| 1 | #include "sopnamsp.h"
 | 
|---|
| 2 | #include "lambdaBuilder.h"
 | 
|---|
| 3 | #include "nbconst.h"
 | 
|---|
| 4 | 
 | 
|---|
| 5 | 
 | 
|---|
| 6 | /*!
 | 
|---|
| 7 |   \class SOPHYA::Legendre
 | 
|---|
| 8 | generate Legendre polynomials : use in two steps : 
 | 
|---|
| 9 | 
 | 
|---|
| 10 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 11 | 
 | 
|---|
| 12 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
 | 
|---|
| 13 | 
 | 
|---|
| 14 | */
 | 
|---|
| 15 | 
 | 
|---|
| 16 | 
 | 
|---|
| 17 | Legendre::Legendre(r_8 x, int_4 lmax) 
 | 
|---|
| 18 | {
 | 
|---|
| 19 |   if (fabs(x) > 1. ) 
 | 
|---|
| 20 |     {
 | 
|---|
| 21 |       throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
 | 
|---|
| 22 |     }
 | 
|---|
| 23 |   x_ = x;
 | 
|---|
| 24 |   array_init(lmax);
 | 
|---|
| 25 | }
 | 
|---|
| 26 |    
 | 
|---|
| 27 | /*! \fn void SOPHYA::Legendre::array_init(int_4 lmax)
 | 
|---|
| 28 | 
 | 
|---|
| 29 | compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ 
 | 
|---|
| 30 | */
 | 
|---|
| 31 | void Legendre::array_init(int_4 lmax)
 | 
|---|
| 32 | {
 | 
|---|
| 33 |   lmax_ = lmax;
 | 
|---|
| 34 |   Pl_.ReSize(lmax_+1);
 | 
|---|
| 35 |   Pl_(0)=1.;
 | 
|---|
| 36 |   if (lmax>0) Pl_(1)=x_;
 | 
|---|
| 37 |   for (int k=2; k<Pl_.NElts(); k++)
 | 
|---|
| 38 |     {
 | 
|---|
| 39 |       Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
 | 
|---|
| 40 |     }
 | 
|---|
| 41 | }
 | 
|---|
| 42 | 
 | 
|---|
| 43 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
 | 
|---|
| 44 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_     = TriangularMatrix<r_8>();
 | 
|---|
| 45 | TVector<r_8>* LambdaLMBuilder::normal_l_     = NULL;
 | 
|---|
| 46 | 
 | 
|---|
| 47 | 
 | 
|---|
| 48 | 
 | 
|---|
| 49 | /*! \class SOPHYA::LambdaLMBuilder
 | 
|---|
| 50 | 
 | 
|---|
| 51 | 
 | 
|---|
| 52 | This class generate the coefficients :
 | 
|---|
| 53 | \f[
 | 
|---|
| 54 |             \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
 | 
|---|
| 55 |             P_l^m(\cos{\theta})
 | 
|---|
| 56 | \f]
 | 
|---|
| 57 | where \f$P_l^m\f$ are the associated Legendre polynomials.  The above coefficients contain the theta-dependance of spheric harmonics : 
 | 
|---|
| 58 | \f[
 | 
|---|
| 59 |             Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
 | 
|---|
| 60 | \f]
 | 
|---|
| 61 | 
 | 
|---|
| 62 | Each object has a fixed theta (radians), and maximum l and m to be calculated
 | 
|---|
| 63 | (lmax and mmax).
