[729] | 1 | #include "machdefs.h"
|
---|
| 2 | #include <iostream.h>
|
---|
| 3 | #include <math.h>
|
---|
| 4 | #include <complex>
|
---|
| 5 | #include "sphericaltransformserver.h"
|
---|
| 6 | #include "tvector.h"
|
---|
| 7 | #include "nbrandom.h"
|
---|
| 8 | #include "nbmath.h"
|
---|
[1683] | 9 | #include "timing.h"
|
---|
| 10 | //#include "spherehealpix.h"
|
---|
[729] | 11 |
|
---|
[1683] | 12 |
|
---|
[1218] | 13 | /*! \class SOPHYA::SphericalTransformServer
|
---|
[729] | 14 |
|
---|
[1218] | 15 | Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
| 16 |
|
---|
| 17 | Maps must be SOPHYA SphericalMaps (SphereGorski or SphereThetaPhi).
|
---|
| 18 |
|
---|
| 19 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics :
|
---|
| 20 | \f[
|
---|
| 21 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
|
---|
| 22 | \f]
|
---|
| 23 | \f[
|
---|
| 24 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
|
---|
| 25 | \f]
|
---|
| 26 | \f[
|
---|
| 27 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
|
---|
| 28 | \f]
|
---|
| 29 | \f[
|
---|
| 30 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
|
---|
| 31 | \f]
|
---|
| 32 |
|
---|
| 33 | \f[
|
---|
| 34 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
|
---|
| 35 | \f]
|
---|
| 36 | \f[
|
---|
| 37 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 38 | \f]
|
---|
| 39 | \f[
|
---|
| 40 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 41 | \f]
|
---|
| 42 | \f[
|
---|
| 43 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 44 | \f]
|
---|
| 45 |
|
---|
| 46 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
|
---|
| 47 |
|
---|
| 48 | power spectra :
|
---|
| 49 |
|
---|
| 50 | \f[
|
---|
| 51 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle
|
---|
| 52 | \f]
|
---|
| 53 | \f[
|
---|
| 54 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle
|
---|
| 55 | \f]
|
---|
| 56 | \f[
|
---|
| 57 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle
|
---|
| 58 | \f]
|
---|
| 59 |
|
---|
| 60 | \arg
|
---|
| 61 | \b Synthesis : Get temperature and polarization maps from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
|
---|
| 62 |
|
---|
| 63 | \b Temperature:
|
---|
| 64 | \f[
|
---|
| 65 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
|
---|
| 66 | \f]
|
---|
| 67 |
|
---|
| 68 | with
|
---|
| 69 | \f[
|
---|
| 70 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
|
---|
| 71 | \f]
|
---|
| 72 |
|
---|
| 73 | \b Polarisation
|
---|
| 74 | \f[
|
---|
| 75 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
|
---|
| 76 | \f]
|
---|
| 77 |
|
---|
| 78 | where :
|
---|
| 79 | \f[
|
---|
| 80 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
|
---|
| 81 | \f]
|
---|
| 82 |
|
---|
| 83 | or :
|
---|
| 84 | \f[
|
---|
| 85 | Q = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
|
---|
| 86 | \f]
|
---|
| 87 | \f[
|
---|
| 88 | U = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
|
---|
| 89 | \f]
|
---|
| 90 |
|
---|
| 91 | where:
|
---|
| 92 | \f[
|
---|
| 93 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
|
---|
| 94 | \f]
|
---|
| 95 | \f[
|
---|
| 96 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
|
---|
| 97 | \f]
|
---|
| 98 |
|
---|
| 99 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$ can be computed by FFT.
|
---|
| 100 |
|
---|
| 101 |
|
---|
| 102 | \arg
|
---|
| 103 | \b Analysis : Get \f$a_{lm}\f$ coefficients or power spectra from temperature and polarization maps (methods DecomposeTo...).
|
---|
| 104 |
|
---|
| 105 | \b Temperature:
|
---|
| 106 | \f[
|
---|
| 107 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
|
---|
| 108 | \f]
|
---|
| 109 |
|
---|
| 110 | approximated as :
|
---|
| 111 | \f[
|
---|
| 112 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
|
---|
| 113 | \f]
|
---|
| 114 | where :
|
---|
| 115 | \f[
|
---|
| 116 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 117 | \f]
|
---|
| 118 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
|
---|
| 119 |
|
---|
| 120 | \b polarisation:
|
---|
| 121 |
|
---|
| 122 | \f[
|
---|
| 123 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
|
---|
| 124 | \f]
|
---|
| 125 | where :
|
---|
| 126 | \f[
|
---|
| 127 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 128 | \f]
|
---|
| 129 | or :
|
---|
| 130 |
|
---|
| 131 | \f[
|
---|
| 132 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
|
---|
| 133 | \f]
|
---|
| 134 | \f[
|
---|
| 135 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
|
---|
| 136 | \f]
|
---|
| 137 |
|
---|
| 138 | where :
|
---|
| 139 | \f[
|
---|
| 140 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 141 | \f]
|
---|
| 142 | \f[
|
---|
| 143 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 144 | \f]
|
---|
| 145 |
|
---|
| 146 | */
|
---|
| 147 |
|
---|
| 148 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 149 |
|
---|
| 150 | synthesis of a temperature map from Alm coefficients
|
---|
| 151 | */
|
---|
[729] | 152 | template<class T>
|
---|
| 153 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 154 | {
|
---|
| 155 | /*=======================================================================
|
---|
| 156 | computes a map form its alm for the HEALPIX pixelisation
|
---|
| 157 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 158 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 159 |
|
---|
| 160 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 161 |
|
---|
| 162 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 163 | * the sum over m is done by FFT
|
---|
| 164 |
|
---|
| 165 | =======================================================================*/
|
---|
| 166 | int_4 nlmax=alm.Lmax();
|
---|
| 167 | int_4 nmmax=nlmax;
|
---|
| 168 | int_4 nsmax=0;
|
---|
| 169 | map.Resize(pixelSizeIndex);
|
---|
| 170 | char* sphere_type=map.TypeOfMap();
|
---|
| 171 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
| 172 | {
|
---|
| 173 | nsmax=map.SizeIndex();
|
---|
| 174 | }
|
---|
| 175 | else
|
---|
| 176 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
| 177 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
| 178 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
| 179 | // c'est approximatif ; a raffiner.
