Changeset 3438 in Sophya for trunk/SophyaLib/Manual/sophya.tex


Ignore:
Timestamp:
Dec 12, 2007, 10:34:59 PM (18 years ago)
Author:
ansari
Message:

Ajout aknowledgments ds docs et + chapitre 5 ds piapp.tex (expression plotting) - Reza 12/12/2007

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/SophyaLib/Manual/sophya.tex

    r3419 r3438  
    4343G. Le Meur           &  lemeur@lal.in2p3.fr       \\
    4444C. Magneville        &  cmv@hep.saclay.cea.fr     \\
    45 S. Henrot-Versille   &  versille@in2p3.fr     
    4645}
    4746% \auteursall
     
    102101%%%
    103102%%%
     103\subsection{Acknowlegments}
     104Many people have contributed to the development SOPHYA and/or the PI library
     105and (s)piapp interactive analysis tool.
     106we are grateful to the following people:
     107
     108\begin{tabular}{lcl}
     109Reza Ansari & \hspace{5mm} & (LAL-Univ.Paris Sud, Orsay) \\
     110Eric Aubourg & & (DAPNIA-CEA/APC, Saclay) \\
     111Sophie Henrot-Versille & & (LAL-IN2P3/CNRS, Orsay) \\
     112Alex Kim & & (LBL, Berkeley) \\
     113Guy Le Meur & & (LAL-IN2P3/CNRS, Orsay) \\
     114Eric Lesquoy & & (DAPNIA-CEA, Saclay) \\
     115Christophe Magneville & & (DAPNIA-CEA, Saclay) \\
     116Bruno Mansoux & & (LAL-IN2P3/CNRS, Orsay) \\
     117Olivier Perdereau & & (LAL-IN2P3/CNRS, Orsay) \\
     118Nicolas Regnault & & (LPNHE-IN2P3/CNRS, Paris) \\
     119Benoit Revenu & & (APC/Univ.Paris 7, Paris) \\
     120Francois Touze & & (LAL-IN2P3/CNRS, Orsay) \\
     121\end{tabular}
     122
     123We thank also the persons who have helped us by useful suggestions, among others : \\
     124S. Bargot, S. Du, S. Plasczczynski, C. Renault and D. Yvon.
     125
    104126\subsection{SOPHYA modules}
    105127\label{sopmodules}
     
    17671789in the HTML pages of the Sophya manual.
    17681790
     1791\subsection{Simplex method}
     1792The class {\bf MinZSimplex} implements the simplex method for non linear
     1793optimization / minimization. See the SOPHYA manual for more information.
     1794
    17691795\subsection{Polynomial}
    17701796\index{Polynomial} \index{Poly} \index{Poly2}
     
    20402066%%%
    20412067\subsection {Spherical maps}
    2042 SkyMap module provides three kinds of complete ($4 \pi$) spherical maps according to the
     2068SkyMap module provides three classes for representing data with pixels distributed over complete ($4 \pi$ steradians) spheres. These classes implements the common interface defined
     2069in the base class \tcls{SphericalMap} with three different algorithms or
    20432070pixelization scheme.
    2044 SphereHEALPix represents spheres pixelized following the HEALPIix algorithm (E. Hivon, K. Gorski)
    2045 \footnote{see the HEALPix Homepage: http://www.eso.org/kgorski/healpix/ }
    2046 , SphereThetaPhi represents spheres pixelized following an algorithm developed at LAL-ORSAY. The example below shows creating and filling of a SphereHEALPix with nside = 8 (it will be 12*8*8= 768 pixels) :
    2047 \index{\tcls{SphereHEALPix}}
     2071The spherical maps can be instanciated for the followind data types: \\
     2072\hspace*{5mm} int\_4 , r\_4 (float) , r\_8 (double) , complex$<$r\_4$>$ , complex$<$r\_8$>$. \\
     2073The SphereHEALPix can in addition be instanciated for T=uint\_2.
     2074
     2075\begin{enumerate}
     2076\item \index{\tcls{SphereHEALPix}}
     2077{\bf \tcls{SphereHEALPix}} implements the HEALPix
     2078({\bf H}ierarchical {\bf E}qual {\bf A}rea iso{\bf L}atitude {\bf Pix}elization) scheme,
     2079developped originaly by K. Gorski \& E. Hivon. Refer to
     2080\href{http://healpix.jpl.nasa.gov/}{HEALPix home page} for
     2081detailed information about this pixelisation scheme and related software
     2082\footnote{HEALPix home page: http://healpix.jpl.nasa.gov/ }.
     2083FITS read/write for SphereHEALPix objects is handled by the \tcls{FITS\_SphereHEALPix}
     2084class in module FitsIOServer.
     2085\item \index{\tcls{SphereThetaPhi}}
     2086{\bf \tcls{SphereThetaPhi}} represents spheres pixelized following an algorithm
     2087developed at LAL-ORSAY, for SOPHYA.
     2088The sphere is divided into a number of rings or slices
     2089along the parallels, corresponding to different values of the angle $\theta$.
     2090Each slice is then divided into a number of pixels, with an aspect ratio close
     2091to one (square pixels). Pixels are exactly iso-latitude and very uniform in surface,
     2092over the sphere.
     2093
     2094\item \index{\tcls{SphereECP}}
     2095
     2096The {\bf \tcls{SphereECP}} class correspond to the cylindrical projection.
     2097Like SphereThetaPhi class, the sphere is divided into a number of rings
     2098or slices, and each ring is divided into a constant number of pixels
     2099along the $\varphi$ direction. Although the \tcls{SphereECP} does not have
     2100equal area pixels when used for complete spheres, it can be used for
     2101representing partial or full spherical maps.
     2102\end{enumerate}
     2103
     2104The example below shows creating and filling of a
     2105SphereHEALPix with nside = 8
     2106(The sphere will have $12 \times 8 \times 8= 768$ pixels) :
    20482107
    20492108\begin{verbatim}
     
    20542113\end{verbatim}
    20552114
    2056 SphereThetaPhi is used in a similar way with an argument representing number of slices in theta (Euler angle) for an hemisphere.
     2115Pixels at an angular posistion can be directly accessed through the operator \\
     2116\hspace*{15mm} T \tcls{SphericalMap}::operator()($\theta, \varphi$) :
     2117\begin{verbatim}
     2118#include "vector3d.h"
     2119#include "spherethetaphi.h"
     2120...
     2121// Create a sphere with 40 arcmin resolution
     2122int M = SphereThetaPhi<r_4>::ResolToSizeIndex(
     2123        Angle(40., Angle::ArcMin).ToRadian() );
     2124SphereThetaPhi<r_4> sphtp(M);
     2125double tet, phi;
     2126for (int k=0; k< sphtp.NbPixels(); k++) {
     2127  sphtp.PixThetaPhi(k, tet, phi);
     2128  sphtp(k) = cos(5.*tet)*sin(7.*phi);
     2129}
     2130cout << sphtp;
     2131// To save sphtp to file sphtp (if executed through runcxx)
     2132KeepObj(sphtp);
     2133\end{verbatim}
     2134
    20572135\index{\tcls{SphereThetaPhi}}
    2058 The SphereECP class correspond to the cylindrical projection and can be used for representing
    2059 partial or full spherical maps. However, it has the disadvantage of having non uniform pixel
    2060 size.
    2061 \index{\tcls{SphereECP}}
    20622136
    20632137\subsection {Local maps}
Note: See TracChangeset for help on using the changeset viewer.