 | 
|---|
| 64 |  use the class in two steps : 
 | 
|---|
| 65 | a) instanciate  LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ;  \f$lmax\f$ and \f$mmax\f$ are  MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 66 | b) get the values of coefficients for  particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
 | 
|---|
| 67 | */
 | 
|---|
| 68 | 
 | 
|---|
| 69 | 
 | 
|---|
| 70 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
 | 
|---|
| 71 |     {
 | 
|---|
| 72 |       cth_=cos(theta);
 | 
|---|
| 73 |       sth_=sin(theta);
 | 
|---|
| 74 |       array_init(lmax, mmax);
 | 
|---|
| 75 |     }
 | 
|---|
| 76 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
 | 
|---|
| 77 |     {
 | 
|---|
| 78 |       cth_=costet;
 | 
|---|
| 79 |       sth_=sintet;
 | 
|---|
| 80 |       array_init(lmax, mmax);
 | 
|---|
| 81 |     }
 | 
|---|
| 82 | void LambdaLMBuilder::array_init(int lmax, int mmax)
 | 
|---|
| 83 |    {
 | 
|---|
| 84 |      updateArrayRecurrence(lmax);
 | 
|---|
| 85 | 
 | 
|---|
| 86 |      lmax_=lmax;
 | 
|---|
| 87 |      mmax_=mmax;
 | 
|---|
| 88 |      r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
 | 
|---|
| 89 | 
 | 
|---|
| 90 |      lambda_.ReSizeRow(lmax_+1);
 | 
|---|
| 91 | 
 | 
|---|
| 92 |      r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
 | 
|---|
| 93 |           
 | 
|---|
| 94 |      for (int m=0; m<=mmax_;m++)
 | 
|---|
| 95 |        {
 | 
|---|
| 96 | 
 | 
|---|
| 97 | 
 | 
|---|
| 98 |          lambda_(m,m)= lam_mm / bignorm2; 
 | 
|---|
| 99 | 
 | 
|---|
| 100 |          r_8 lam_0=0.;
 | 
|---|
| 101 |          r_8 lam_1=1. /bignorm2 ;
 | 
|---|
| 102 |          //      r_8 a_rec = LWK->a_recurr(m,m);
 | 
|---|
| 103 |          r_8 a_rec = a_recurrence_(m,m);
 | 
|---|
| 104 |          r_8 b_rec = 0.;
 | 
|---|
| 105 |          for (int l=m+1; l<=lmax_; l++)
 | 
|---|
| 106 |          {
 | 
|---|
| 107 |            r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
 | 
|---|
| 108 |            lambda_(l,m) = lam_2*lam_mm;
 | 
|---|
| 109 |            b_rec=1./a_rec;
 | 
|---|
| 110 |            //      a_rec= LWK->a_recurr(l,m);
 | 
|---|
| 111 |            a_rec= a_recurrence_(l,m);
 | 
|---|
| 112 |            lam_0 = lam_1;
 | 
|---|
| 113 |            lam_1 = lam_2;
 | 
|---|
| 114 |          }
 | 
|---|
| 115 | 
 | 
|---|
| 116 |          lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
 | 
|---|
| 117 | 
 | 
|---|
| 118 |        }
 | 
|---|
| 119 |    }
 | 
|---|
| 120 | 
 | 
|---|
| 121 | /*!
 | 
|---|
| 122 |   \brief : Specialized/optimized static function for fast spherical harmonic transform.