|
---|
| 180 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
| 181 | {
|
---|
| 182 | nsmax=(int_4)sqrt(map.NbPixels()/12.);
|
---|
| 183 | }
|
---|
| 184 | else
|
---|
| 185 | {
|
---|
| 186 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
| 187 | throw IOExc(" unknown type of sphere: " + (string)sphere_type );
|
---|
| 188 | }
|
---|
[1683] | 189 | // cout << "GenerateFromAlm: the sphere is of type : " << sphere_type << endl;
|
---|
| 190 | // cout << "GenerateFromAlm: size index (nside) of the sphere= " << nsmax << endl;
|
---|
| 191 | // cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
[729] | 192 | if (nlmax>3*nsmax-1)
|
---|
| 193 | {
|
---|
[1683] | 194 | // cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
[729] | 195 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
| 196 | {
|
---|
[1683] | 197 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
[729] | 198 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 | Bm<complex<T> > b_m_theta(nmmax);
|
---|
| 202 |
|
---|
| 203 | // map.Resize(nsmax);
|
---|
| 204 |
|
---|
| 205 |
|
---|
| 206 | // pour chaque tranche en theta
|
---|
[746] | 207 | for (int_4 ith = 0; ith < map.NbThetaSlices();ith++)
|
---|
[729] | 208 | {
|
---|
| 209 | int_4 nph;
|
---|
| 210 | r_8 phi0;
|
---|
| 211 | r_8 theta;
|
---|
| 212 | TVector<int_4> pixNumber;
|
---|
| 213 | TVector<T> datan;
|
---|
| 214 |
|
---|
| 215 | map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 216 | nph = pixNumber.NElts();
|
---|
| 217 |
|
---|
| 218 | // -----------------------------------------------------
|
---|
| 219 | // for each theta, and each m, computes
|
---|
| 220 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 221 | // ------------------------------------------------------
|
---|
| 222 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
| 223 | // somme sur m de 0 a l'infini
|
---|
[833] | 224 | int m;
|
---|
| 225 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 226 | {
|
---|
| 227 | b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
|
---|
| 228 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 229 | {
|
---|
| 230 | b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
| 235 |
|
---|
[833] | 236 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 237 | {
|
---|
| 238 | b_m_theta(-m) = conj(b_m_theta(m));
|
---|
| 239 | }
|
---|
| 240 | // ---------------------------------------------------------------
|
---|
| 241 | // sum_m b(m,theta)*exp(i*m*phi) -> f(phi,theta)
|
---|
| 242 | // ---------------------------------------------------------------*/
|
---|
[1683] | 243 | TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
[729] | 244 | for (int i=0;i< nph;i++)
|
---|
| 245 | {
|
---|
[1683] | 246 | map(pixNumber(i))=Temp(i);
|
---|
[729] | 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 |
|
---|
| 252 |
|
---|
[1218] | 253 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 254 |
|
---|
| 255 | \return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
| 256 |
|
---|
| 257 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
| 258 | */
|
---|
[729] | 259 | template<class T>
|
---|
| 260 | TVector< complex<T> > SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 261 | {
|
---|
| 262 | /*=======================================================================
|
---|
| 263 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 264 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 265 |
|
---|
| 266 | as the set of frequencies {m} is larger than nph,
|
---|
| 267 | we wrap frequencies within {0..nph-1}
|
---|
| 268 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 269 | then
|
---|
| 270 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 271 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 272 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 273 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 274 | = Fourier Transform of bw
|
---|
| 275 | is real
|
---|
| 276 |
|
---|
| 277 | NB nph is not necessarily a power of 2
|
---|
| 278 |
|
---|
| 279 | =======================================================================*/
|
---|
| 280 | //**********************************************************************
|
---|
| 281 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 282 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 283 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 284 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 285 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 286 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 287 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 288 | // somme_k : de -infini a +infini
|
---|
| 289 | // somme_m' : de 0 a nph-1
|
---|
| 290 | // On echange les sommations :
|
---|
| 291 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
| 292 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 293 | // vaut 1.
|
---|
| 294 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
| 295 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 296 | //**********************************************************************
|
---|
| 297 |
|
---|
| 298 | TVector< complex<T> > bw(nph);
|
---|
| 299 | TVector< complex<T> > dataout(nph);
|
---|
| 300 | TVector< complex<T> > data(nph);
|
---|
| 301 |
|
---|
| 302 |
|
---|
| 303 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 304 | int m;
|
---|
| 305 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
[729] | 306 | {
|
---|
| 307 | int maux=m;
|
---|
| 308 | while (maux<0) maux+=nph;
|
---|
| 309 | int iw=maux%nph;
|
---|
| 310 | double aux=(m-iw)*phi0;
|
---|
| 311 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 312 | }
|
---|
[833] | 313 | for (m=0;m<=b_m.Mmax();m++)
|
---|
[729] | 314 | {
|
---|
| 315 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 316 | int iw=m%nph;
|
---|
| 317 | double aux=(m-iw)*phi0;
|
---|
| 318 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | // applies the shift in position <-> phase factor in Fourier space
|
---|
| 322 | for (int mprime=0; mprime < nph; mprime++)
|
---|
| 323 | {
|
---|
| 324 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
| 325 | data(mprime)=bw(mprime)*
|
---|
| 326 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | //sortie.ReSize(nph);
|
---|
| 330 | TVector< complex<T> > sortie(nph);
|
---|
| 331 |
|
---|
| 332 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
| 333 |
|
---|
| 334 | return sortie;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | //********************************************
|
---|
[1218] | 338 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 339 |
|
---|
| 340 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
[729] | 341 | template<class T>
|
---|
| 342 | TVector<T> SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 343 | {
|
---|
| 344 | /*=======================================================================
|
---|
| 345 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 346 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 347 |
|
---|
| 348 | as the set of frequencies {m} is larger than nph,
|
---|
| 349 | we wrap frequencies within {0..nph-1}
|
---|
| 350 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 351 | then
|
---|
| 352 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 353 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 354 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 355 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 356 | = Fourier Transform of bw
|
---|
| 357 | is real
|
---|
| 358 |
|
---|
| 359 | NB nph is not necessarily a power of 2
|
---|
| 360 |
|
---|
| 361 | =======================================================================*/
|
---|
| 362 | //**********************************************************************
|
---|
| 363 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 364 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 365 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 366 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 367 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 368 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 369 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 370 | // somme_k : de -infini a +infini
|
---|
| 371 | // somme_m' : de 0 a nph-1
|
---|
| 372 | // On echange les sommations :
|
---|
| 373 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
| 374 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 375 | // vaut 1.
