source: Sophya/trunk/SophyaLib/Samba/spheregorski.cc@ 502

Last change on this file since 502 was 487, checked in by ansari, 26 years ago

suppression de sorties inutiles 21-OCT-99 GLM

File size: 32.4 KB
Line 
1#include "spheregorski.h"
2#include "strutil.h"
3#include <complex>
4#include "piocmplx.h"
5
6extern "C"
7{
8#include <stdio.h>
9#include <stdlib.h>
10#include <unistd.h>
11}
12
13
14//*******************************************************************
15// Class PIXELS_XY
16// Construction des tableaux necessaires a la traduction des indices RING en
17// indices NESTED (ou l'inverse)
18//*******************************************************************
19
20PIXELS_XY::PIXELS_XY()
21{
22 pix2x_.ReSize(1024);
23 pix2x_.Reset();
24 pix2y_.ReSize(1024);
25 pix2y_.Reset();
26 x2pix_.ReSize(128);
27 x2pix_.Reset();
28 y2pix_.ReSize(128);
29 y2pix_.Reset();
30 mk_pix2xy();
31 mk_xy2pix();
32}
33
34PIXELS_XY& PIXELS_XY::instance()
35{
36 static PIXELS_XY single;
37 return (single);
38}
39
40void PIXELS_XY::mk_pix2xy()
41{
42 /*
43 ==================================================
44 subroutine mk_pix2xy
45 ==================================================
46 c constructs the array giving x and y in the face from pixel number
47 c for the nested (quad-cube like) ordering of pixels
48 c
49 c the bits corresponding to x and y are interleaved in the pixel number
50 c one breaks up the pixel number by even and odd bits
51 ==================================================
52 */
53 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
54 // (16/12/98)
55
56 int kpix, jpix, IX, IY, IP, ID;
57
58 for(kpix = 0; kpix < 1024; kpix++)
59 {
60 jpix = kpix;
61 IX = 0;
62 IY = 0;
63 IP = 1 ;// ! bit position (in x and y)
64 while( jpix!=0 )
65 { // ! go through all the bits
66 ID=jpix%2;// ! bit value (in kpix), goes in ix
67 jpix = jpix/2;
68 IX = ID*IP+IX;
69
70 ID=jpix%2;// ! bit value (in kpix), goes in iy
71 jpix = jpix/2;
72 IY = ID*IP+IY;
73
74 IP = 2*IP;// ! next bit (in x and y)
75 }
76 pix2x_(kpix) = IX;// ! in 0,31
77 pix2y_(kpix) = IY;// ! in 0,31
78 }
79}
80
81void PIXELS_XY::mk_xy2pix()
82{
83 /*
84 =================================================
85 subroutine mk_xy2pix
86 =================================================
87 c sets the array giving the number of the pixel lying in (x,y)
88 c x and y are in {1,128}
89 c the pixel number is in {0,128**2-1}
90 c
91 c if i-1 = sum_p=0 b_p * 2^p
92 c then ix = sum_p=0 b_p * 4^p
93 c iy = 2*ix
94 c ix + iy in {0, 128**2 -1}
95 =================================================
96 */
97 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
98 // (16/12/98)
99
100 int K,IP,I,J,ID;
101 for(I = 1; I <= 128; I++)
102 {
103 J = I-1;// !pixel numbers
104 K = 0;//
105 IP = 1;//
106 truc : if( J==0 )
107 {
108 x2pix_(I-1) = K;
109 y2pix_(I-1) = 2*K;
110 }
111 else
112 {
113 ID = (int)fmod(J,2);
114 J = J/2;
115 K = IP*ID+K;
116 IP = IP*4;
117 goto truc;
118 }
119 }
120}
121
122//*******************************************************************
123//++
124// Class SphereGorski
125//
126// include spheregorski.h strutil.h
127//
128// Pixelisation Gorski
129//
130//
131//| -----------------------------------------------------------------------
132//| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
133//| -----------------------------------------------------------------------
134//
135// the sphere is split in 12 diamond-faces containing nside**2 pixels each
136//
137// the numbering of the pixels (in the nested scheme) is similar to
138// quad-cube
139// In each face the first pixel is in the lowest corner of the diamond
140//
141// the faces are (x,y) coordinate on each face
142//| . . . . <--- North Pole
143//| / \ / \ / \ / \ ^ ^
144//| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
145//| \ / \ / \ / \ / y \ / x
146//| 4 . 5 . 6 . 7 . 4 <--- equator \ /
147//| / \ / \ / \ / \ \/
