[1371] | 1 | // 3-D Geometry
|
---|
| 2 | // B. Revenu, G. Le Meur 2000
|
---|
[2973] | 3 | // R. Ansari 2006
|
---|
[1371] | 4 | // DAPNIA/SPP (Saclay) / CEA LAL - IN2P3/CNRS (Orsay)
|
---|
| 5 |
|
---|
[764] | 6 | #ifndef VECTOR3D_H_SEEN
|
---|
| 7 | #define VECTOR3D_H_SEEN
|
---|
| 8 |
|
---|
| 9 | #include <math.h>
|
---|
[2322] | 10 | #include <iostream>
|
---|
[764] | 11 | #include <stdio.h>
|
---|
| 12 | #include <string.h>
|
---|
[3206] | 13 |
|
---|
[764] | 14 | #include "longlat.h"
|
---|
| 15 |
|
---|
[2973] | 16 |
|
---|
| 17 | namespace SOPHYA {
|
---|
| 18 |
|
---|
| 19 | //! Class to ease angle conversions (radian <> degree <> arcmin <> arcsec)
|
---|
| 20 | class Angle {
|
---|
| 21 | public:
|
---|
| 22 | enum AngleUnit { Radian, Degree, ArcMin, ArcSec };
|
---|
| 23 | //! Constructor with specification of angle value in radian
|
---|
| 24 | Angle(double val=0.) { _angrad = val; }
|
---|
| 25 | //! Constructor with specification of angle value and unit
|
---|
| 26 | Angle(double val, Angle::AngleUnit un);
|
---|
| 27 | //! Copy constructor
|
---|
| 28 | Angle(Angle const& a) { _angrad = a._angrad; }
|
---|
| 29 |
|
---|
| 30 | //! Conversion to radian
|
---|
| 31 | inline double ToRadian() const { return _angrad; }
|
---|
| 32 | //! Conversion to degree
|
---|
| 33 | inline double ToDegree() const { return _angrad*_rad2deg; }
|
---|
| 34 | //! Conversion to arcmin
|
---|
| 35 | inline double ToArcMin() const { return _angrad*_rad2min; }
|
---|
| 36 | //! Conversion to arcsec
|
---|
| 37 | inline double ToArcSec() const { return _angrad*_rad2sec; }
|
---|
| 38 |
|
---|
| 39 | //! return the angle value in radian
|
---|
| 40 | inline operator double () const { return _angrad; }
|
---|
| 41 |
|
---|
| 42 | protected:
|
---|
| 43 | double _angrad; // angle in radians
|
---|
| 44 |
|
---|
| 45 | static double _deg2rad; // deg -> radian conversion factor
|
---|
| 46 | static double _rad2deg; // rad -> degree conversion factor
|
---|
| 47 | static double _rad2min; // rad -> arcmin conversion factor
|
---|
| 48 | static double _rad2sec; // rad -> arcmin conversion factor
|
---|
| 49 |
|
---|
| 50 | };
|
---|
| 51 |
|
---|
[3786] | 52 | //! Angle conversion: Radian to degree
|
---|
| 53 | inline double RadianToDegree(double ar)
|
---|
| 54 | { return Angle(ar).ToDegree(); }
|
---|
| 55 | //! Angle conversion: Degree to radian
|
---|
| 56 | inline double DegreeToRadian(double ad)
|
---|
| 57 | { return Angle(ad,Angle::Degree).ToRadian(); }
|
---|
| 58 | //! Angle conversion: Arcminute to radian
|
---|
| 59 | inline double ArcminToRadian(double aam)
|
---|
| 60 | { return Angle(aam,Angle::ArcMin).ToRadian(); }
|
---|
| 61 |
|
---|
[764] | 62 | /*
|
---|
| 63 | Geometrie en dimension 3.