|
---|
| 376 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
| 377 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 378 | //**********************************************************************
|
---|
| 379 |
|
---|
| 380 | TVector< complex<T> > bw(nph);
|
---|
| 381 | TVector< complex<T> > dataout(nph);
|
---|
| 382 | TVector< complex<T> > data(nph/2+1);
|
---|
| 383 |
|
---|
| 384 |
|
---|
| 385 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 386 | int m;
|
---|
| 387 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
[729] | 388 | {
|
---|
| 389 | int maux=m;
|
---|
| 390 | while (maux<0) maux+=nph;
|
---|
| 391 | int iw=maux%nph;
|
---|
| 392 | double aux=(m-iw)*phi0;
|
---|
| 393 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 394 | }
|
---|
[833] | 395 | for (m=0;m<=b_m.Mmax();m++)
|
---|
[729] | 396 | {
|
---|
| 397 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 398 | int iw=m%nph;
|
---|
| 399 | double aux=(m-iw)*phi0;
|
---|
| 400 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | // applies the shift in position <-> phase factor in Fourier space
|
---|
| 404 | for (int mprime=0; mprime <= nph/2; mprime++)
|
---|
| 405 | {
|
---|
| 406 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
| 407 | data(mprime)=bw(mprime)*
|
---|
| 408 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | TVector<T> sortie;
|
---|
| 412 |
|
---|
| 413 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
| 414 |
|
---|
| 415 | return sortie;
|
---|
| 416 | }
|
---|
| 417 | //*******************************************
|
---|
| 418 |
|
---|
[1218] | 419 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 420 |
|
---|
[1683] | 421 | \return the Alm coefficients from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
[1218] | 422 |
|
---|
| 423 | \param<nlmax> : maximum value of the l index
|
---|
| 424 |
|
---|
| 425 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 426 |
|
---|
| 427 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis)
|
---|
[1218] | 428 | */
|
---|
[729] | 429 | template<class T>
|
---|
[1683] | 430 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 431 | {
|
---|
[1683] | 432 | int_4 nmmax = nlmax;
|
---|
| 433 | // PrtTim("appel carteVersAlm");
|
---|
| 434 | carteVersAlm(map, nlmax, cos_theta_cut, alm);
|
---|
| 435 | // PrtTim("retour carteVersAlm");
|
---|
| 436 | if (iterationOrder > 0)
|
---|
| 437 | {
|
---|
| 438 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 439 | fact(0) = 1;
|
---|
| 440 | for (int k=1; k <= iterationOrder+1; k++)
|
---|
| 441 | {
|
---|
| 442 | fact(k) = fact(k-1)*k;
|
---|
| 443 | }
|
---|
| 444 | Alm<T> alm2(alm);
|
---|
| 445 | T Tzero = (T)0.;
|
---|
| 446 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 447 | alm = complexZero;
|
---|
| 448 | int signe = 1;
|
---|
| 449 | int nbIteration = iterationOrder+1;
|
---|
| 450 | for (int k=1; k <= nbIteration; k++)
|
---|
| 451 | {
|
---|
| 452 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 453 | for (int m = 0; m <= nmmax; m++)
|
---|
| 454 | {
|
---|
| 455 | for (int l = m; l<= nlmax; l++)
|
---|
| 456 | {
|
---|
| 457 | alm(l,m) += facMult*alm2(l,m);
|
---|
| 458 | }
|
---|
| 459 | }
|
---|
| 460 | if (k == nbIteration) break;
|
---|
| 461 | signe = -signe;
|
---|
| 462 | for (int k=0; k< map.NbPixels(); k++) map(k) = (T)0.;
|
---|
| 463 | // synthetize a map from the estimated alm
|
---|
| 464 | // PrtTim("appel GenerateFromAlm");
|
---|
| 465 | GenerateFromAlm( map, map.SizeIndex(), alm2);
|
---|
| 466 | // PrtTim("retour GenerateFromAlm");
|
---|
| 467 | alm2 = complexZero;
|
---|
| 468 | // analyse the new map
|
---|
| 469 | // PrtTim("appel carteVersAlm");
|
---|
| 470 | carteVersAlm(map, nlmax, cos_theta_cut, alm2);
|
---|
| 471 | // PrtTim("retour carteVersAlm");
|
---|
| 472 | }
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 |
|
---|
| 476 | template<class T>
|
---|
| 477 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, Alm<T>& alm) const
|
---|
| 478 | {
|
---|
[729] | 479 |
|
---|
| 480 | /*-----------------------------------------------------------------------
|
---|
| 481 | computes the integral in phi : phas_m(theta)
|
---|
| 482 | for each parallele from north to south pole
|
---|
| 483 | -----------------------------------------------------------------------*/
|
---|
| 484 | TVector<T> data;
|
---|
| 485 | TVector<int_4> pixNumber;
|
---|
| 486 | int_4 nmmax = nlmax;
|
---|
| 487 | TVector< complex<T> > phase(nmmax+1);
|
---|
[1683] | 488 |
|
---|
[729] | 489 | alm.ReSizeToLmax(nlmax);
|
---|
[746] | 490 | for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
|
---|
[729] | 491 | {
|
---|
| 492 | r_8 phi0;
|
---|
| 493 | r_8 theta;
|
---|
[1683] | 494 | // PrtTim("debut 1ere tranche ");
|
---|
[729] | 495 | map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
|
---|
[1683] | 496 | phase = complex<T>((T)0.,(T)0.);
|
---|
[729] | 497 | double cth = cos(theta);
|
---|
| 498 |
|
---|
| 499 | //part of the sky out of the symetric cut
|
---|
[1428] | 500 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[1683] | 501 |
|
---|
| 502 | // PrtTim("fin 1ere tranche ");
|
---|
| 503 |