148//| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
149//| \ / \ / \ / \ /
150//| . . . . <--- South Pole
151//|
152// phi:0 2Pi
153//
154// in the ring scheme pixels are numbered along the parallels
155// the first parallel is the one closest to the north pole and so on
156// on each parallel, pixels are numbered starting from the one closest
157// to phi = 0
158//
159// nside DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
160//--
161//++
162//
163// Links Parents
164//
165// SphericalMap
166//--
167//++
168//
169// Links Descendants
170//
171//
172//--
173
174/* --Methode-- */
175//++
176// Titre Constructeurs
177//--
178//++
179
180template<class T>
181SphereGorski<T>::SphereGorski()
182
183//--
184{
185 InitNul();
186}
187
188//++
189template<class T>
190SphereGorski<T>::SphereGorski(int m)
191
192// Constructeur : m est la variable nside de l'algorithme de Gorski
193// le nombre total de pixels sera Npix = 12*nside**2
194// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
195//--
196{
197
198 if(m <= 0 || m > 8192)
199 {
200 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
201 exit(1);
202 }
203 // verifier que m est une puissance de deux
204 int x= m;
205 while(x%2 == 0) x/=2;
206 if(x != 1)
207 {
208 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
209 exit(1);
210 }
211 InitNul();
212 Pixelize(m);
213}
214
215template<class T>
216SphereGorski<T>::SphereGorski(const SphereGorski<T>& s)
217{
218 cout << " constructeur de recopie " << endl;
219 if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
220
221 nSide_= s.nSide_;
222 nPix_ = s.nPix_;
223 omeg_ = s.omeg_;
224
225 pixels_= s.pixels_;
226
227}
228
229//++
230// Titre Destructeur
231//--
232//++
233template<class T>
234SphereGorski<T>::~SphereGorski()
235
236//--
237{
238 InitNul();
239}
240
241//++
242// Titre Méthodes
243//--
244
245//++
246template<class T>
247void SphereGorski<T>::Resize(int m)
248
249// m est la variable nside de l'algorithme de Gorski
250// le nombre total de pixels sera Npix = 12*nside**2
251// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
252//--
253{
254 if (m<=0 || m> 8192) {
255 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
256 exit(1);
257 }
258 // verifier que m est une puissance de deux
259 int x= m;
260 while (x%2==0) x/=2;
261 if(x != 1)
262 {
263 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
264 exit(1);
265 }
266 InitNul();
267 Pixelize(m);
268}
269
270template<class T>
271void SphereGorski<T>::Pixelize( int m)
272
273// prépare la pixelisation Gorski (m a la même signification
274// que pour le constructeur)
275//
276//
277//--
278{
279 // On memorise les arguments d'appel
280 nSide_= m;
281
282 // Nombre total de pixels sur la sphere entiere
283 nPix_= 12*nSide_*nSide_;
284
285 // pour le moment les tableaux qui suivent seront ranges dans l'ordre
286 // de l'indexation GORSKY "RING"
287 // on pourra ulterieurement changer de strategie et tirer profit
288 // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra
289 // de pourquoi c'est faire
290
291 // Creation et initialisation du vecteur des contenus des pixels
292 pixels_.ReSize(nPix_);
293 pixels_.Reset();
294
295 // solid angle per pixel
296 omeg_= 4.0*Pi/nPix_;
297}
298
299template<class T>
300void SphereGorski<T>::InitNul()
301//
302// initialise à zéro les variables de classe
303{
304 nSide_= 0;
305 nPix_ = 0;
306 omeg_ = 0.;
307 pixels_.Reset();
308
309}
310
311/* --Methode-- */
312//++
313template<class T>
314int SphereGorski<T>::NbPixels() const
315
316// Retourne le nombre de pixels du découpage
317//--
318{
319 return(nPix_);
320}
321
322//++
323template<class T>
324int SphereGorski<T>::NbThetaSlices() const
325
326// Retourne le nombre de tranches en theta sur la sphere
327//--
328{
329 return int(4*nSide_-1);
330}
331
332//++
333template<class T>
334void SphereGorski<T>::GetThetaSlice(int index,double& theta,TVector<double>& phi,TVector<T>& value) const
