, lam_2;
|
---|
[2958] | 194 |
|
---|
[2966] | 195 | int_4 l, m, k;
|
---|
[2958] | 196 |
|
---|
| 197 | for (m=0; m<=mmax;m++) {
|
---|
[2966] | 198 | complex<r_8>* almp = alm.columnData(m);
|
---|
[2958] | 199 | complex<r_8> phi = phase(m);
|
---|
| 200 |
|
---|
| 201 | *almp += (lam_mm / bignorm2)*phi; almp++;
|
---|
| 202 |
|
---|
| 203 | lam_0=0.;
|
---|
| 204 | lam_1=1. /bignorm2 ;
|
---|
| 205 |
|
---|
[2966] | 206 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
| 207 | // for (l=m+1; l<=lmax; l++) {
|
---|
| 208 | for (k=0; k<lmax-m; k++) {
|
---|
| 209 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
| 210 | lam_0 = lam_1/arecp[k];
|
---|
[2958] | 211 | lam_1 = lam_2;
|
---|
[2966] | 212 |
|
---|
| 213 | almp[k] += (lam_2*lam_mm) * phi;
|
---|
[2958] | 214 | }
|
---|
| 215 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
| 216 | }
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | /*!
|
---|
| 220 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
| 221 | Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ]
|
---|
| 222 | See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm)
|
---|
| 223 | */
|
---|
| 224 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
| 225 | TVector< complex<r_4> >& phase, Alm<r_4> & alm)
|
---|
| 226 | {
|
---|
[2959] | 227 | updateArrayRecurrence(lmax);
|
---|
| 228 | r_8 cth = cos(theta);
|
---|
| 229 | r_8 sth = sin(theta);
|
---|
| 230 |
|
---|
| 231 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
| 232 |
|
---|
| 233 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
[2966] | 234 | register r_8 lam_0, lam_1, lam_2;
|
---|
| 235 |
|
---|
| 236 | int_4 l, m, k;
|
---|
[2959] | 237 |
|
---|
| 238 | for (m=0; m<=mmax;m++) {
|
---|
[2966] | 239 | complex<r_4>* almp = alm.columnData(m);
|
---|
[2959] | 240 | complex<r_4> phi = phase(m);
|
---|
| 241 |
|
---|
[2966] | 242 | *almp += ((r_4)(lam_mm / bignorm2))*phi; almp++;
|
---|
[2959] | 243 |
|
---|
| 244 | lam_0=0.;
|
---|
| 245 | lam_1=1. /bignorm2 ;
|
---|
| 246 |
|
---|
[2966] | 247 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
| 248 | // for (l=m+1; l<=lmax; l++) {
|
---|
| 249 | for (k=0; k<lmax-m; k++) {
|
---|
| 250 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
| 251 | lam_0 = lam_1/arecp[k];
|
---|
[2959] | 252 | lam_1 = lam_2;
|
---|
[2966] | 253 |
|
---|
| 254 | almp[k] += ((r_4)(lam_2*lam_mm)) * phi;
|
---|
[2959] | 255 | }
|
---|
| 256 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
| 257 | }
|
---|
[2966] | 258 |
|
---|
[2958] | 259 | }
|
---|
| 260 |
|
---|
| 261 |
|
---|
[2966] | 262 |
|
---|
[1218] | 263 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
| 264 |
|
---|
| 265 | compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class
|
---|
| 266 | */
|
---|
[2966] | 267 |
|
---|
[729] | 268 | void LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
| 269 | {
|
---|
[2958] | 270 | if ( (a_recurrence_.Size() > 0) && (lmax < a_recurrence_.rowNumber()) )
|
---|
| 271 | return; // Pas besoin de recalculer le tableau de recurrence
|
---|
| 272 | if (a_recurrence_.Size() > 0) {
|
---|
| 273 | cout << " WARNING : The classes LambdaXXBuilder will be more efficient "
|
---|
| 274 | << "if instanciated with parameter lmax = maximum value of l index "
|
---|
| 275 | << "which will be needed in the whole application (arrays not "
|
---|
| 276 | << "recomputed) " << endl;
|
---|
| 277 | cout << " lmax= " << lmax << " previous instanciation with lmax= "
|
---|
| 278 | << a_recurrence_.rowNumber()-1 << endl;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
[1756] | 281 | a_recurrence_.ReSizeRow(lmax+1);
