[772] | 1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
| 2 | #ifndef SOpeMatrix_SEEN
|
---|
| 3 | #define SOpeMatrix_SEEN
|
---|
| 4 |
|
---|
| 5 | #include "machdefs.h"
|
---|
| 6 | #include "tmatrix.h"
|
---|
| 7 | #include "tvector.h"
|
---|
| 8 |
|
---|
[926] | 9 | // doivent imperativement reste avant le namespace SOPHYA !
|
---|
| 10 | /*!
|
---|
| 11 | \class SOPHYA::SimpleMatrixOperation
|
---|
| 12 | \ingroup TArray
|
---|
| 13 | Class for simple operation on TMatrix
|
---|
| 14 | \sa TMatrix TArray
|
---|
| 15 | */
|
---|
| 16 | /*!
|
---|
| 17 | \class SOPHYA::LinFitter
|
---|
| 18 | \ingroup TArray
|
---|
| 19 | Class for linear fitting
|
---|
| 20 | \sa TMatrix TArray
|
---|
| 21 | */
|
---|
| 22 |
|
---|
[772] | 23 | namespace SOPHYA {
|
---|
| 24 |
|
---|
| 25 | ////////////////////////////////////////////////////////////////
|
---|
[926] | 26 | //! Class for simple operation on TMatrix
|
---|
[772] | 27 | template <class T>
|
---|
| 28 | class SimpleMatrixOperation {
|
---|
| 29 | public:
|
---|
| 30 | static TMatrix<T> Inverse(TMatrix<T> const & A);
|
---|
| 31 | static T GausPiv(TMatrix<T>& A, TMatrix<T>& B);
|
---|
| 32 | };
|
---|
| 33 |
|
---|
[926] | 34 | ////////////////////////////////////////////////////////////////
|
---|
[772] | 35 | // Resolution du systeme A*C = B
|
---|
[926] | 36 | //! Solve A*C = B for C in place and return determinant
|
---|
| 37 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
| 38 | inline r_4 LinSolveInPlace(TMatrix<r_4>& a, TVector<r_4>& b)
|
---|
| 39 | {
|
---|
| 40 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
| 41 | throw(SzMismatchError("LinSolveInPlace(TMatrix<r_4>,TVector<r_4>) size mismatch"));
|
---|
| 42 | return SimpleMatrixOperation<r_4>::GausPiv(a,b);
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | //! Solve A*X = B in place and return determinant
|
---|
| 46 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
[772] | 47 | inline r_8 LinSolveInPlace(TMatrix<r_8>& a, TVector<r_8>& b)
|
---|
| 48 | {
|
---|
| 49 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
| 50 | throw(SzMismatchError("LinSolveInPlace(TMatrix<r_8>,TVector<r_8>) size mismatch"));
|
---|
| 51 | return SimpleMatrixOperation<r_8>::GausPiv(a,b);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
[926] | 54 | //! Solve A*X = B in place and return determinant
|
---|
| 55 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
| 56 | inline complex<r_4> LinSolveInPlace(TMatrix< complex<r_4> >& a, TVector< complex<r_4> >& b)
|
---|
| 57 | {
|
---|
[772] | 58 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
[926] | 59 | throw(SzMismatchError("LinSolveInPlace(TMatrix< complex<r_4> >,TVector< complex<r_4> >) size mismatch"));
|
---|
| 60 | return SimpleMatrixOperation< complex<r_4> >::GausPiv(a,b);
|
---|
[772] | 61 | }
|
---|
| 62 |
|
---|
[926] | 63 | //! Solve A*X = B in place and return determinant
|
---|
| 64 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
| 65 | inline complex<r_8> LinSolveInPlace(TMatrix< complex<r_8> >& a, TVector< complex<r_8> >& b)
|
---|
| 66 | {
|
---|
[850] | 67 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
[926] | 68 | throw(SzMismatchError("LinSolveInPlace(TMatrix< complex<r_8> >,TVector< complex<r_8> >) size mismatch"));
|
---|
| 69 | return SimpleMatrixOperation< complex<r_8> >::GausPiv(a,b);
|
---|
[850] | 70 | }
|
---|
| 71 |
|
---|
[926] | 72 | ////////////////////////////////////////////////////////////////
|
---|
| 73 | // Resolution du systeme A*C = B, avec C retourne dans B
|
---|
| 74 | //! Solve A*C = B and return C and determinant
|
---|
| 75 | /*! \ingroup TArray \fn LinSolve */
|
---|
| 76 | inline r_4 LinSolve(const TMatrix<r_4>& a, const TVector<r_4>& b, TVector<r_4>& c) {
|
---|
| 77 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
| 78 | throw(SzMismatchError("LinSolve(TMatrix<r_4>,TVector<r_4>) size mismatch"));
|
---|
| 79 | c = b; TMatrix<r_4> a1(a);
|
---|
| 80 | return SimpleMatrixOperation<r_4>::GausPiv(a1,c);
|
---|
[850] | 81 | }
|
---|
| 82 |
|
---|
[926] | 83 | //! Solve A*C = B and return C and determinant
|
---|
| 84 | /*! \ingroup TArray \fn LinSolve */
|
---|
| 85 | inline r_8 LinSolve(const TMatrix<r_8>& a, const TVector<r_8>& b, TVector<r_8>& c) {
|
---|