|
---|
[729] | 504 | if (keep_it)
|
---|
| 505 | {
|
---|
[1683] | 506 | // phase = CFromFourierAnalysis(nmmax,data,phi0);
|
---|
| 507 | // PrtTim("avant Fourier ");
|
---|
| 508 | CFromFourierAnalysis(nmmax,data,phase, phi0);
|
---|
| 509 | // PrtTim("apres Fourier ");
|
---|
[729] | 510 |
|
---|
| 511 | }
|
---|
| 512 |
|
---|
[1683] | 513 | // ---------------------------------------------------------------------
|
---|
| 514 | // computes the a_lm by integrating over theta
|
---|
| 515 | // lambda_lm(theta) * phas_m(theta)
|
---|
| 516 | // for each m and l
|
---|
| 517 | // -----------------------------------------------------------------------
|
---|
| 518 | // PrtTim("avant instanciation LM ");
|
---|
[729] | 519 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
[1683] | 520 | // PrtTim("apres instanciation LM ");
|
---|
[729] | 521 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
[1683] | 522 |
|
---|
| 523 | // PrtTim("avant mise a jour Alm ");
|
---|
| 524 | complex<T> fi;
|
---|
| 525 | T facteur;
|
---|
| 526 | int index;
|
---|
[729] | 527 | for (int m = 0; m <= nmmax; m++)
|
---|
| 528 | {
|
---|
[1683] | 529 | fi = phase(m);
|
---|
| 530 | for (int l = m; l<= nlmax; l++)
|
---|
[729] | 531 | {
|
---|
[1683] | 532 | index = alm.indexOfElement(l,m);
|
---|
| 533 | // facteur = (T)(lb.lamlm(l,m) * domega);
|
---|
| 534 | facteur = (T)(lb.lamlm(index) * domega);
|
---|
| 535 | // alm(l,m) += facteur * fi ;
|
---|
| 536 | alm(index) += facteur * fi ;
|
---|
[729] | 537 | }
|
---|
| 538 | }
|
---|
[1683] | 539 |
|
---|
| 540 |
|
---|
| 541 |
|
---|
| 542 | //
|
---|
| 543 | //
|
---|
| 544 | // PrtTim("apres mise a jour Alm ");
|
---|
[729] | 545 | }
|
---|
| 546 | }
|
---|
[1218] | 547 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
| 548 |
|
---|
| 549 | \return a vector with mmax elements which are sums :
|
---|
| 550 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
| 551 | */
|
---|
[729] | 552 | template<class T>
|
---|
[746] | 553 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
[729] | 554 | {
|
---|
| 555 | /*=======================================================================
|
---|
| 556 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 557 | --> function of m can be computed by FFT
|
---|
| 558 |
|
---|
| 559 | datain est modifie
|
---|
| 560 | =======================================================================*/
|
---|
| 561 | int_4 nph=datain.NElts();
|
---|
| 562 | if (nph <= 0)
|
---|
| 563 | {
|
---|
| 564 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 565 | }
|
---|
| 566 | TVector<complex<T> > transformedData(nph);
|
---|
| 567 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
| 568 |
|
---|
| 569 | TVector< complex<T> > dataout(nmmax+1);
|
---|
| 570 |
|
---|
| 571 | int im_max=min(nph,nmmax+1);
|
---|
[833] | 572 | int i;
|
---|
[1683] | 573 | dataout = complex<T>((T)0.,(T)0.);
|
---|
| 574 | // for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
|
---|
[833] | 575 | for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
|
---|
[729] | 576 |
|
---|
| 577 |
|
---|
| 578 | for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
|
---|
[833] | 579 | for (i = 0;i <dataout.NElts();i++){
|
---|
[729] | 580 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 581 | }
|
---|
| 582 | return dataout;
|
---|
| 583 | }
|
---|
| 584 |
|
---|
| 585 | //&&&&&&&&& nouvelle version
|
---|
[1218] | 586 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
| 587 |
|
---|
| 588 | same as previous one, but with a "datain" which is real (not complex) */
|
---|
[729] | 589 | template<class T>
|
---|
[1683] | 590 | void SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, TVector< complex<T> >& dataout, r_8 phi0) const
|
---|
[729] | 591 | {
|
---|
| 592 | //=======================================================================
|
---|
| 593 | // integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 594 | // --> function of m can be computed by FFT
|
---|
| 595 | // ! with 0<= m <= npoints/2 (: Nyquist)
|
---|
| 596 | // ! because the data is real the negative m are the conjugate of the
|
---|
| 597 | // ! positive ones
|
---|
| 598 |
|
---|
| 599 | // datain est modifie
|
---|
| 600 | //
|
---|
| 601 | // =======================================================================
|
---|
| 602 | int_4 nph=datain.NElts();
|
---|
| 603 | if (nph <= 0)
|
---|
| 604 | {
|
---|
| 605 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 606 | }
|
---|
[1683] | 607 | if (nph%2 != 0 )
|
---|
| 608 | {
|
---|
| 609 | throw PException("SphericalTransformServer<T>::CFromFourierAnalysis : longueur de datain impair ?");
|
---|
| 610 | }
|
---|
[729] | 611 | TVector<complex<T> > transformedData;
|
---|
| 612 |
|
---|
[1683] | 613 | // la taille du vecteur complexe retourne est nph/2+1 (si la taille
|
---|
| 614 | // du vecteur reel entre est nph)
|
---|
[729] | 615 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
| 616 |
|
---|
[1683] | 617 | // TVector< complex<T> > dataout(nmmax+1);
|
---|
| 618 | dataout.ReSize(nmmax+1);
|
---|
[729] | 619 |
|
---|
| 620 | // on transfere le resultat de la fft dans dataout.