335
336// Retourne, pour la tranche en theta d'indice 'index' le theta
337// correspondant, un vecteur (Peida) contenant les phi des pixels de
338// la tranche, un vecteur (Peida) contenant les valeurs de pixel
339// correspondantes
340//--
341{
342 cout << "entree GetThetaSlice, couche no " << index << endl;
343
344 if (index<0 || index > NbThetaSlices())
345 {
346 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
347 cout << " SphereGorski::GetThetaSlice : exceptions a mettre en place" <<endl;
348 THROW(rangeCheckErr);
349 }
350
351 int iring= 0;
352 int lring = 0;
353 if(index < nSide_-1)
354 {
355 iring= 2*index*(index+1);
356 lring= 4*(index+1);
357 }
358 else if(index < 3*nSide_)
359 {
360 iring= 2*nSide_*(2*index-nSide_+1);
361 lring= 4*nSide_;
362 }
363 else
364 {
365 int nc= 4*nSide_-1-index;
366 iring = nPix_-2*nc*(nc+1);
367 lring = 4*nc;
368 }
369
370 phi.ReSize(lring);
371 value.ReSize(lring);
372 double TH= 0.;
373 double FI= 0.;
374 for(int kk = 0; kk < lring;kk++)
375 {
376 PixThetaPhi(kk+iring,TH,FI);
377 phi(kk)= FI;
378 value(kk)= PixVal(kk+iring);
379 }
380 theta= TH;
381}
382
383/* --Methode-- */
384//++
385template<class T>
386T& SphereGorski<T>::PixVal(int k)
387
388// Retourne la valeur du contenu du pixel d'indice "RING" k
389//--
390{
391 if((k < 0) || (k >= nPix_))
392 {
393 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
394 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
395 THROW(rangeCheckErr);
396 }
397 return pixels_(k);
398}
399
400/* --Methode-- */
401//++
402template<class T>
403T const& SphereGorski<T>::PixVal(int k) const
404
405// Retourne la valeur du contenu du pixel d'indice "RING" k
406//--
407{
408 if((k < 0) || (k >= nPix_))
409 {
410 //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
411 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
412 THROW(rangeCheckErr);
413 }
414 return *(pixels_.Data()+k);
415}
416
417//++
418template<class T>
419T& SphereGorski<T>::PixValNest(int k)
420
421// Retourne la valeur du contenu du pixel d'indice "NESTED" k
422//--
423{
424 if((k < 0) || (k >= nPix_))
425 {
426 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
427 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
428 THROW(rangeCheckErr);
429 }
430 return pixels_(nest2ring(nSide_,k));
431}
432//++
433
434template<class T>
435T const& SphereGorski<T>::PixValNest(int k) const
436
437// Retourne la valeur du contenu du pixel d'indice "NESTED" k
438//--
439{
440 if((k < 0) || (k >= nPix_))
441 {
442 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
443 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
444 THROW(rangeCheckErr);
445 }
446 int pix= nest2ring(nSide_,k);
447 return *(pixels_.Data()+pix);
448}
449
450/* --Methode-- */
451//++
452template<class T>
453int SphereGorski<T>::PixIndexSph(double theta,double phi) const
454
455// Retourne l'indice "RING" du pixel vers lequel pointe une direction
456// définie par ses coordonnées sphériques
457//--
458{
459 return ang2pix_ring(nSide_,theta,phi);
460}
461
462//++
463template<class T>
464int SphereGorski<T>::PixIndexSphNest(double theta,double phi) const
465
466// Retourne l'indice NESTED" du pixel vers lequel pointe une direction
467// définie par ses coordonnées sphériques
468//--
469{
470 return ang2pix_nest(nSide_,theta,phi);
471}
472
473
474/* --Methode-- */
475//++
476template<class T>
477void SphereGorski<T>::PixThetaPhi(int k,double& theta,double& phi) const
478
479// Retourne les coordonnées (theta,phi) du milieu du pixel d'indice "RING" k
480//--
481{
482 pix2ang_ring(nSide_,k,theta,phi);
483}
484
485//++
486template<class T>
487double SphereGorski<T>::PixSolAngle(int dummy) const
488// Pixel Solid angle (steradians)
489// All the pixels have the same solid angle. The dummy argument is
490// for compatibility with eventual pixelizations which would not
491// fulfil this requirement.