|
---|
[729] | 282 | for (int m=0; m<=lmax;m++)
|
---|
| 283 | {
|
---|
[1756] | 284 | a_recurrence_(m,m) = sqrt( 2.*m +3.);
|
---|
[729] | 285 | for (int l=m+1; l<=lmax; l++)
|
---|
| 286 | {
|
---|
| 287 | r_8 fl2 = (l+1.)*(l+1.);
|
---|
[1756] | 288 | a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
|
---|
[729] | 289 | }
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 |
|
---|
[1218] | 293 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
|
---|
[729] | 294 |
|
---|
[1218] | 295 | compute static arrays of coefficients independant from theta (common to all instances of the derived classes
|
---|
| 296 | */
|
---|
[729] | 297 | void LambdaLMBuilder::updateArrayLamNorm()
|
---|
| 298 | {
|
---|
[1756] | 299 | lam_fact_.ReSizeRow(lmax_+1);
|
---|
[729] | 300 | for(int m = 0;m<= lmax_; m++)
|
---|
| 301 | {
|
---|
| 302 | for (int l=m; l<=lmax_; l++)
|
---|
| 303 | {
|
---|
[1756] | 304 | lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1) );
|
---|
[729] | 305 | }
|
---|
| 306 | }
|
---|
| 307 | (*normal_l_).ReSize(lmax_+1);
|
---|
| 308 | (*normal_l_)(0)=0.;
|
---|
| 309 | (*normal_l_)(1)=0.;
|
---|
| 310 | for (int l=2; l< (*normal_l_).NElts(); l++)
|
---|
| 311 | {
|
---|
| 312 | (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 |
|
---|
[1218] | 317 | /*! \class SOPHYA::LambdaWXBuilder
|
---|
[729] | 318 |
|
---|
[1218] | 319 | This class generates the coefficients :
|
---|
| 320 | \f[
|
---|
| 321 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
|
---|
| 322 | \f]
|
---|
| 323 | \f[
|
---|
| 324 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
|
---|
| 325 | \f]
|
---|
| 326 | where
|
---|
| 327 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
| 328 | \f]
|
---|
| 329 | and
|
---|
| 330 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
| 331 | \f]
|
---|
| 332 | \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
[729] | 333 |
|
---|
[1218] | 334 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
|
---|
| 335 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 336 | \f]
|
---|
| 337 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 338 | \f]
|
---|
| 339 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
|
---|
| 340 |
|
---|
| 341 | \f[
|
---|
| 342 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
| 343 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
|
---|
| 344 | \f]
|
---|
| 345 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
| 346 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
|
---|
| 347 | \f]
|
---|
| 348 |
|
---|
| 349 | */
|
---|
| 350 |
|
---|
| 351 |
|
---|
[729] | 352 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
| 353 | {
|
---|
| 354 | array_init();
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 |
|
---|
| 358 | void LambdaWXBuilder::array_init()
|
---|
| 359 | {
|
---|
[1756] | 360 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
[729] | 361 | {
|
---|
[1756] | 362 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
[729] | 363 | normal_l_ = new TVector<r_8>;
|
---|
| 364 | updateArrayLamNorm();
|
---|
| 365 | }
|
---|
| 366 | else
|
---|
[1756] | 367 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
[729] | 368 | {
|
---|
| 369 | updateArrayLamNorm();
|
---|
| 370 | }
|
---|
| 371 |
|
---|
| 372 | r_8 one_on_s2 = 1. / (sth_*sth_) ; // 1/sin^2
|
---|
| 373 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
| 374 | lamWlm_.ReSizeRow(lmax_+1);
|
---|
| 375 | lamXlm_.ReSizeRow(lmax_+1);
|
---|
| 376 |
|
---|
| 377 | // calcul des lambda
|
---|
| 378 | for(int m = 0;m<= mmax_; m++)
|
---|