 | 
|---|
| 123 |   Computes bm(m) = Sum_l>=m [ lambda(l,m) * alm(l,m) ] 
 | 
|---|
| 124 |   See SphericalTransformServer<T>::GenerateFromAlm(map, pixsize, alm)
 | 
|---|
| 125 | */
 | 
|---|
| 126 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax, 
 | 
|---|
| 127 |                                      const Alm<r_8>& alm, Bm< complex<r_8> >& bm)
 | 
|---|
| 128 | {
 | 
|---|
| 129 |   updateArrayRecurrence(lmax);
 | 
|---|
| 130 |   r_8 cth = cos(theta);
 | 
|---|
| 131 |   r_8 sth = sin(theta);
 | 
|---|
| 132 |   
 | 
|---|
| 133 |   r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
 | 
|---|
| 134 |   
 | 
|---|
| 135 |   r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
 | 
|---|
| 136 |   register r_8 lam_0, lam_1, lam_2;
 | 
|---|
| 137 | 
 | 
|---|
| 138 |   int_4 l, m, k;
 | 
|---|
| 139 | 
 | 
|---|
| 140 |   for (m=0; m<=mmax;m++)   {
 | 
|---|
| 141 |     const complex<r_8>* almp = alm.columnData(m); 
 | 
|---|
| 142 |     complex<r_8>* bmp = &(bm(m));
 | 
|---|
| 143 |     r_8* arecp = a_recurrence_.columnData(m); 
 | 
|---|
| 144 |     *bmp = (lam_mm / bignorm2)*almp[0];  almp++;
 | 
|---|
| 145 | 
 | 
|---|
| 146 |     lam_0=0.;
 | 
|---|
| 147 |     lam_1=1. /bignorm2 ;
 | 
|---|
| 148 |     
 | 
|---|
| 149 |     //    for (l=m+1; l<=lmax; l++) {
 | 
|---|
| 150 |     for (k=0; k<lmax-m; k++) {
 | 
|---|
| 151 |       lam_2 = (cth*lam_1-lam_0)*arecp[k];
 | 
|---|
| 152 |       lam_0 = lam_1/arecp[k];
 | 
|---|
| 153 |       lam_1 = lam_2;
 | 
|---|
| 154 | 
 | 
|---|
| 155 |       *bmp += (lam_2*lam_mm)*almp[k];  
 | 
|---|
| 156 |     }
 | 
|---|
| 157 |     lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
 | 
|---|
| 158 |   }
 | 
|---|
| 159 | }
 | 
|---|
| 160 | 
 | 
|---|
| 161 | /*!
 | 
|---|
| 162 |   \brief : Specialized/optimized static function for fast spherical harmonic transform.
 | 
|---|
| 163 | */
 | 
|---|
| 164 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax,  
 | 
|---|
| 165 |                                      const Alm<r_4>& alm, Bm< complex<r_4> >& bm)
 | 
|---|
| 166 | {
 | 
|---|
| 167 |   Alm<r_8> alm8(alm.Lmax());
 | 
|---|
| 168 |   for(sa_size_t k=0; k<alm8.Size(); k++) 
 | 
|---|
| 169 |     alm8(k) = complex<r_8>((r_8)alm(k).real() , (r_8)alm(k).imag());
 | 
|---|
| 170 |   Bm< complex<r_8> > bm8(bm.Mmax());
 | 
|---|
| 171 |   ComputeBmFrAlm(theta, lmax, mmax, alm8, bm8);
 | 
|---|
| 172 |   for(sa_size_t kk=-bm.Mmax(); kk<=bm.Mmax(); kk++) 
 | 
|---|
| 173 |     bm(kk)= complex<r_4>((r_4)bm8(kk).real() , (r_4)bm8(kk).imag());
 | 
|---|
| 174 |   return;
 | 
|---|
| 175 | }
 | 
|---|
| 176 | 
 | 
|---|
| 177 | 
 | 
|---|
| 178 | /*!
 | 
|---|
| 179 |   \brief : Specialized/optimized static function for fast spherical harmonic transform.