492//--
493{
494 return omeg_;
495}
496
497//++
498template<class T>
499void SphereGorski<T>::PixThetaPhiNest(int k,double& theta,double& phi) const
500
501// Retourne les coordonnées (theta,phi) du milieu du pixel d'indice
502// NESTED k
503//--
504{
505 pix2ang_nest(nSide_,k,theta,phi);
506}
507
508//++
509template<class T>
510int SphereGorski<T>::NestToRing(int k) const
511
512// conversion d'index NESTD en un index RING
513//
514//--
515{
516 return nest2ring(nSide_,k);
517}
518
519//++
520template<class T>
521int SphereGorski<T>::RingToNest(int k) const
522//
523// conversion d'index RING en un index NESTED
524//
525//--
526{
527 return ring2nest(nSide_,k);
528}
529
530
531template<class T>
532int SphereGorski<T>::nest2ring(int nside, int ipnest) const
533{
534 /*
535 ====================================================
536 subroutine nest2ring(nside, ipnest, ipring)
537 ====================================================
538 c conversion from NESTED to RING pixel number
539 ====================================================
540 */
541 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
542 // (16/12/98)
543
544 const PIXELS_XY& PXY= PIXELS_XY::instance();
545
546 int npix, npface, face_num, ncap, n_before;
547 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
548 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
549 int ns_max=8192;
550 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
551 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
552
553 if( nside<1 || nside>ns_max ) {
554 cout << "nside out of range" << endl;
555 exit(0);
556 }
557 npix = 12 * nside* nside;
558 if( ipnest<0 || ipnest>npix-1 ) {
559 cout << "ipnest out of range" << endl;
560 exit(0);
561 }
562
563 ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
564 nl4 = 4* nside;
565
566 //c finds the face, and the number in the face
567 npface = nside* nside;
568 //cccccc ip = ipnest - 1 ! in {0,npix-1}
569
570 face_num = ipnest/npface;// ! face number in {0,11}
571 ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
572 //c finds the x,y on the face (starting from the lowest corner)
573 //c from the pixel number
574 ip_low=ipf%1024; // ! content of the last 10 bits
575 ip_trunc = ipf/1024; // ! truncation of the last 10 bits
576 ip_med=ip_trunc%1024; // ! content of the next 10 bits
577 ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
578
579 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
580 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
581
582 //c transforms this in (horizontal, vertical) coordinates
583 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
584 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
585
586 //c computes the z coordinate on the sphere
587 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
588 jr = jrll[face_num]*nside - jrt - 1;
589 nr = nside;// ! equatorial region (the most frequent)
590 n_before = ncap + nl4 * (jr - nside);
591 kshift=(jr - nside)%2;
592 if( jr<nside ) {//then ! north pole region
593 nr = jr;
594 n_before = 2 * nr * (nr - 1);
595 kshift = 0;
596 }
597 else if( jr>3*nside ) {//then ! south pole region
598 nr = nl4 - jr;
599 n_before = npix - 2 * (nr + 1) * nr;
600 kshift = 0;
601 }
602
603 //c computes the phi coordinate on the sphere, in [0,2Pi]
604 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
605
606 if( jp>nl4 ) jp = jp - nl4;
607 if( jp<1 ) jp = jp + nl4;
608
609 int aux=n_before + jp - 1;
610 return (n_before + jp - 1);// ! in {0, npix-1}
611}
612
613template<class T>
614int SphereGorski<T>::ring2nest(int nside, int ipring) const
615{
616 /*
617 ==================================================
618 subroutine ring2nest(nside, ipring, ipnest)
619 ==================================================
620 c conversion from RING to NESTED pixel number
621 ==================================================
622 */
623 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
624 // (16/12/98)
625
626 const PIXELS_XY& PXY= PIXELS_XY::instance();
627
628 double fihip, hip;
629 int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
630 int kshift, face_num, nr;
631 int irn, ire, irm, irs, irt, ifm , ifp;
632 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
633 int ns_max(8192);
634
635 // coordinate of the lowest corner of each face