| 379 | {
|
---|
| 380 | for (int l=m; l<=lmax_; l++)
|
---|
| 381 | {
|
---|
| 382 | lamWlm_(l,m) = 0.;
|
---|
| 383 | lamXlm_(l,m) = 0.;
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 | for(int l = 2;l<= lmax_; l++)
|
---|
| 387 | {
|
---|
| 388 | r_8 normal_l = (*normal_l_)(l);
|
---|
| 389 | for (int m=0; m<=l; m++)
|
---|
| 390 | {
|
---|
| 391 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
| 392 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
[1756] | 393 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
[729] | 394 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
| 395 | r_8 b_w = c_on_s2 * lam_fact_l_m;
|
---|
| 396 | r_8 a_x = 2. * cth_ * (l-1.);
|
---|
| 397 | lamWlm_(l,m) = normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
|
---|
| 398 | lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
|
---|
| 399 | }
|
---|
| 400 | }
|
---|
| 401 |
|
---|
| 402 | }
|
---|
| 403 |
|
---|
[1218] | 404 | /*! \class SOPHYA::LambdaPMBuilder
|
---|
[729] | 405 |
|
---|
[1218] | 406 | This class generates the coefficients
|
---|
| 407 | \f[
|
---|
| 408 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
|
---|
| 409 | \f]
|
---|
| 410 | where
|
---|
| 411 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
| 412 | \f]
|
---|
| 413 | and
|
---|
| 414 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
| 415 | \f]
|
---|
| 416 | and \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
| 417 | The coefficients express the theta-dependance of the spin-2 spherical harmonics :
|
---|
| 418 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 419 | \f]
|
---|
| 420 | */
|
---|
| 421 |
|
---|
[729] | 422 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
| 423 | {
|
---|
| 424 | array_init();
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 |
|
---|
| 428 | void LambdaPMBuilder::array_init()
|
---|
| 429 | {
|
---|
[1756] | 430 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
[729] | 431 | {
|
---|
[1756] | 432 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
[729] | 433 | normal_l_ = new TVector<r_8>;
|
---|
| 434 | updateArrayLamNorm();
|
---|
| 435 | }
|
---|
| 436 | else
|
---|
[1756] | 437 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
[729] | 438 | {
|
---|
| 439 | updateArrayLamNorm();
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | r_8 one_on_s2 = 1. / (sth_*sth_) ;
|
---|
| 443 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
| 444 | lamPlm_.ReSizeRow(lmax_+1);
|
---|
| 445 | lamMlm_.ReSizeRow(lmax_+1);
|
---|
| 446 |
|
---|
| 447 | // calcul des lambda
|
---|
| 448 | for(int m = 0;m<= mmax_; m++)
|
---|
| 449 | {
|
---|
| 450 | for (int l=m; l<=lmax_; l++)
|
---|
| 451 | {
|
---|
| 452 | lamPlm_(l,m) = 0.;
|
---|
| 453 | lamMlm_(l,m) = 0.;
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | for(int l = 2;l<= lmax_; l++)
|
---|
| 458 | {
|
---|
| 459 | r_8 normal_l = (*normal_l_)(l);
|
---|
| 460 | for (int m=0; m<=l; m++)
|
---|
| 461 | {
|
---|
| 462 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
| 463 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
[1756] | 464 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
[729] | 465 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
| 466 | r_8 f_w = lam_fact_l_m/(sth_*sth_);
|
---|
| 467 | r_8 c_w = 2*m*(l-1.) * c_on_s2;
|
---|
| 468 |
|
---|
| 469 | lamPlm_(l,m) = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
|
---|
| 470 | lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
|
---|
| 471 | }
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 | }
|
---|
| 475 |
|
---|
| 476 |
|
---|