|
---|
[1683] | 621 |
|
---|
| 622 | int maxFreqAccessiblesParFFT = min(nph/2,nmmax);
|
---|
[833] | 623 | int i;
|
---|
[1683] | 624 | for (i=0;i<=maxFreqAccessiblesParFFT;i++) dataout(i)=transformedData(i);
|
---|
[729] | 625 |
|
---|
| 626 |
|
---|
[1683] | 627 | // si dataout n'est pas plein, on complete jusqu'a nph+1 valeurs (a moins
|
---|
[729] | 628 | // que dataout ne soit plein avant d'atteindre nph)
|
---|
[1683] | 629 | if (maxFreqAccessiblesParFFT != nmmax )
|
---|
[729] | 630 | {
|
---|
[1683] | 631 | int maxMfft = min(nph,nmmax);
|
---|
| 632 | for (i=maxFreqAccessiblesParFFT+1; i<=maxMfft; i++)
|
---|
[729] | 633 | {
|
---|
| 634 | dataout(i) = conj(dataout(nph-i) );
|
---|
| 635 | }
|
---|
| 636 | // on conplete, si necessaire, par periodicite
|
---|
[1683] | 637 | if ( maxMfft != nmmax )
|
---|
[729] | 638 | {
|
---|
[1683] | 639 | for (int kk=nph+1; kk <= nmmax; kk++)
|
---|
| 640 | {
|
---|
| 641 | dataout(kk)=dataout(kk%nph);
|
---|
| 642 | }
|
---|
[729] | 643 | }
|
---|
| 644 | }
|
---|
[1683] | 645 | for (i = 0;i <dataout.NElts();i++)
|
---|
| 646 | {
|
---|
| 647 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 648 | }
|
---|
| 649 | // return dataout;
|
---|
[729] | 650 | }
|
---|
| 651 |
|
---|
[1218] | 652 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 653 | SphericalMap<T>& mapu,
|
---|
| 654 | int_4 pixelSizeIndex,
|
---|
| 655 | const Alm<T>& alme,
|
---|
| 656 | const Alm<T>& almb) const
|
---|
| 657 |
|
---|
| 658 | synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
[729] | 659 | template<class T>
|
---|
| 660 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 661 | SphericalMap<T>& mapu,
|
---|
| 662 | int_4 pixelSizeIndex,
|
---|
| 663 | const Alm<T>& alme,
|
---|
| 664 | const Alm<T>& almb) const
|
---|
| 665 | {
|
---|
| 666 | /*=======================================================================
|
---|
| 667 | computes a map form its alm for the HEALPIX pixelisation
|
---|
| 668 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 669 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 670 |
|
---|
| 671 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 672 |
|
---|
| 673 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 674 | * the sum over m is done by FFT
|
---|
| 675 |
|
---|
| 676 | =======================================================================*/
|
---|
| 677 | int_4 nlmax=alme.Lmax();
|
---|
| 678 | if (nlmax != almb.Lmax())
|
---|
| 679 | {
|
---|
| 680 | cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
|
---|
| 681 | throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
|
---|
| 682 | }
|
---|
| 683 | int_4 nmmax=nlmax;
|
---|
| 684 | int_4 nsmax=0;
|
---|
| 685 | mapq.Resize(pixelSizeIndex);
|
---|
| 686 | mapu.Resize(pixelSizeIndex);
|
---|
| 687 | char* sphere_type=mapq.TypeOfMap();
|
---|
| 688 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
| 689 | {
|
---|
| 690 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 691 | cout << " type 1 " << sphere_type << endl;
|
---|
| 692 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 693 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 694 |
|
---|
| 695 | }
|
---|
| 696 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
| 697 | {
|
---|
| 698 | nsmax=mapq.SizeIndex();
|
---|
| 699 | }
|
---|
| 700 | else
|
---|
| 701 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
| 702 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
| 703 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
| 704 | // c'est approximatif ; a raffiner.
|
---|
| 705 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
| 706 | {
|
---|
| 707 | nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
|
---|
| 708 | }
|
---|
| 709 | else
|
---|
| 710 | {
|
---|
| 711 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
| 712 | throw IOExc(" unknown type of sphere ");
|
---|
| 713 | }
|
---|
| 714 | cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
|
---|
| 715 | cout << "GenerateFromAlm: size indices (nside) of spheres= " << nsmax << endl;
|
---|
| 716 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
| 717 | if (nlmax>3*nsmax-1)
|
---|
| 718 | {
|
---|
| 719 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
| 720 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
| 721 | {
|
---|
| 722 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
| 725 | if (alme.Lmax()!=almb.Lmax())
|
---|
| 726 | {
|
---|
| 727 | cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl;
|
---|
| 728 | throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ? ");
|
---|
| 729 | }
|
---|
| 730 | mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
| 731 | // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
| 732 | }
|
---|
| 733 |
|
---|
| 734 |
|
---|
[1218] | 735 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
| 736 | const SphericalMap<T>& mapu,
|
---|
| 737 | Alm<T>& alme,
|
---|
| 738 | Alm<T>& almb,
|
---|
| 739 | int_4 nlmax,
|
---|
| 740 | r_8 cos_theta_cut) const
|
---|
| 741 |
|
---|
| 742 | analysis of a polarization map into Alm coefficients.
|
---|
| 743 |
|
---|
| 744 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
| 745 |
|
---|
| 746 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 747 | nlmax : maximum value of the l index
|
---|
| 748 |
|
---|
| 749 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 750 | */
|
---|
[729] | 751 | template<class T>
|
---|
[1683] | 752 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& mapq,
|
---|
| 753 | SphericalMap<T>& mapu,
|
---|
| 754 | Alm<T>& alme,
|
---|
| 755 | Alm<T>& almb,
|
---|
| 756 | int_4 nlmax,
|
---|
| 757 | r_8 cos_theta_cut,
|
---|
| 758 | int iterationOrder) const
|
---|
| 759 | {
|
---|
| 760 | int_4 nmmax = nlmax;
|
---|
| 761 | carteVersAlm(mapq, mapu, alme, almb, nlmax, cos_theta_cut);
|
---|
| 762 | if (iterationOrder > 0)
|
---|
| 763 | {
|
---|
| 764 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 765 | fact(0) = 1;
|
---|
| 766 | for (int k=1; k <= iterationOrder+1; k++)
|
---|
| 767 | {
|
---|
| 768 | fact(k) = fact(k-1)*k;
|
---|
| 769 | }
|
---|
| 770 | Alm<T> alme2(alme);
|
---|
| 771 | Alm<T> almb2(almb);
|
---|
| 772 | T Tzero = (T)0.;
|
---|
| 773 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 774 | alme = complexZero;
|
---|
| 775 | almb = complexZero;
|
---|
| 776 | int signe = 1;
|
---|
| 777 | int nbIteration = iterationOrder+1;
|
---|
| 778 | for (int k=1; k <= nbIteration; k++)
|
---|
| 779 | {
|
---|
| 780 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 781 | for (int m = 0; m <= nmmax; m++)