636 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
637 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
638
639 if( nside<1 || nside>ns_max ) {
640 cout << "nside out of range" << endl;
641 exit(0);
642 }
643 npix = 12 * nside*nside;
644 if( ipring<0 || ipring>npix-1 ) {
645 cout << "ipring out of range" << endl;
646 exit(0);
647 }
648
649 nl2 = 2*nside;
650 nl4 = 4*nside;
651 npix = 12*nside*nside;// ! total number of points
652 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
653 ipring1 = ipring + 1;
654
655 //c finds the ring number, the position of the ring and the face number
656 if( ipring1<=ncap ) {//then
657
658 hip = ipring1/2.;
659 fihip = (int)floor ( hip );
660 irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
661 iphi = ipring1 - 2*irn*(irn - 1);
662
663 kshift = 0;
664 nr = irn ;// ! 1/4 of the number of points on the current ring
665 face_num = (iphi-1) / irn;// ! in {0,3}
666 }
667 else if( ipring1<=nl2*(5*nside+1) ) {//then
668
669 ip = ipring1 - ncap - 1;
670 irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
671 iphi = (int)fmod(ip,nl4) + 1;
672
673 kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
674 nr = nside;
675 ire = irn - nside + 1;// ! in {1, 2*nside +1}
676 irm = nl2 + 2 - ire;
677 ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
678 ifp = (iphi - irm/2 + nside -1) / nside;
679 if( ifp==ifm ) {//then ! faces 4 to 7
680 face_num = (int)fmod(ifp,4) + 4;
681 }
682 else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
683 face_num = ifp;
684 }
685 else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
686 face_num = ifp + 7;
687 }
688 }
689 else {
690
691 ip = npix - ipring1 + 1;
692 hip = ip/2.;
693 fihip = floor ( hip );
694 irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
695 iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
696
697 kshift = 0;
698 nr = irs;
699 irn = nl4 - irs;
700 face_num = (iphi-1) / irs + 8;// ! in {8,11}
701 }
702
703 //c finds the (x,y) on the face
704 irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
705 ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
706
707
708 if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
709
710 ix = (ipt - irt ) / 2;
711 iy = -(ipt + irt ) / 2;
712
713 ix_low = (int)fmod(ix,128);
714 ix_hi = ix/128;
715 iy_low = (int)fmod(iy,128);
716 iy_hi = iy/128;
717 ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
718
719 return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
720}
721
722template<class T>
723int SphereGorski<T>::ang2pix_ring(int nside, double theta, double phi) const
724{
725 /*
726 ==================================================
727 c gives the pixel number ipix (RING)
728 c corresponding to angles theta and phi
729 c==================================================
730 */
731 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
732 // (16/12/98)
733
734 int nl2, nl4, ncap, npix, jp, jm, ipix1;
735 double z, za, tt, tp, tmp;
736 int ir, ip, kshift;
737
738 double piover2(Pi/2.);
739 double twopi(2.*Pi);
740 double z0(2./3.);
741 int ns_max(8192);
742
743 if( nside<1 || nside>ns_max ) {
744 cout << "nside out of range" << endl;
745 exit(0);
746 }
747
748 if( theta<0. || theta>Pi) {
749 cout << "theta out of range" << endl;
750 exit(0);
751 }
752
753 z = cos(theta);
754 za = fabs(z);
755 if( phi >= twopi) phi = phi - twopi;
756 if (phi < 0.) phi = phi + twopi;
757 tt = phi / piover2;// ! in [0,4)
758
759 nl2 = 2*nside;
760 nl4 = 4*nside;
761 ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
762 npix = 12*nside*nside;
763
764 if( za <= z0 ) {
765
766 jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
767 jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
768
769 ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
770 kshift = 0;
771 if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
772
773 ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
774 if( ip>nl4 ) ip = ip - nl4;
775
776 ipix1 = ncap + nl4*(ir-1) + ip ;
777 }
778 else {
779
780 tp = tt - floor(tt);// !MOD(tt,1.d0)
781 tmp = sqrt( 3.*(1. - za) );
782
783 jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
784 jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
785
786 ir = jp + jm + 1;// ! ring number counted from the closest pole
787 ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