 | 
|---|
| 180 |   Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ] 
 | 
|---|
| 181 |   See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm) 
 | 
|---|
| 182 | */
 | 
|---|
| 183 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax, 
 | 
|---|
| 184 |                                         TVector< complex<r_8> >& phase, Alm<r_8> & alm)
 | 
|---|
| 185 | {
 | 
|---|
| 186 |   updateArrayRecurrence(lmax);
 | 
|---|
| 187 |   r_8 cth = cos(theta);
 | 
|---|
| 188 |   r_8 sth = sin(theta);
 | 
|---|
| 189 |   
 | 
|---|
| 190 |   r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
 | 
|---|
| 191 |   
 | 
|---|
| 192 |   r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
 | 
|---|
| 193 |   register r_8 lam_0, lam_1, lam_2;
 | 
|---|
| 194 |   
 | 
|---|
| 195 |   int_4 l, m, k;
 | 
|---|
| 196 | 
 | 
|---|
| 197 |   for (m=0; m<=mmax;m++)  {
 | 
|---|
| 198 |     complex<r_8>* almp = alm.columnData(m); 
 | 
|---|
| 199 |     complex<r_8>  phi = phase(m);
 | 
|---|
| 200 |     
 | 
|---|
| 201 |     *almp += (lam_mm / bignorm2)*phi;    almp++;
 | 
|---|
| 202 | 
 | 
|---|
| 203 |     lam_0=0.;
 | 
|---|
| 204 |     lam_1=1. /bignorm2 ;
 | 
|---|
| 205 |     
 | 
|---|
| 206 |     r_8* arecp = a_recurrence_.columnData(m); 
 | 
|---|
| 207 |     //    for (l=m+1; l<=lmax; l++)   {
 | 
|---|
| 208 |     for (k=0; k<lmax-m; k++) {
 | 
|---|
| 209 |       lam_2 = (cth*lam_1-lam_0)*arecp[k];
 | 
|---|
| 210 |       lam_0 = lam_1/arecp[k];
 | 
|---|
| 211 |       lam_1 = lam_2;
 | 
|---|
| 212 | 
 | 
|---|
| 213 |       almp[k] += (lam_2*lam_mm) * phi; 
 | 
|---|
| 214 |     }
 | 
|---|
| 215 |     lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
 | 
|---|
| 216 |   }
 | 
|---|
| 217 | }
 | 
|---|
| 218 | 
 | 
|---|
| 219 | /*!
 | 
|---|
| 220 |   \brief : Specialized/optimized static function for fast spherical harmonic transform.
 | 
|---|
| 221 |   Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ] 
 | 
|---|
| 222 |   See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm) 
 | 
|---|
| 223 | */
 | 
|---|
| 224 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax, 
 | 
|---|
| 225 |                                         TVector< complex<r_4> >& phase, Alm<r_4> & alm) 
 | 
|---|
| 226 | {
 | 
|---|
| 227 |   updateArrayRecurrence(lmax);
 | 
|---|
| 228 |   r_8 cth = cos(theta);
 | 
|---|
| 229 |   r_8 sth = sin(theta);
 | 
|---|
| 230 |   
 | 
|---|
| 231 |   r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
 | 
|---|
| 232 |   
 | 
|---|
| 233 |   r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
 | 
|---|
| 234 |   register r_8 lam_0, lam_1, lam_2;
 | 
|---|
| 235 |   
 | 
|---|
| 236 |   int_4 l, m, k;
 | 
|---|
| 237 | 
 | 
|---|
| 238 |   for (m=0; m<=mmax;m++)  {
 | 
|---|
| 239 |     complex<r_4>* almp = alm.columnData(m); 
 | 
|---|
| 240 |     complex<r_4>  phi = phase(m);
 | 
|---|
| 241 |     
 | 
|---|
| 242 |     *almp += ((r_4)(lam_mm / bignorm2))*phi;    almp++;
 | 
|---|
| 243 | 
 | 
|---|
| 244 |     lam_0=0.;
 | 
|---|
| 245 |     lam_1=1. /bignorm2 ;
 | 
|---|
| 246 |     
 | 
|---|
| 247 |     r_8* arecp = a_recurrence_.columnData(m); 
 | 
|---|
| 248 |     //    for (l=m+1; l<=lmax; l++)   {
 | 
|---|
| 249 |     for (k=0; k<lmax-m; k++) {
 | 
|---|
| 250 |       lam_2 = (cth*lam_1-lam_0)*arecp[k];
 | 
|---|
| 251 |       lam_0 = lam_1/arecp[k];
 | 
|---|
