Ignore:
Timestamp:
Oct 3, 2000, 2:14:14 PM (25 years ago)
Author:
ansari
Message:

doc dans .cc

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/SophyaLib/Samba/lambdaBuilder.h

    r864 r1218  
    1010namespace SOPHYA {
    1111
    12 /*!
    13 generate Legendre polynomials : use in two steps :
    14 
    15 a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
    16 
    17 b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
    18 */
     12/*!  classe pour les polynomes de legendre*/
    1913class Legendre {
    2014
     
    3226
    3327 private :
    34    /*! compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ */
    3528  void array_init(int_4 lmax);
    3629
     
    4235
    4336
    44 /*!
    45 This class generate the coefficients :
    46 \f[
    47             \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
    48             P_l^m(\cos{\theta})
    49 \f]
    50 where \f$P_l^m\f$ are the associated Legendre polynomials.  The above coefficients contain the theta-dependance of spheric harmonics :
    51 \f[
    52             Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
    53 \f]
    54 
    55 Each object has a fixed theta (radians), and maximum l and m to be calculated
    56 (lmax and mmax).
    57  use the class in two steps :
    58 a) instanciate  LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ;  \f$lmax\f$ and \f$mmax\f$ are  MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
    59 b) get the values of coefficients for  particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
    60 */
    6137 class LambdaLMBuilder {
    6238
     
    7147
    7248 private:
    73 /*! compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class */
    7449 void updateArrayRecurrence(int_4 lmax);
    7550
     
    8257 protected :
    8358
    84 /*! compute  static arrays of coefficients independant from theta (common to all instances of the derived  classes */
    8559 void updateArrayLamNorm();
    8660
     
    9670
    9771
    98 /*!
    99 
    100 This class generates the coefficients :
    101 \f[
    102             _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
    103 \f]
    104 \f[
    105             _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
    106 \f]
    107 where
    108 \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
    109 \f]
    110 and
    111 \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
    112 \f]
    113  \f$P_l^m\f$ are the associated Legendre polynomials.
    114 
    115 The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
    116 \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
    117 \f]
    118 \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
    119 \f]
    120  where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
    121 
    122 \f[
    123 W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
    124 _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
    125 \f]
    126 \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
    127 _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
    128 \f]
    129 
    130 */
    13172class LambdaWXBuilder : public LambdaLMBuilder
    13273{
     
    15697};
    15798
    158 /*!
    159 
    160 This class generates the coefficients
    161 \f[
    162             _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
    163 \f]
    164 where
    165 \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
    166 \f]
    167 and
    168 \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
    169 \f]
    170 and \f$P_l^m\f$ are the associated Legendre polynomials.
    171 The coefficients express the theta-dependance of the  spin-2 spherical harmonics :
    172 \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
    173 \f]
    174 */
    17599class LambdaPMBuilder : public LambdaLMBuilder
    176100{
Note: See TracChangeset for help on using the changeset viewer.