788 if( ip>4*ir ) ip = ip - 4*ir;
789
790 ipix1 = 2*ir*(ir-1) + ip;
791 if( z<=0. ) {
792 ipix1 = npix - 2*ir*(ir+1) + ip;
793 }
794 }
795 return (ipix1 - 1);// ! in {0, npix-1}
796}
797
798template<class T>
799int SphereGorski<T>::ang2pix_nest(int nside, double theta, double phi) const
800{
801 /*
802 ==================================================
803 subroutine ang2pix_nest(nside, theta, phi, ipix)
804 ==================================================
805 c gives the pixel number ipix (NESTED)
806 c corresponding to angles theta and phi
807 c
808 c the computation is made to the highest resolution available (nside=8192)
809 c and then degraded to that required (by integer division)
810 c this doesn't cost more, and it makes sure
811 c that the treatement of round-off will be consistent
812 c for every resolution
813 ==================================================
814 */
815 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
816 // (16/12/98)
817
818 const PIXELS_XY& PXY= PIXELS_XY::instance();
819
820 double z, za, z0, tt, tp, tmp;
821 int face_num,jp,jm;
822 int ifp, ifm;
823 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
824 double piover2(Pi/2.), twopi(2.*Pi);
825 int ns_max(8192);
826
827 if( nside<1 || nside>ns_max ) {
828 cout << "nside out of range" << endl;
829 exit(0);
830 }
831 if( theta<0 || theta>Pi ) {
832 cout << "theta out of range" << endl;
833 exit(0);
834 }
835 z = cos(theta);
836 za = fabs(z);
837 z0 = 2./3.;
838 if( phi>=twopi ) phi = phi - twopi;
839 if( phi<0. ) phi = phi + twopi;
840 tt = phi / piover2;// ! in [0,4[
841 if( za<=z0 ) { // then ! equatorial region
842
843 //(the index of edge lines increase when the longitude=phi goes up)
844 jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
845 jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
846
847 //c finds the face
848 ifp = jp / ns_max;// ! in {0,4}
849 ifm = jm / ns_max;
850 if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
851 else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
852 else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
853
854 ix = (int)fmod(jm, ns_max);
855 iy = ns_max - (int)fmod(jp, ns_max) - 1;
856 }
857 else { //! polar region, za > 2/3
858
859 ntt = (int)floor(tt);
860 if( ntt>=4 ) ntt = 3;
861 tp = tt - ntt;
862 tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
863
864 //(the index of edge lines increase when distance from the closest pole goes up)
865 jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
866 jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
867 jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
868 jm = (int)min(ns_max-1, jm);
869
870 // finds the face and pixel's (x,y)
871 if( z>=0 ) {
872 face_num = ntt;// ! in {0,3}
873 ix = ns_max - jm - 1;
874 iy = ns_max - jp - 1;
875 }
876 else {
877 face_num = ntt + 8;// ! in {8,11}
878 ix = jp;
879 iy = jm;
880 }
881 }
882
883 ix_low = (int)fmod(ix,128);
884 ix_hi = ix/128;
885 iy_low = (int)fmod(iy,128);
886 iy_hi = iy/128;
887 ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
888 ipf = ipf / pow(ns_max/nside,2);// ! in {0, nside**2 - 1}
889 return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
890}
891
892template<class T>
893void SphereGorski<T>::pix2ang_ring(int nside,int ipix,double& theta,double& phi) const {
894 /*
895 ===================================================
896 c gives theta and phi corresponding to pixel ipix (RING)
897 c for a parameter nside
898 ===================================================
899 */
900 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
901 // (16/12/98)
902
903 int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
904 double fact1, fact2, fodd, hip, fihip;
905
906 int ns_max(8192);
907
908 if( nside<1 || nside>ns_max ) {
909 cout << "nside out of range" << endl;
910 exit(0);
911 }
912 npix = 12*nside*nside; // ! total number of points
913 if( ipix<0 || ipix>npix-1 ) {
914 cout << "ipix out of range" << endl;
915 exit(0);
916 }
917
918 ipix1 = ipix + 1; // in {1, npix}
919 nl2 = 2*nside;
920 nl4 = 4*nside;
921 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
922 fact1 = 1.5*nside;
923 fact2 = 3.0*nside*nside;
924
925 if( ipix1 <= ncap ) { //! North Polar cap -------------
926
927 hip = ipix1/2.;
928 fihip = floor(hip);
929 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
