Changeset 4014 in Sophya for trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
- Timestamp:
- Aug 5, 2011, 7:40:16 PM (14 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
r4013 r4014 12 12 %----------------------------------------------------------------------- 13 13 % 14 % \documentclass[referee]{aa} % for a referee version14 % \documentclass[referee]{aa} % for a referee version 15 15 %\documentclass[onecolumn]{aa} % for a paper on 1 column 16 16 %\documentclass[longauth]{aa} % for the long lists of affiliations … … 29 29 30 30 %% Commande pour les references 31 \newcommand{\citep}[1]{ (\cite{#1})}31 \newcommand{\citep}[1]{(\cite{#1})} 32 32 %% \newcommand{\citep}[1]{ { (\tt{#1}) } } 33 33 … … 58 58 59 59 %% Definition fonction de transfer 60 \newcommand{\TrF}{\math rm{Tr}}60 \newcommand{\TrF}{\mathbf{T}} 61 61 62 62 … … 117 117 } 118 118 119 \date{Received July 15, 2011; accepted xxxx, 2011}119 \date{Received August 5, 2011; accepted xxxx, 2011} 120 120 121 121 % \abstract{}{}{}{}{} … … 146 146 competitive with optical surveys. } 147 147 148 \keywords{ Cosmology:LSS--149 Cosmology:Dark energy -- Radio interferometer -- 21 cm150 }148 \keywords{ large-scale structure of Universe -- 149 dark energy -- Instrumentation: interferometers -- 150 Radio lines; galaxies -- Radio continuum: general } 151 151 152 152 \maketitle … … 165 165 (\HI) as a tracer with intensity mapping, has been proposed in recent years \citep{peterson.06} \citep{chang.08}. 166 166 Mapping the matter distribution using HI 21 cm emission as a tracer has been extensively discussed in literature 167 \citep{furlanetto.06} \citep{tegmark.0 8} and is being used in projects such as LOFAR \citep{rottgering.06} or167 \citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or 168 168 MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10. 169 169 … … 187 187 length of $\sim 150 \mathrm{Mpc}$. 188 188 These features have been first observed in the CMB anisotropies 189 and are usually referred to as {\em acoustic peaks} \citep{mauskopf.00} \citep{hinshaw.08}.189 and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}). 190 190 The BAO modulation has been subsequently observed in the distribution of galaxies 191 191 at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS … … 201 201 a very promising technique to map matter distribution up to redshift $z \sim 3$, 202 202 complementary to optical surveys, especially in the optical redshift desert range 203 $1 \lesssim z \lesssim 2$ .203 $1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}. 204 204 205 205 In section 2, we discuss the intensity mapping and its potential for measurement of the … … 245 245 246 246 Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been 247 discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science} ),247 discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}), 248 248 the method envisaged has been mostly through the detection of galaxies as \HI compact sources. 249 249 However, extremely large radio telescopes are required to detected \HI sources at cosmological distances. … … 341 341 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z) 342 342 \end{equation} 343 where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{ lang.99} is the spontaneous 21 cm emission343 where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission 344 344 coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann 345 345 constant and $H(z)$ is the Hubble parameter at the emission redshift. … … 371 371 fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05}, 372 372 compared to its present day value $\gHI(z=1.5) \sim 0.025$. 373 The 21 cm brightness temperature and the corresponding power spectrum can be written as \citep{wyithe.07} : 373 The 21 cm brightness temperature and the corresponding power spectrum can be written as 374 (\cite{barkana.07} and \cite{madau.97}) : 374 375 \begin{eqnarray} 375 376 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\ … … 443 444 & & 444 445 I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\ 445 & & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '} I(\vec{\Theta},\lambda)446 & & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '} 446 447 \end{eqnarray} 447 448 A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and … … 827 828 brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$ 828 829 and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of 829 $90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky toin order to minimize830 $90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize 830 831 the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution) 831 832 used in the simulations are given in the table \ref{skycubechars}. … … 881 882 The synchrotron contribution to the sky temperature for each cell is then 882 883 obtained through the formula: 883 $$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 MHz}\right)^\beta $$884 $$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta $$ 884 885 %% 885 886 \item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed … … 890 891 map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the 891 892 contribution of the radiosources to the sky temperature is computed as follows: 892 $$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 MHz}\right)^{\beta_{src}} $$893 $$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}} $$ 893 894 %% 894 895 \item The sky brightness temperature data cube is obtained through the sum of … … 905 906 of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of 906 907 \citep{eisenhu.98}. We have used the standard cosmological parameters, 907 $H_0=71 \ mathrm{km/s/Mpc}$, $\Omega_m=0.27$, $\Omega_b=0.044$,908 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.27$, $\Omega_b=0.044$, 908 909 $\Omega_\lambda=0.73$ and $w=-1$. 909 An inverse FFT was then performed to compute the matter density fluctuations 910 An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$ 910 911 in the linear regime, 911 $\delta \rho / \rho$in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved912 in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved 912 913 to redshift $z=0.6$. 