| 252 |       lam_1 = lam_2;
 | 
|---|
| 253 | 
 | 
|---|
| 254 |       almp[k] += ((r_4)(lam_2*lam_mm)) * phi; 
 | 
|---|
| 255 |     }
 | 
|---|
| 256 |     lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
 | 
|---|
| 257 |   }
 | 
|---|
| 258 | 
 | 
|---|
| 259 | }
 | 
|---|
| 260 | 
 | 
|---|
| 261 | 
 | 
|---|
| 262 | 
 | 
|---|
| 263 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
 | 
|---|
| 264 | 
 | 
|---|
| 265 |  compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class 
 | 
|---|
| 266 | */
 | 
|---|
| 267 | 
 | 
|---|
| 268 | void  LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
 | 
|---|
| 269 |    {
 | 
|---|
| 270 |      if ( (a_recurrence_.Size() > 0) && (lmax < a_recurrence_.rowNumber()) ) 
 | 
|---|
| 271 |        return;  // Pas besoin de recalculer le tableau de recurrence
 | 
|---|
| 272 |      if (a_recurrence_.Size() > 0)  {
 | 
|---|
| 273 |        cout << " WARNING : The classes LambdaXXBuilder will be more efficient "
 | 
|---|
| 274 |             << "if instanciated with parameter lmax = maximum value of l index "
 | 
|---|
| 275 |             << "which will be needed in the whole application (arrays not "
 | 
|---|
| 276 |             << "recomputed) " << endl;
 | 
|---|
| 277 |        cout << "   lmax= " << lmax << " previous instanciation with lmax= " 
 | 
|---|
| 278 |             <<  a_recurrence_.rowNumber()-1 << endl;
 | 
|---|
| 279 |          }
 | 
|---|
| 280 | 
 | 
|---|
| 281 |      a_recurrence_.ReSizeRow(lmax+1);
 | 
|---|
| 282 |      for (int m=0; m<=lmax;m++)
 | 
|---|
| 283 |      {
 | 
|---|
| 284 |        a_recurrence_(m,m) = sqrt( 2.*m +3.);
 | 
|---|
| 285 |        for (int l=m+1; l<=lmax; l++)
 | 
|---|
| 286 |          {
 | 
|---|
| 287 |            r_8 fl2 = (l+1.)*(l+1.);
 | 
|---|
| 288 |            a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
 | 
|---|
| 289 |          }
 | 
|---|
| 290 |      }
 | 
|---|
| 291 |    }
 | 
|---|
| 292 | 
 | 
|---|
| 293 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
 | 
|---|
| 294 | 
 | 
|---|
| 295 |  compute  static arrays of coefficients independant from theta (common to all instances of the derived  classes 
 | 
|---|
| 296 | */
 | 
|---|
| 297 | void  LambdaLMBuilder::updateArrayLamNorm()
 | 
|---|
| 298 |      {
 | 
|---|
| 299 |        lam_fact_.ReSizeRow(lmax_+1);
 | 
|---|
| 300 |        for(int m = 0;m<= lmax_; m++)
 | 
|---|
| 301 |          {
 | 
|---|
| 302 |            for (int l=m; l<=lmax_; l++)
 | 
|---|
| 303 |              {
 | 
|---|
| 304 |                lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1)  );
 | 
|---|
| 305 |              }
 | 
|---|
| 306 |          }
 | 
|---|
| 307 |        (*normal_l_).ReSize(lmax_+1);
 | 
|---|
| 308 |        (*normal_l_)(0)=0.;
 | 
|---|
| 309 |        (*normal_l_)(1)=0.;
 | 
|---|
| 310 |        for (int l=2; l< (*normal_l_).NElts(); l++)
 | 
|---|
| 311 |          {
 | 
|---|
| 312 |            (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );    
 | 
|---|
| 313 |          }
 | 
|---|
| 314 |      }
 | 
|---|
| 315 | 
 | 
|---|
| 316 | 
 | 
|---|
| 317 | /*! \class SOPHYA::LambdaWXBuilder
 | 
|---|
| 318 | 
 | 
|---|
| 319 | This class generates the coefficients :
 | 
|---|
| 320 | \f[
 | 
|---|
| 321 |             _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
 | 
|---|
| 322 | \f]
 | 
|---|
| 323 | \f[
 | 
|---|