930 iphi = ipix1 - 2*iring*(iring - 1);
931
932 theta = acos( 1. - iring*iring / fact2 );
933 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
934 // cout << theta << " " << phi << endl;
935 }
936 else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
937
938 ip = ipix1 - ncap - 1;
939 iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
940 iphi = (int)fmod(ip,nl4) + 1;
941
942 fodd = 0.5 * (1 + fmod((double)(iring+nside),2));// ! 1 if iring+nside is odd, 1/2 otherwise
943 theta = acos( (nl2 - iring) / fact1 );
944 phi = (1.*iphi - fodd) * Pi /(2.*nside);
945 }
946 else {//! South Polar cap -----------------------------------
947
948 ip = npix - ipix1 + 1;
949 hip = ip/2.;
950 fihip = 1.*hip;
951 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
952 iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
953
954 theta = acos( -1. + iring*iring / fact2 );
955 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
956 // cout << theta << " " << phi << endl;
957 }
958}
959
960template<class T>
961void SphereGorski<T>::pix2ang_nest(int nside,int ipix,double& theta,double& phi) const {
962 /*
963 ==================================================
964 subroutine pix2ang_nest(nside, ipix, theta, phi)
965 ==================================================
966 c gives theta and phi corresponding to pixel ipix (NESTED)
967 c for a parameter nside
968 ==================================================
969 */
970 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
971 // (16/12/98)
972
973 const PIXELS_XY& PXY= PIXELS_XY::instance();
974
975 int npix, npface, face_num;
976 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
977 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
978 double z, fn, fact1, fact2;
979 double piover2(Pi/2.);
980 int ns_max(8192);
981
982 // ! coordinate of the lowest corner of each face
983 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
984 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
985
986 if( nside<1 || nside>ns_max ) {
987 cout << "nside out of range" << endl;
988 exit(0);
989 }
990 npix = 12 * nside*nside;
991 if( ipix<0 || ipix>npix-1 ) {
992 cout << "ipix out of range" << endl;
993 exit(0);
994 }
995
996 fn = 1.*nside;
997 fact1 = 1./(3.*fn*fn);
998 fact2 = 2./(3.*fn);
999 nl4 = 4*nside;
1000
1001 //c finds the face, and the number in the face
1002 npface = nside*nside;
1003
1004 face_num = ipix/npface;// ! face number in {0,11}
1005 ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
1006
1007 //c finds the x,y on the face (starting from the lowest corner)
1008 //c from the pixel number
1009 ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
1010 ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
1011 ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
1012 ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
1013
1014 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
1015 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
1016
1017 //c transforms this in (horizontal, vertical) coordinates
1018 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
1019 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
1020
1021 //c computes the z coordinate on the sphere
1022 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
1023 jr = jrll[face_num]*nside - jrt - 1;
1024 nr = nside;// ! equatorial region (the most frequent)
1025 z = (2*nside-jr)*fact2;
1026 kshift = (int)fmod(jr - nside, 2);
1027 if( jr<nside ) { //then ! north pole region
1028 nr = jr;
1029 z = 1. - nr*nr*fact1;
1030 kshift = 0;
1031 }
1032 else {
1033 if( jr>3*nside ) {// then ! south pole region
1034 nr = nl4 - jr;
1035 z = - 1. + nr*nr*fact1;
1036 kshift = 0;
1037 }
1038 }
1039 theta = acos(z);
1040
1041 //c computes the phi coordinate on the sphere, in [0,2Pi]
1042 // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
1043 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
1044 if( jp>nl4 ) jp = jp - nl4;
1045 if( jp<1 ) jp = jp + nl4;
1046 phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
1047}
1048
1049
1050
1051template <class T>
1052void SphereGorski<T>::print(ostream& os) const
1053{
1054 if(mInfo_) os << " DVList Info= " << *mInfo_ << endl;
1055 //
1056 os << " nSide_ = " << nSide_ << endl;
1057 os << " nPix_ = " << nPix_ << endl;
1058 os << " omeg_ = " << omeg_ << endl;