|
---|
| 782 | {
|
---|
| 783 | for (int l = m; l<= nlmax; l++)
|
---|
| 784 | {
|
---|
| 785 | alme(l,m) += facMult*alme2(l,m);
|
---|
| 786 | almb(l,m) += facMult*almb2(l,m);
|
---|
| 787 | }
|
---|
| 788 | }
|
---|
| 789 | if (k == nbIteration) break;
|
---|
| 790 | signe = -signe;
|
---|
| 791 | for (int k=0; k< mapq.NbPixels(); k++)
|
---|
| 792 | {
|
---|
| 793 | mapq(k) = (T)0.;
|
---|
| 794 | mapu(k) = (T)0.;
|
---|
| 795 | }
|
---|
| 796 | // synthetize a map from the estimated alm
|
---|
| 797 | GenerateFromAlm(mapq,mapu,mapq.SizeIndex(),alme2,almb2);
|
---|
| 798 | alme2 = complexZero;
|
---|
| 799 | almb2 = complexZero;
|
---|
| 800 | // analyse the new map
|
---|
| 801 | carteVersAlm(mapq, mapu, alme2, almb2, nlmax, cos_theta_cut);
|
---|
| 802 | }
|
---|
| 803 | }
|
---|
| 804 | }
|
---|
| 805 |
|
---|
| 806 | template<class T>
|
---|
| 807 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& mapq,
|
---|
[729] | 808 | const SphericalMap<T>& mapu,
|
---|
| 809 | Alm<T>& alme,
|
---|
| 810 | Alm<T>& almb,
|
---|
| 811 | int_4 nlmax,
|
---|
| 812 | r_8 cos_theta_cut) const
|
---|
| 813 | {
|
---|
| 814 | int_4 nmmax = nlmax;
|
---|
| 815 | // resize et remise a zero
|
---|
| 816 | alme.ReSizeToLmax(nlmax);
|
---|
| 817 | almb.ReSizeToLmax(nlmax);
|
---|
| 818 |
|
---|
| 819 |
|
---|
| 820 | TVector<T> dataq;
|
---|
| 821 | TVector<T> datau;
|
---|
| 822 | TVector<int_4> pixNumber;
|
---|
| 823 |
|
---|
| 824 | char* sphere_type=mapq.TypeOfMap();
|
---|
| 825 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
| 826 | {
|
---|
| 827 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 828 | cout << " type 1 " << sphere_type << endl;
|
---|
| 829 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 830 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 831 |
|
---|
| 832 | }
|
---|
| 833 | if (mapq.NbPixels()!=mapu.NbPixels())
|
---|
| 834 | {
|
---|
| 835 | cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
|
---|
| 836 | throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
|
---|
| 837 | }
|
---|
[746] | 838 | for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
|
---|
[729] | 839 | {
|
---|
| 840 | r_8 phi0;
|
---|
| 841 | r_8 theta;
|
---|
| 842 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
|
---|
| 843 | mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
|
---|
| 844 | if (dataq.NElts() != datau.NElts() )
|
---|
| 845 | {
|
---|
| 846 | throw SzMismatchError("the spheres have not the same pixelization");
|
---|
| 847 | }
|
---|
| 848 | r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
|
---|
| 849 | double cth = cos(theta);
|
---|
| 850 | //part of the sky out of the symetric cut
|
---|
[1428] | 851 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[729] | 852 | if (keep_it)
|
---|
| 853 | {
|
---|
[1328] | 854 | // almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[746] | 855 | almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[729] | 856 | }
|
---|
| 857 | }
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 |
|
---|
[1218] | 861 | /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 862 | r_8 phi0, r_8 domega,
|
---|
| 863 | r_8 theta,
|
---|
| 864 | const TVector<T>& dataq,
|
---|
| 865 | const TVector<T>& datau,
|
---|
| 866 | Alm<T>& alme,
|
---|
| 867 | Alm<T>& almb) const
|
---|
| 868 |
|
---|
| 869 | Compute polarized Alm's as :
|
---|
| 870 | \f[
|
---|
| 871 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
|
---|
| 872 | \f]
|
---|
| 873 | \f[
|
---|
| 874 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
|
---|
| 875 | \f]
|
---|
| 876 |
|
---|
| 877 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
| 878 |
|
---|
| 879 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 880 |
|
---|
| 881 | dataq, datau : Stokes parameters.
|
---|
| 882 |
|
---|
| 883 | */
|
---|
[729] | 884 | template<class T>
|
---|
[746] | 885 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
[729] | 886 | r_8 phi0, r_8 domega,
|
---|
| 887 | r_8 theta,
|
---|
| 888 | const TVector<T>& dataq,
|
---|
| 889 | const TVector<T>& datau,
|
---|
| 890 | Alm<T>& alme,
|
---|
| 891 | Alm<T>& almb) const
|
---|
| 892 | {
|
---|
| 893 | TVector< complex<T> > phaseq(nmmax+1);
|
---|
| 894 | TVector< complex<T> > phaseu(nmmax+1);
|
---|
| 895 | // TVector<complex<T> > datain(nph);
|
---|
| 896 | for (int i=0;i< nmmax+1;i++)
|
---|
| 897 | {
|
---|
| 898 | phaseq(i)=0;
|
---|
| 899 | phaseu(i)=0;
|
---|
| 900 | }
|
---|
| 901 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
|
---|
| 902 |
|
---|
[1683] | 903 | // phaseq = CFromFourierAnalysis(nmmax,dataq,phi0);
|
---|
| 904 | CFromFourierAnalysis(nmmax,dataq,phaseq, phi0);
|
---|
[729] | 905 |
|
---|
[1683] | 906 | // phaseu= CFromFourierAnalysis(nmmax,datau,phi0);
|
---|
| 907 | CFromFourierAnalysis(nmmax,datau,phaseu, phi0);
|
---|
[729] | 908 |
|
---|
| 909 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 910 |
|
---|
| 911 | r_8 sqr2inv=1/Rac2;
|
---|
| 912 | for (int m = 0; m <= nmmax; m++)
|
---|
| 913 | {
|
---|
| 914 | r_8 lambda_w=0.;
|
---|
| 915 | r_8 lambda_x=0.;
|
---|
| 916 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 917 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 918 | alme(m,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 919 | almb(m,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 920 |
|
---|
| 921 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 922 | {
|
---|
| 923 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 924 | zi_lam_x = complex<T>((T)0., (T)lambda_x);
|
---|
| 925 | alme(l,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 926 | almb(l,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 927 | }
|
---|
| 928 | }
|
---|
| 929 | }
|
---|
| 930 |
|
---|
| 931 |
|
---|
[1218] | 932 | /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 933 | int_4 nmmax,
|
---|
| 934 | r_8 phi0, r_8 domega,
|
---|
| 935 | r_8 theta,
|
---|
| 936 | const TVector<T>& dataq,
|
---|
| 937 | const TVector<T>& datau,
|
---|
| 938 | Alm<T>& alme,
|
---|
| 939 | Alm<T>& almb) const
|
---|
| 940 |
|
---|
| 941 | Compute polarized Alm's as :
|
---|
| 942 | \f[
|
---|
| 943 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 944 | \f]
|
---|
| 945 | \f[
|
---|
| 946 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 947 | \f]
|
---|
| 948 |
|
---|
| 949 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
| 950 |
|
---|
| 951 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 952 |
|
---|
| 953 | dataq, datau : Stokes parameters.