|
---|
| 64 | Tous les calculs sont faits en radians
|
---|
| 65 | et en coordonnees spheriques theta,phi
|
---|
| 66 | pour les rotations (angles d'Euler) ma source est
|
---|
[2973] | 67 | B. Revenu / G. Le Meur
|
---|
[764] | 68 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
| 69 | */
|
---|
| 70 |
|
---|
| 71 | class Vector3d
|
---|
| 72 | {
|
---|
| 73 |
|
---|
| 74 | public:
|
---|
| 75 |
|
---|
| 76 | Vector3d();
|
---|
| 77 | Vector3d(double x, double y, double z);
|
---|
| 78 | Vector3d(double theta, double phi);
|
---|
| 79 | Vector3d(const LongLat&);
|
---|
| 80 | Vector3d(const Vector3d&);
|
---|
| 81 |
|
---|
| 82 | // To manipulate the vector
|
---|
| 83 | virtual void Setxyz(double x, double y, double z);
|
---|
| 84 | virtual void SetThetaPhi(double theta, double phi);
|
---|
| 85 | virtual void ThetaPhi2xyz();
|
---|
| 86 | virtual void xyz2ThetaPhi();
|
---|
| 87 |
|
---|
| 88 | // Acces to coordinates
|
---|
| 89 | inline double Theta() const {return _theta;}
|
---|
| 90 | inline double Phi() const {return _phi;}
|
---|
| 91 | inline double X() const {return _x;}
|
---|
| 92 | inline double Y() const {return _y;}
|
---|
| 93 | inline double Z() const {return _z;}
|
---|
| 94 |
|
---|
| 95 | virtual Vector3d& Normalize();
|
---|
| 96 | virtual double Norm() const;
|
---|
| 97 |
|
---|
| 98 | // produit scalaire
|
---|
| 99 | virtual double Psc(const Vector3d&) const;
|
---|
| 100 |
|
---|
| 101 | // ecart angulaire entre 2 vecteurs dans [0,Pi]
|
---|
[2973] | 102 | //! angular gap between 2 vectors in [0,Pi]
|
---|
[764] | 103 | virtual double SepAngle(const Vector3d&) const;
|
---|
| 104 |
|
---|
| 105 | // produit vectoriel
|
---|
[2973] | 106 | //! return the vector product (*this)^v2
|
---|
| 107 | virtual Vector3d Vect(const Vector3d& v2) const;
|
---|
[764] | 108 |
|
---|
| 109 | // vecteur perpendiculaire de meme phi
|
---|
[2973] | 110 | //! return the perpendicular vector, with equal phi
|
---|
[764] | 111 | virtual Vector3d VperpPhi() const;
|
---|
| 112 |
|
---|
| 113 | // vecteur perpendiculaire de meme theta
|
---|
[2973] | 114 | //! return the perpendicular vector, with equal theta
|
---|
[764] | 115 | virtual Vector3d VperpTheta() const;
|
---|
| 116 |
|
---|
| 117 | virtual Vector3d ETheta() const;
|
---|
| 118 | virtual Vector3d EPhi() const;
|
---|
| 119 |
|
---|
| 120 | // rotations d'Euler
|
---|
[2973] | 121 | //! Perform Euler's rotations
|
---|
[764] | 122 | virtual Vector3d Euler(double, double, double) const;
|
---|
| 123 |
|
---|
| 124 | // rotation inverse
|
---|
[2973] | 125 | //! perform inverse Euler rotation
|
---|
[764] | 126 | Vector3d InvEuler(double, double, double) const;
|
---|
| 127 |
|
---|
| 128 | // rotation d'angle phi autour d'un axe omega (regle du tire-bouchon)
|
---|
[2973] | 129 | //! perform rotation of angle phi around an axis omega (Maxwell's rule)
|
---|
[792] | 130 | Vector3d Rotate(const Vector3d& omega,double phi) const;
|
---|
[764] | 131 |
|
---|
| 132 | /*virtual*/ Vector3d& operator=(const Vector3d&); // $CHECK$ EA 101299
|
---|
| 133 | virtual Vector3d& operator+=(const Vector3d&);
|
---|
| 134 | virtual Vector3d& operator-=(const Vector3d&);
|
---|
| 135 | virtual Vector3d operator+(const Vector3d&) const;
|
---|
| 136 | virtual Vector3d operator-(const Vector3d&) const;
|
---|
| 137 |
|
---|
| 138 | virtual Vector3d& operator+=(double);
|
---|
| 139 | virtual Vector3d& operator/=(double);
|
---|
| 140 | virtual Vector3d& operator*=(double);
|
---|
| 141 |
|
---|
| 142 | virtual Vector3d operator+(double) const;
|
---|
| 143 | virtual Vector3d operator-(double) const;
|
---|
| 144 | virtual Vector3d operator*(double) const;
|
---|
| 145 | virtual Vector3d operator/(double) const;
|
---|
| 146 |
|
---|
| 147 | /*! vector product */
|
---|
| 148 | virtual Vector3d operator^(const Vector3d&) const; // produit vectoriel
|
---|
| 149 | /*! dot product */
|
---|
| 150 | virtual double operator*(const Vector3d&) const; // produit scalaire
|
---|
| 151 |
|
---|
| 152 | bool operator==(const Vector3d&);
|
---|
| 153 |
|
---|
| 154 | virtual void Print(ostream& os) const;
|
---|
| 155 |
|
---|
| 156 | protected:
|
---|
| 157 |
|
---|
| 158 | double _x;
|
---|
| 159 | double _y;
|
---|
| 160 | double _z;
|
---|
| 161 | double _theta;
|
---|
| 162 | double _phi;
|
---|
| 163 |
|
---|
| 164 | };
|
---|
| 165 |
|
---|
| 166 | inline ostream& operator<<(ostream& s, const Vector3d& v)
|
---|
| 167 | {
|
---|
| 168 | v.Print(s);
|
---|
| 169 | return s;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | // fonctions globales
|
---|
| 173 |
|
---|
| 174 | inline Vector3d operator*(double d, const Vector3d& v)
|
---|
| 175 | {
|
---|
| 176 | return v*d;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | inline Vector3d operator+(double d, const Vector3d& v)
|
---|
| 180 | {
|
---|
| 181 | return v+d;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[2973] | 184 |
|
---|
[1371] | 185 | } // namespace SOPHYA
|
---|
| 186 |
|
---|
[764] | 187 | #endif
|
---|
| 188 |
|
---|
| 189 |
|
---|