1059
1060 os << " content of pixels : ";
1061 for(int i=0; i < nPix_; i++)
1062 {
1063 if(i%5 == 0) os << endl;
1064 os << pixels_(i) <<", ";
1065 }
1066 os << endl;
1067
1068 os << endl;
1069 //const PIXELS_XY& PXY= PIXELS_XY::instance();
1070
1071 //os << endl; os << " contenu des tableaux conversions "<<endl;
1072 //for(int i=0; i < 5; i++)
1073 // {
1074 // os<<PXY.pix2x_(i)<<", "<<PXY.pix2y_(i)<<", "<<PXY.x2pix_(i)<<", "<<PXY.y2pix_(i)<<endl;
1075 // }
1076 os << endl;
1077
1078}
1079
1080//*******************************************************************
1081// Class FIO_SphereGorski<T>
1082// Les objets delegues pour la gestion de persistance
1083//*******************************************************************
1084
1085template <class T>
1086FIO_SphereGorski<T>::FIO_SphereGorski()
1087{
1088 dobj= new SphereGorski<T>;
1089 ownobj= true;
1090}
1091
1092template <class T>
1093FIO_SphereGorski<T>::FIO_SphereGorski(string const& filename)
1094{
1095 dobj= new SphereGorski<T>;
1096 ownobj= true;
1097 Read(filename);
1098}
1099
1100template <class T>
1101FIO_SphereGorski<T>::FIO_SphereGorski(const SphereGorski<T>& obj)
1102{
1103 dobj= new SphereGorski<T>(obj);
1104 ownobj= true;
1105}
1106
1107template <class T>
1108FIO_SphereGorski<T>::FIO_SphereGorski(SphereGorski<T>* obj)
1109{
1110 dobj= obj;
1111 ownobj= false;
1112}
1113
1114template <class T>
1115FIO_SphereGorski<T>::~FIO_SphereGorski()
1116{
1117 if (ownobj && dobj) delete dobj;
1118}
1119
1120template <class T>
1121AnyDataObj* FIO_SphereGorski<T>::DataObj()
1122{
1123 return(dobj);
1124}
1125
1126template <class T>
1127void FIO_SphereGorski<T>::ReadSelf(PInPersist& is)
1128{
1129 cout << " FIO_SphereGorski:: ReadSelf " << endl;
1130
1131 if(dobj == NULL)
1132 {
1133 dobj= new SphereGorski<T>;
1134 }
1135
1136 // Pour savoir s'il y avait un DVList Info associe
1137 char strg[256];
1138 is.GetLine(strg, 255);
1139 bool hadinfo= false;
1140 if(strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo= true;
1141 if(hadinfo)
1142 { // Lecture eventuelle du DVList Info
1143 is >> dobj->Info();
1144 }
1145
1146 int nSide;
1147 is.GetI4(nSide);
1148 dobj->setSizeIndex(nSide);
1149
1150 int nPix;
1151 is.GetI4(nPix);
1152 dobj->setNbPixels(nPix);
1153
1154 double Omega;
1155 is.GetR8(Omega);
1156 dobj->setPixSolAngle(Omega);
1157
1158 T* pixels= new T[nPix];
1159 PIOSReadArray(is, pixels, nPix);
1160 dobj->setDataBlock(pixels, nPix);
1161 delete [] pixels;
1162
1163}
1164
1165template <class T>
1166void FIO_SphereGorski<T>::WriteSelf(POutPersist& os) const
1167{
1168 cout << " FIO_SphereGorski:: WriteSelf " << endl;
1169
1170 if(dobj == NULL)
1171 {
1172 cout << " WriteSelf:: dobj= null " << endl;
1173 return;
1174 }
1175
1176 char strg[256];
1177 int nSide= dobj->SizeIndex();
1178 int nPix = dobj->NbPixels();
1179
1180 if(dobj->ptrInfo())
1181 {
1182 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d HasInfo",nSide,nPix);
1183 os.PutLine(strg);
1184 os << dobj->Info();
1185 }
1186 else
1187 {
1188 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d ",nSide,nPix);
1189 os.PutLine(strg);
1190 }
1191
1192 os.PutI4(nSide);
1193 os.PutI4(nPix);
1194 os.PutR8(dobj->PixSolAngle(0));
1195
1196 PIOSWriteArray(os,(dobj->getDataBlock())->Data(), nPix);
1197
1198
1199}
1200
1201#ifdef __CXX_PRAGMA_TEMPLATES__
1202#pragma define_template SphereGorski<double>
1203#pragma define_template SphereGorski<float>
1204#pragma define_template SphereGorski< complex<float> >
1205#pragma define_template SphereGorski< complex<double> >
1206#pragma define_template FIO_SphereGorski<double>
1207#pragma define_template FIO_SphereGorski<float>
1208#pragma define_template FIO_SphereGorski< complex<float> >
1209#pragma define_template FIO_SphereGorski< complex<double> >
1210#endif
1211#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
1212template class SphereGorski<double>;
1213template class SphereGorski<float>;
1214template class SphereGorski< complex<float> >;
1215template class SphereGorski< complex<double> >;
1216template class FIO_SphereGorski<double>;
1217template class FIO_SphereGorski<float>;
1218template class FIO_SphereGorski< complex<float> >;
1219template class FIO_SphereGorski< complex<double> >;
1220#endif
1221
Note: See TracBrowser for help on using the repository browser.