| 324 |             _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
 | 
|---|
| 325 | \f]
 | 
|---|
| 326 | where
 | 
|---|
| 327 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 328 | \f]
 | 
|---|
| 329 | and
 | 
|---|
| 330 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 331 | \f]
 | 
|---|
| 332 |  \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 333 | 
 | 
|---|
| 334 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
 | 
|---|
| 335 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 336 | \f]
 | 
|---|
| 337 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 338 | \f]
 | 
|---|
| 339 |  where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
 | 
|---|
| 340 | 
 | 
|---|
| 341 | \f[
 | 
|---|
| 342 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 343 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 344 | \f]
 | 
|---|
| 345 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 346 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 347 | \f]
 | 
|---|
| 348 | 
 | 
|---|
| 349 | */
 | 
|---|
| 350 | 
 | 
|---|
| 351 | 
 | 
|---|
| 352 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
 | 
|---|
| 353 |   {
 | 
|---|
| 354 |     array_init();
 | 
|---|
| 355 |   }
 | 
|---|
| 356 | 
 | 
|---|
| 357 | 
 | 
|---|
| 358 | void LambdaWXBuilder::array_init()
 | 
|---|
| 359 |    {
 | 
|---|
| 360 |      if (lam_fact_.Size() < 1 || normal_l_ == NULL)
 | 
|---|
| 361 |        {
 | 
|---|
| 362 |          //      lam_fact_ = new  TriangularMatrix<r_8>;
 | 
|---|
| 363 |          normal_l_ = new TVector<r_8>;
 | 
|---|
| 364 |          updateArrayLamNorm();
 | 
|---|
| 365 |        }
 | 
|---|
| 366 |      else
 | 
|---|
| 367 |        if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 )
 | 
|---|
| 368 |          {
 | 
|---|
| 369 |            updateArrayLamNorm();
 | 
|---|
| 370 |          }
 | 
|---|
| 371 | 
 | 
|---|
| 372 |      r_8 one_on_s2  = 1. / (sth_*sth_) ;    // 1/sin^2
 | 
|---|
| 373 |      r_8 c_on_s2    = cth_*one_on_s2;
 | 
|---|
| 374 |      lamWlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 375 |      lamXlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 376 | 
 | 
|---|
| 377 |      // calcul des lambda
 | 
|---|
| 378 |      for(int m = 0;m<= mmax_; m++)
 | 
|---|
| 379 |        {
 | 
|---|
| 380 |          for (int l=m; l<=lmax_; l++)
 | 
|---|
| 381 |            {
 | 
|---|
| 382 |              lamWlm_(l,m) =  0.;
 | 
|---|
| 383 |              lamXlm_(l,m) =  0.;                
 | 
|---|
| 384 |            }
 | 
|---|
| 385 |        }
 | 
|---|
| 386 |      for(int l = 2;l<= lmax_; l++)
 | 
|---|
| 387 |        {
 | 
|---|
| 388 |          r_8 normal_l =  (*normal_l_)(l);       
 | 
|---|
| 389 |          for (int m=0; m<=l; m++)
 | 
|---|
| 390 |         {
 | 
|---|
| 391 |           r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
 | 
|---|
| 392 |           r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
 | 
|---|
| 393 |           r_8 lam_fact_l_m = lam_fact_(l,m);
 | 
|---|
| 394 |           r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.);
 | 
|---|
| 395 |           r_8  b_w =  c_on_s2 * lam_fact_l_m;
 | 
|---|
| 396 |           r_8  a_x =  2. * cth_ * (l-1.);
 | 
|---|
| 397 |           lamWlm_(l,m) =   normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
 | 
|---|
| 398 |           lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
