Changeset 3438 in Sophya for trunk/SophyaLib/Manual/sophya.tex
- Timestamp:
- Dec 12, 2007, 10:34:59 PM (18 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/SophyaLib/Manual/sophya.tex
r3419 r3438 43 43 G. Le Meur & lemeur@lal.in2p3.fr \\ 44 44 C. Magneville & cmv@hep.saclay.cea.fr \\ 45 S. Henrot-Versille & versille@in2p3.fr46 45 } 47 46 % \auteursall … … 102 101 %%% 103 102 %%% 103 \subsection{Acknowlegments} 104 Many people have contributed to the development SOPHYA and/or the PI library 105 and (s)piapp interactive analysis tool. 106 we are grateful to the following people: 107 108 \begin{tabular}{lcl} 109 Reza Ansari & \hspace{5mm} & (LAL-Univ.Paris Sud, Orsay) \\ 110 Eric Aubourg & & (DAPNIA-CEA/APC, Saclay) \\ 111 Sophie Henrot-Versille & & (LAL-IN2P3/CNRS, Orsay) \\ 112 Alex Kim & & (LBL, Berkeley) \\ 113 Guy Le Meur & & (LAL-IN2P3/CNRS, Orsay) \\ 114 Eric Lesquoy & & (DAPNIA-CEA, Saclay) \\ 115 Christophe Magneville & & (DAPNIA-CEA, Saclay) \\ 116 Bruno Mansoux & & (LAL-IN2P3/CNRS, Orsay) \\ 117 Olivier Perdereau & & (LAL-IN2P3/CNRS, Orsay) \\ 118 Nicolas Regnault & & (LPNHE-IN2P3/CNRS, Paris) \\ 119 Benoit Revenu & & (APC/Univ.Paris 7, Paris) \\ 120 Francois Touze & & (LAL-IN2P3/CNRS, Orsay) \\ 121 \end{tabular} 122 123 We thank also the persons who have helped us by useful suggestions, among others : \\ 124 S. Bargot, S. Du, S. Plasczczynski, C. Renault and D. Yvon. 125 104 126 \subsection{SOPHYA modules} 105 127 \label{sopmodules} … … 1767 1789 in the HTML pages of the Sophya manual. 1768 1790 1791 \subsection{Simplex method} 1792 The class {\bf MinZSimplex} implements the simplex method for non linear 1793 optimization / minimization. See the SOPHYA manual for more information. 1794 1769 1795 \subsection{Polynomial} 1770 1796 \index{Polynomial} \index{Poly} \index{Poly2} … … 2040 2066 %%% 2041 2067 \subsection {Spherical maps} 2042 SkyMap module provides three kinds of complete ($4 \pi$) spherical maps according to the 2068 SkyMap module provides three classes for representing data with pixels distributed over complete ($4 \pi$ steradians) spheres. These classes implements the common interface defined 2069 in the base class \tcls{SphericalMap} with three different algorithms or 2043 2070 pixelization scheme. 2044 SphereHEALPix represents spheres pixelized following the HEALPIix algorithm (E. Hivon, K. Gorski) 2045 \footnote{see the HEALPix Homepage: http://www.eso.org/kgorski/healpix/ } 2046 , SphereThetaPhi represents spheres pixelized following an algorithm developed at LAL-ORSAY. The example below shows creating and filling of a SphereHEALPix with nside = 8 (it will be 12*8*8= 768 pixels) : 2047 \index{\tcls{SphereHEALPix}} 2071 The spherical maps can be instanciated for the followind data types: \\ 2072 \hspace*{5mm} int\_4 , r\_4 (float) , r\_8 (double) , complex$<$r\_4$>$ , complex$<$r\_8$>$. \\ 2073 The SphereHEALPix can in addition be instanciated for T=uint\_2. 2074 2075 \begin{enumerate} 2076 \item \index{\tcls{SphereHEALPix}} 2077 {\bf \tcls{SphereHEALPix}} implements the HEALPix 2078 ({\bf H}ierarchical {\bf E}qual {\bf A}rea iso{\bf L}atitude {\bf Pix}elization) scheme, 2079 developped originaly by K. Gorski \& E. Hivon. Refer to 2080 \href{http://healpix.jpl.nasa.gov/}{HEALPix home page} for 2081 detailed information about this pixelisation scheme and related software 2082 \footnote{HEALPix home page: http://healpix.jpl.nasa.gov/ }. 2083 FITS read/write for SphereHEALPix objects is handled by the \tcls{FITS\_SphereHEALPix} 2084 class in module FitsIOServer. 2085 \item \index{\tcls{SphereThetaPhi}} 2086 {\bf \tcls{SphereThetaPhi}} represents spheres pixelized following an algorithm 2087 developed at LAL-ORSAY, for SOPHYA. 2088 The sphere is divided into a number of rings or slices 2089 along the parallels, corresponding to different values of the angle $\theta$. 2090 Each slice is then divided into a number of pixels, with an aspect ratio close 2091 to one (square pixels). Pixels are exactly iso-latitude and very uniform in surface, 2092 over the sphere. 2093 2094 \item \index{\tcls{SphereECP}} 2095 2096 The {\bf \tcls{SphereECP}} class correspond to the cylindrical projection. 2097 Like SphereThetaPhi class, the sphere is divided into a number of rings 2098 or slices, and each ring is divided into a constant number of pixels 2099 along the $\varphi$ direction. Although the \tcls{SphereECP} does not have 2100 equal area pixels when used for complete spheres, it can be used for 2101 representing partial or full spherical maps. 2102 \end{enumerate} 2103 2104 The example below shows creating and filling of a 2105 SphereHEALPix with nside = 8 2106 (The sphere will have $12 \times 8 \times 8= 768$ pixels) : 2048 2107 2049 2108 \begin{verbatim} … … 2054 2113 \end{verbatim} 2055 2114 2056 SphereThetaPhi is used in a similar way with an argument representing number of slices in theta (Euler angle) for an hemisphere. 2115 Pixels at an angular posistion can be directly accessed through the operator \\ 2116 \hspace*{15mm} T \tcls{SphericalMap}::operator()($\theta, \varphi$) : 2117 \begin{verbatim} 2118 #include "vector3d.h" 2119 #include "spherethetaphi.h" 2120 ... 2121 // Create a sphere with 40 arcmin resolution 2122 int M = SphereThetaPhi<r_4>::ResolToSizeIndex( 2123 Angle(40., Angle::ArcMin).ToRadian() ); 2124 SphereThetaPhi<r_4> sphtp(M); 2125 double tet, phi; 2126 for (int k=0; k< sphtp.NbPixels(); k++) { 2127 sphtp.PixThetaPhi(k, tet, phi); 2128 sphtp(k) = cos(5.*tet)*sin(7.*phi); 2129 } 2130 cout << sphtp; 2131 // To save sphtp to file sphtp (if executed through runcxx) 2132 KeepObj(sphtp); 2133 \end{verbatim} 2134 2057 2135 \index{\tcls{SphereThetaPhi}} 2058 The SphereECP class correspond to the cylindrical projection and can be used for representing2059 partial or full spherical maps. However, it has the disadvantage of having non uniform pixel2060 size.2061 \index{\tcls{SphereECP}}2062 2136 2063 2137 \subsection {Local maps}
Note:
See TracChangeset
for help on using the changeset viewer.