913 914 The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and … … 1041 1042 The LSS signal extraction depends indeed on the white noise level. 1042 1043 The results shown here correspond to the (a) instrument configuration, a packed array of 1043 $11 \times 11 = 121$ 5 meter diameter dishes, with a white noise level corresponding1044 $11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding 1044 1045 to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz 1045 1046 cell. … … 1268 1269 1269 1270 In order to estimate the precision with which BAO peak positions can be 1270 measured, we used a method similar to the one established in \citep{blake.03}. 1271 measured, we used a method similar to the one established in 1272 \citep{blake.03} and \citep{glazebrook.05}. 1271 1273 1272 1274 … … 1579 1581 to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that 1580 1582 a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam 1581 focal plane array with a $\sim 100\, \mathrm{meter}$ primary reflector will have the required sensitivity to measure1583 focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure 1582 1584 the 21 cm power spectrum. A method to compute the instrument response for interferometers 1583 1585 has been developed and we have computed the noise power spectrum for various telescope configurations. … … 1603 1605 1604 1606 %%% 1607 %% reference SKA - BAO / DE en radio avec les sources 1608 \bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27 1609 1610 \bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591 1611 1605 1612 \bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich, 1606 1613 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614 1607 1614 1608 %%%% References extraites de la section fournie par C. Yeche 1609 \bibitem[Abdala \& Rawlings(2005)]{SKA} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27 1610 1611 \bibitem[Albrecht et al.(2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591 1612 1613 \bibitem[Barkana \& Loeb(2007)]{h1temp} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70 627 1614 1615 \bibitem[Binney \& Merrifield(1998)]{binneymerrifield} Binney, J. \& Merrifield, M. 1998, Galactic Astronomy. 1616 (Princeton Univ. Press, Princeton) 1617 1618 \bibitem[Blake and Glazebrook(2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665; 1619 Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1 1615 %% Temperature HI 21 cm (Valeur pour la reionisation) 1616 \bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627 1617 1618 %% Methode de generation/fit k_bao (Section 5 - C. Yeche) 1619 \bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665 1620 \bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1 1620 1621 1621 1622 % WiggleZ BAO observation 1622 \bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras (arXiv/1105.2862)1623 \bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, (accepted, arXiv/1105.2862) 1623 1624 1624 1625 % Galactic astronomy, emission HI d'une galaxie … … 1654 1655 % Haslam 400 MHz synchrotron map 1655 1656 \bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982, 1656 Astron. \& Astrophys. Supp. Vol 47, {\tt (http://lambda.gsfc.nasa.gov/product/foreground/haslam\_408.cfm)} 1657 1658 % WMAP CMB anisotropies 2008 1659 \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732) 1657 Astron. \& Astrophys. Supp. Vol 47, \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)} 1658 1660 1659 1661 1660 % Distribution des radio sources 1662 \bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 11871661 \bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187 1663 1662 1664 1663 % HI mass in galaxies 1665 \bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras 1666 ( astro-ph/0907.1416)1664 \bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras, 399, 1447 1665 % ( astro-ph/0907.1416) 1667 1666 1668 1667 % Livre Astrophysical Formulae de Lang 1669 \bibitem[Lang (1999)]{radastron} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999 1668 \bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999 1669 1670 % WMAP CMB 7 years power spectrum 2011 1671 % \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732) 1672 \bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16 1670 1673 1671 1674 % LSST Science book … … 1673 1676 {\it LSST Science book}, LSST Science Collaborations, 2009, arXiv:0912.0201 1674 1677 1678 % Temperature du 21 cm 1679 \bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429 1680 1675 1681 % Foret Ly alpha - 1 1676 1682 \bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80 … … 1689 1695 \mnras, 388, 247-260 1690 1696 1691 % Original CRT HSHS paper 1692 \bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv: astro-ph/06061041697 % Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings) 1698 \bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104 1693 1699 1694 1700 % SDSS BAO 2007 … … 1696 1702 1697 1703 % SDSS BAO 2010 - arXiv:0907.1660 1698 \bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras 401, 2148-21681704 \bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168 1699 1705 1700 1706 %% LOFAR description 1701 \bibitem[Rottering et a ,. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/06105961707 \bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596 1702 1708 %%%% 1703 1709 … … 1716 1722 1717 1723 % FFT telescope 1718 \bibitem[Tegmark \& Zaldarriaga (200 8)]{tegmark.08} Tegmark, M. \& Zaldarriaga, M. 2008,arXiv:0802.17101724 \bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710 1719 1725 1720 1726 % Thomson-Morane livre interferometry … … 1725 1731 \bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861 1726 1732 1727 % 21 cm temperature1728 \bibitem[Wyithe et al.(200 7)]{wyithe.07} Wyithe, S., Loeb, A. \& Geil, P. 2007 http://fr.arxiv.org/abs/0709.2955, submitted to \mnras1733 % BAO à 21 cm et reionisation 1734 \bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955, 1729 1735 1730 1736 %% Today HI cosmological density
Note:
See TracChangeset
for help on using the changeset viewer.