 | 
|---|
| 399 |         }
 | 
|---|
| 400 |        }
 | 
|---|
| 401 | 
 | 
|---|
| 402 |    }
 | 
|---|
| 403 | 
 | 
|---|
| 404 | /*!   \class SOPHYA::LambdaPMBuilder
 | 
|---|
| 405 | 
 | 
|---|
| 406 | This class generates the coefficients
 | 
|---|
| 407 | \f[
 | 
|---|
| 408 |             _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
 | 
|---|
| 409 | \f]
 | 
|---|
| 410 | where
 | 
|---|
| 411 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 412 | \f]
 | 
|---|
| 413 | and
 | 
|---|
| 414 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 415 | \f]
 | 
|---|
| 416 | and \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 417 | The coefficients express the theta-dependance of the  spin-2 spherical harmonics :
 | 
|---|
| 418 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 419 | \f]
 | 
|---|
| 420 | */
 | 
|---|
| 421 | 
 | 
|---|
| 422 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
 | 
|---|
| 423 |   {
 | 
|---|
| 424 |     array_init();
 | 
|---|
| 425 |   }
 | 
|---|
| 426 | 
 | 
|---|
| 427 | 
 | 
|---|
| 428 | void LambdaPMBuilder::array_init()
 | 
|---|
| 429 |    {
 | 
|---|
| 430 |      if (lam_fact_.Size() < 1 || normal_l_ == NULL)
 | 
|---|
| 431 |        {
 | 
|---|
| 432 |          //      lam_fact_ = new  TriangularMatrix<r_8>;
 | 
|---|
| 433 |          normal_l_ = new TVector<r_8>;
 | 
|---|
| 434 |          updateArrayLamNorm();
 | 
|---|
| 435 |        }
 | 
|---|
| 436 |      else
 | 
|---|
| 437 |        if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 )
 | 
|---|
| 438 |          {
 | 
|---|
| 439 |            updateArrayLamNorm();
 | 
|---|
| 440 |          }
 | 
|---|
| 441 | 
 | 
|---|
| 442 |      r_8 one_on_s2 = 1. / (sth_*sth_) ;
 | 
|---|
| 443 |      r_8 c_on_s2 = cth_*one_on_s2;
 | 
|---|
| 444 |      lamPlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 445 |      lamMlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 446 | 
 | 
|---|
| 447 |      // calcul des lambda
 | 
|---|
| 448 |      for(int m = 0;m<= mmax_; m++)
 | 
|---|
| 449 |        {
 | 
|---|
| 450 |          for (int l=m; l<=lmax_; l++)
 | 
|---|
| 451 |            {
 | 
|---|
| 452 |              lamPlm_(l,m) =  0.;
 | 
|---|
| 453 |              lamMlm_(l,m) =  0.;                
 | 
|---|
| 454 |            }
 | 
|---|
| 455 |        }
 | 
|---|
| 456 | 
 | 
|---|
| 457 |      for(int l = 2;l<= lmax_; l++)
 | 
|---|
| 458 |        {
 | 
|---|
| 459 |          r_8 normal_l =  (*normal_l_)(l);       
 | 
|---|
| 460 |          for (int m=0; m<=l; m++)
 | 
|---|
| 461 |            {
 | 
|---|
| 462 |              r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
 | 
|---|
| 463 |              r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
 | 
|---|
| 464 |              r_8 lam_fact_l_m = lam_fact_(l,m);
 | 
|---|
| 465 |              r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.);
 | 
|---|
| 466 |              r_8 f_w =  lam_fact_l_m/(sth_*sth_);
 | 
|---|
| 467 |              r_8  c_w =  2*m*(l-1.) * c_on_s2;
 | 
|---|
| 468 | 
 | 
|---|
| 469 |              lamPlm_(l,m)  = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
 | 
|---|
| 470 |              lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
 | 
|---|
| 471 |            }
 | 
|---|
| 472 |        }
 | 
|---|
| 473 | 
 | 
|---|
| 474 |    }
 | 
|---|
| 475 | 
 | 
|---|
| 476 | 
 | 
|---|