|
---|
| 954 |
|
---|
| 955 | */
|
---|
[729] | 956 | template<class T>
|
---|
[1218] | 957 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 958 | int_4 nmmax,
|
---|
[729] | 959 | r_8 phi0, r_8 domega,
|
---|
| 960 | r_8 theta,
|
---|
| 961 | const TVector<T>& dataq,
|
---|
| 962 | const TVector<T>& datau,
|
---|
| 963 | Alm<T>& alme,
|
---|
| 964 | Alm<T>& almb) const
|
---|
| 965 | {
|
---|
| 966 | TVector< complex<T> > phasep(nmmax+1);
|
---|
| 967 | TVector< complex<T> > phasem(nmmax+1);
|
---|
| 968 | TVector<complex<T> > datain(nph);
|
---|
| 969 | for (int i=0;i< nmmax+1;i++)
|
---|
| 970 | {
|
---|
| 971 | phasep(i)=0;
|
---|
| 972 | phasem(i)=0;
|
---|
| 973 | }
|
---|
[833] | 974 | int kk;
|
---|
| 975 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
|
---|
[729] | 976 |
|
---|
[746] | 977 | phasep = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 978 |
|
---|
[833] | 979 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
|
---|
[746] | 980 | phasem = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 981 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 982 |
|
---|
| 983 | for (int m = 0; m <= nmmax; m++)
|
---|
| 984 | {
|
---|
| 985 | r_8 lambda_p=0.;
|
---|
| 986 | r_8 lambda_m=0.;
|
---|
| 987 | complex<T> im((T)0.,(T)1.);
|
---|
| 988 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 989 |
|
---|
| 990 | alme(m,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 991 | almb(m,m) += im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 992 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 993 | {
|
---|
| 994 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 995 | alme(l,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 996 | almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 997 | }
|
---|
| 998 | }
|
---|
| 999 | }
|
---|
| 1000 |
|
---|
| 1001 |
|
---|
[1218] | 1002 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1003 | SphericalMap<T>& mapq,
|
---|
| 1004 | SphericalMap<T>& mapu,
|
---|
| 1005 | const Alm<T>& alme,
|
---|
| 1006 | const Alm<T>& almb) const
|
---|
| 1007 |
|
---|
| 1008 | synthesis of Stokes parameters following formulae :
|
---|
| 1009 |
|
---|
| 1010 | \f[
|
---|
| 1011 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
| 1012 | \f]
|
---|
| 1013 | \f[
|
---|
| 1014 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
| 1015 | \f]
|
---|
| 1016 |
|
---|
| 1017 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1018 |
|
---|
| 1019 | with :
|
---|
| 1020 |
|
---|
| 1021 | \f[
|
---|
| 1022 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1023 | \f]
|
---|
| 1024 | \f[
|
---|
| 1025 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1026 | \f]
|
---|
| 1027 | */
|
---|
[729] | 1028 | template<class T>
|
---|
| 1029 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1030 | SphericalMap<T>& mapq,
|
---|
| 1031 | SphericalMap<T>& mapu,
|
---|
| 1032 | const Alm<T>& alme,
|
---|
| 1033 | const Alm<T>& almb) const
|
---|
| 1034 | {
|
---|
| 1035 | Bm<complex<T> > b_m_theta_q(nmmax);
|
---|
| 1036 | Bm<complex<T> > b_m_theta_u(nmmax);
|
---|
| 1037 |
|
---|
[746] | 1038 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1039 | {
|
---|
| 1040 | int_4 nph;
|
---|
| 1041 | r_8 phi0;
|
---|
| 1042 | r_8 theta;
|
---|
| 1043 | TVector<int_4> pixNumber;
|
---|
| 1044 | TVector<T> datan;
|
---|
| 1045 |
|
---|
| 1046 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1047 | nph = pixNumber.NElts();
|
---|
| 1048 | // -----------------------------------------------------
|
---|
| 1049 | // for each theta, and each m, computes
|
---|
| 1050 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1051 | // ------------------------------------------------------
|
---|
| 1052 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 1053 | // LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 1054 | r_8 sqr2inv=1/Rac2;
|
---|
[833] | 1055 | int m;
|
---|
| 1056 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1057 | {
|
---|
| 1058 | r_8 lambda_w=0.;
|
---|
| 1059 | r_8 lambda_x=0.;
|
---|
| 1060 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 1061 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 1062 |
|
---|
| 1063 | b_m_theta_q(m) = ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
|
---|
| 1064 | b_m_theta_u(m) = ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
|
---|
| 1065 |
|
---|
| 1066 |
|
---|
| 1067 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1068 | {
|
---|
| 1069 |
|
---|
| 1070 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 1071 | zi_lam_x= complex<T>((T)0., (T)lambda_x);
|
---|
| 1072 |
|
---|
| 1073 | b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
|
---|
| 1074 | b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
|
---|
| 1075 |
|
---|
| 1076 | }
|
---|
| 1077 | }
|
---|
| 1078 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1079 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1080 | {
|
---|
| 1081 | b_m_theta_q(-m) = conj(b_m_theta_q(m));
|
---|
| 1082 | b_m_theta_u(-m) = conj(b_m_theta_u(m));
|
---|
| 1083 | }
|
---|
| 1084 |
|
---|
| 1085 | // TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1086 | // TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1087 | TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1088 | TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1089 | for (int i=0;i< nph;i++)
|
---|
| 1090 | {
|
---|
| 1091 | // mapq(pixNumber(i))=Tempq(i).real();
|
---|
| 1092 | // mapu(pixNumber(i))=Tempu(i).real();
|
---|
| 1093 | mapq(pixNumber(i))=Tempq(i);
|
---|
| 1094 | mapu(pixNumber(i))=Tempu(i);
|
---|
| 1095 |
|
---|
| 1096 | }
|
---|
| 1097 | }
|
---|
| 1098 | }
|
---|
[1218] | 1099 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1100 | SphericalMap<T>& mapq,
|
---|
| 1101 | SphericalMap<T>& mapu,
|
---|
| 1102 | const Alm<T>& alme,
|
---|
| 1103 | const Alm<T>& almb) const
|
---|
| 1104 |
|
---|
| 1105 | synthesis of polarizations following formulae :
|
---|
| 1106 |
|
---|
| 1107 | \f[
|
---|
| 1108 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
| 1109 | \f]
|
---|
| 1110 | \f[
|
---|
| 1111 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
| 1112 | \f]
|
---|
| 1113 |
|
---|
| 1114 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1115 |
|
---|
| 1116 | with :
|
---|
| 1117 |
|
---|
| 1118 | \f[
|
---|