| 86 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
| 87 | throw(SzMismatchError("LinSolve(TMatrix<r_8>,TVector<r_8>) size mismatch"));
|
---|
| 88 | c = b; TMatrix<r_8> a1(a);
|
---|
| 89 | return SimpleMatrixOperation<r_8>::GausPiv(a1,c);
|
---|
[850] | 90 | }
|
---|
| 91 |
|
---|
[926] | 92 | //! Solve A*C = B and return C and determinant
|
---|
| 93 | /*! \ingroup TArray \fn LinSolve */
|
---|
| 94 | inline complex<r_4> LinSolve(const TMatrix< complex<r_4> >& a, const TVector< complex<r_4> >& b, TVector< complex<r_4> >& c) {
|
---|
| 95 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
| 96 | throw(SzMismatchError("LinSolve(TMatrix< complex<r_4> >,TVector< complex<r_4> >) size mismatch"));
|
---|
| 97 | c = b; TMatrix< complex<r_4> > a1(a);
|
---|
| 98 | return SimpleMatrixOperation< complex<r_4> >::GausPiv(a1,c);
|
---|
| 99 | }
|
---|
[850] | 100 |
|
---|
[926] | 101 | //! Solve A*C = B and return C and determinant
|
---|
| 102 | /*! \ingroup TArray \fn LinSolve */
|
---|
| 103 | inline complex<r_8> LinSolve(const TMatrix< complex<r_8> >& a, const TVector< complex<r_8> >& b, TVector< complex<r_8> >& c) {
|
---|
| 104 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
| 105 | throw(SzMismatchError("LinSolve(TMatrix< complex<r_8> >,TVector< complex<r_8> >) size mismatch"));
|
---|
| 106 | c = b; TMatrix< complex<r_8> > a1(a);
|
---|
| 107 | return SimpleMatrixOperation< complex<r_8> >::GausPiv(a1,c);
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | ////////////////////////////////////////////////////////////////
|
---|
| 111 | // Inverse d'une matrice
|
---|
| 112 | //! To inverse a TMatrix
|
---|
| 113 | /*! \ingroup TArray \fn Inverse */
|
---|
| 114 | inline TMatrix<r_4> Inverse(TMatrix<r_4> const & A)
|
---|
| 115 | {return SimpleMatrixOperation<r_4>::Inverse(A);}
|
---|
| 116 | //! To inverse a TMatrix
|
---|
| 117 | /*! \ingroup TArray \fn Inverse */
|
---|
| 118 | inline TMatrix<r_8> Inverse(TMatrix<r_8> const & A)
|
---|
| 119 | {return SimpleMatrixOperation<r_8>::Inverse(A);}
|
---|
| 120 | //! To inverse a TMatrix
|
---|
| 121 | /*! \ingroup TArray \fn Inverse */
|
---|
| 122 | inline TMatrix< complex<r_4> > Inverse(TMatrix< complex<r_4> > const & A)
|
---|
| 123 | {return SimpleMatrixOperation< complex<r_4> >::Inverse(A);}
|
---|
| 124 | //! To inverse a TMatrix
|
---|
| 125 | /*! \ingroup TArray \fn Inverse */
|
---|
| 126 | inline TMatrix< complex<r_8> > Inverse(TMatrix< complex<r_8> > const & A)
|
---|
| 127 | {return SimpleMatrixOperation< complex<r_8> >::Inverse(A);}
|
---|
| 128 |
|
---|
[804] | 129 | //--------------------------------------
|
---|
| 130 | // Linear fitting
|
---|
| 131 | //--------------------------------------
|
---|
[772] | 132 |
|
---|
[926] | 133 | //! Class for linear fitting
|
---|
[804] | 134 | class LinFitter {
|
---|
| 135 | public :
|
---|
| 136 | LinFitter();
|
---|
| 137 | virtual ~LinFitter();
|
---|
| 138 |
|
---|
| 139 | double LinFit(const Vector& x, const Vector& y, int nf,
|
---|
| 140 | double (*f)(int, double), Vector& c);
|
---|
| 141 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1;
|
---|
| 142 |
|
---|
| 143 | double LinFit(const Matrix& fx, const Vector& y, Vector& c);
|
---|
| 144 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
| 145 | // la matrice fx contient les valeurs des f:
|
---|
| 146 | // fx(i,j) = f(i, x(j)).
|
---|
| 147 |
|
---|
| 148 | double LinFit(const Vector& x, const Vector& y, const Vector& errY2, int nf,
|
---|
| 149 | double (*f)(int, double), Vector& c, Vector& errC);
|
---|
| 150 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
| 151 | // errY2 contient les carres des erreurs sur les Y.
|
---|
| 152 | // au retour, errC contient les erreurs sur les coefs.
|
---|
| 153 |
|
---|
| 154 | double LinFit(const Matrix& fx, const Vector& y, const Vector& errY2,
|
---|
| 155 | Vector& c, Vector& errC);
|
---|
| 156 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
| 157 | // la matrice fx contient les valeurs des f:
|
---|
| 158 | // fx(i,j) = f(i, x(j)).
|
---|
| 159 | // errY2 contient les carres des erreurs sur les Y.
|
---|
| 160 | // au retour, errC contient les erreurs sur les coefs.
|
---|
| 161 | };
|
---|
| 162 |
|
---|
| 163 |
|
---|
[772] | 164 | } // Fin du namespace
|
---|
| 165 |
|
---|
| 166 | #endif
|
---|