| 1119 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
| 1120 | \f]
|
---|
| 1121 | \f[
|
---|
| 1122 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
| 1123 | \f]
|
---|
| 1124 | */
|
---|
[729] | 1125 | template<class T>
|
---|
| 1126 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1127 | SphericalMap<T>& mapq,
|
---|
| 1128 | SphericalMap<T>& mapu,
|
---|
| 1129 | const Alm<T>& alme,
|
---|
| 1130 | const Alm<T>& almb) const
|
---|
| 1131 | {
|
---|
| 1132 | Bm<complex<T> > b_m_theta_p(nmmax);
|
---|
| 1133 | Bm<complex<T> > b_m_theta_m(nmmax);
|
---|
[746] | 1134 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1135 | {
|
---|
| 1136 | int_4 nph;
|
---|
| 1137 | r_8 phi0;
|
---|
| 1138 | r_8 theta;
|
---|
| 1139 | TVector<int_4> pixNumber;
|
---|
| 1140 | TVector<T> datan;
|
---|
| 1141 |
|
---|
| 1142 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1143 | nph = pixNumber.NElts();
|
---|
| 1144 |
|
---|
| 1145 | // -----------------------------------------------------
|
---|
| 1146 | // for each theta, and each m, computes
|
---|
| 1147 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1148 | //------------------------------------------------------
|
---|
| 1149 |
|
---|
| 1150 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
[833] | 1151 | int m;
|
---|
| 1152 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1153 | {
|
---|
| 1154 | r_8 lambda_p=0.;
|
---|
| 1155 | r_8 lambda_m=0.;
|
---|
| 1156 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 1157 | complex<T> im((T)0.,(T)1.);
|
---|
| 1158 |
|
---|
| 1159 | b_m_theta_p(m) = (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
|
---|
| 1160 | b_m_theta_m(m) = (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
|
---|
| 1161 |
|
---|
| 1162 |
|
---|
| 1163 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1164 | {
|
---|
| 1165 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 1166 | b_m_theta_p(m) += (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
|
---|
| 1167 | b_m_theta_m(m) += (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
|
---|
| 1168 | }
|
---|
| 1169 | }
|
---|
| 1170 |
|
---|
| 1171 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1172 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1173 | {
|
---|
| 1174 | b_m_theta_p(-m) = conj(b_m_theta_m(m));
|
---|
| 1175 | b_m_theta_m(-m) = conj(b_m_theta_p(m));
|
---|
| 1176 | }
|
---|
| 1177 |
|
---|
| 1178 | TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);
|
---|
| 1179 | TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0);
|
---|
| 1180 |
|
---|
| 1181 | for (int i=0;i< nph;i++)
|
---|
| 1182 | {
|
---|
| 1183 | mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
|
---|
| 1184 | mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
|
---|
| 1185 | }
|
---|
| 1186 | }
|
---|
| 1187 | }
|
---|
| 1188 |
|
---|
| 1189 |
|
---|
[1218] | 1190 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1191 | SphericalMap<T>& sphu,
|
---|
| 1192 | int_4 pixelSizeIndex,
|
---|
| 1193 | const TVector<T>& Cle,
|
---|
| 1194 | const TVector<T>& Clb,
|
---|
| 1195 | const r_8 fwhm) const
|
---|
| 1196 |
|
---|
| 1197 | synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
| 1198 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
| 1199 | */
|
---|
[729] | 1200 | template<class T>
|
---|
| 1201 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1202 | SphericalMap<T>& sphu,
|
---|
| 1203 | int_4 pixelSizeIndex,
|
---|
| 1204 | const TVector<T>& Cle,
|
---|
| 1205 | const TVector<T>& Clb,
|
---|
| 1206 | const r_8 fwhm) const
|
---|
| 1207 | {
|
---|
| 1208 | if (Cle.NElts() != Clb.NElts())
|
---|
| 1209 | {
|
---|
| 1210 | cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
|
---|
| 1211 | throw SzMismatchError("SphericalTransformServer::GenerateFromCl : two Cl arrays have not same size");
|
---|
| 1212 | }
|
---|
| 1213 |
|
---|
| 1214 | // Alm<T> a2lme,a2lmb;
|
---|
| 1215 | // almFromCl(a2lme, Cle, fwhm);
|
---|
| 1216 | // almFromCl(a2lmb, Clb, fwhm);
|
---|
| 1217 | // Alm<T> a2lme = almFromCl(Cle, fwhm);
|
---|
| 1218 | // Alm<T> a2lmb = almFromCl(Clb, fwhm);
|
---|
| 1219 | Alm<T> a2lme(Cle, fwhm);
|
---|
| 1220 | Alm<T> a2lmb(Clb, fwhm);
|
---|
| 1221 |
|
---|
| 1222 | GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb);
|
---|
| 1223 | }
|
---|
[1218] | 1224 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1225 | int_4 pixelSizeIndex,
|
---|
| 1226 | const TVector<T>& Cl,
|
---|
| 1227 | const r_8 fwhm) const
|
---|
| 1228 |
|
---|
| 1229 | synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
[729] | 1230 | template<class T>
|
---|
| 1231 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1232 | int_4 pixelSizeIndex,
|
---|
| 1233 | const TVector<T>& Cl,
|
---|
| 1234 | const r_8 fwhm) const
|
---|
| 1235 | {
|
---|
| 1236 |
|
---|
| 1237 | Alm<T> alm(Cl, fwhm);
|
---|
| 1238 | GenerateFromAlm(sph,pixelSizeIndex, alm );
|
---|
| 1239 | }
|
---|
| 1240 |
|
---|
| 1241 |
|
---|
| 1242 |
|
---|
[1218] | 1243 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 1244 |
|
---|
[1683] | 1245 | \return power spectrum from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
[1218] | 1246 |
|
---|
| 1247 | \param<nlmax> : maximum value of the l index
|
---|
| 1248 |
|
---|
| 1249 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 1250 |
|
---|
| 1251 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis)
|
---|
| 1252 |
|
---|
[1218] | 1253 | */
|
---|
[729] | 1254 | template <class T>
|
---|
[1683] | 1255 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 1256 | {
|
---|
[1683] | 1257 | Alm<T> alm;
|
---|
| 1258 | DecomposeToAlm( sph, alm, nlmax, cos_theta_cut, iterationOrder);
|
---|
| 1259 | // cout << " SphericalTransformServer : impression alm " << endl;
|
---|
| 1260 | // alm.Print();
|
---|
[729] | 1261 | // power spectrum
|
---|
| 1262 | return alm.powerSpectrum();
|
---|
| 1263 | }
|
---|
| 1264 |
|
---|
| 1265 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 1266 | #pragma define_template SphericalTransformServer<r_8>
|
---|
| 1267 | #pragma define_template SphericalTransformServer<r_4>
|
---|
| 1268 | #endif
|
---|
| 1269 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
| 1270 | template class SphericalTransformServer<r_8>;
|
---|
| 1271 | template class SphericalTransformServer<r_4>;
|
---|
| 1272 | #endif
|
---|