- Timestamp:
- Oct 26, 2011, 7:42:21 PM (14 years ago)
- Location:
- trunk/Cosmo/RadioBeam
- Files:
-
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Cosmo/RadioBeam/mdish.cc
r3991 r4030 48 48 } 49 49 } 50 // Return a vector representing the power spectrum (for checking)50 // Return a 2 D histrogram as the response(kx,ky) 51 51 Histo2D Four2DResponse::GetResponse(int nx, int ny) 52 52 { … … 61 61 h2.BinCenter(i,j,xbc,ybc); 62 62 h2(i,j) = Value(xbc,ybc); 63 } 64 return h2; 65 } 66 67 // Return a 2 D histrogram as the response(u=kx/2 pi, v=ky/2 pi) 68 Histo2D Four2DResponse::GetResponseUV(int nx, int ny) 69 { 70 double kxmx = 1.2*dx_; 71 double kymx = 1.2*dy_; 72 if (typ_<3) kymx=kxmx; 73 Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny); 74 75 double xbc,ybc; 76 for(int_4 j=0; j<h2.NBinY(); j++) 77 for(int_4 i=0; i<h2.NBinX(); i++) { 78 h2.BinCenter(i,j,xbc,ybc); 79 h2(i,j) = Value(xbc*DeuxPI,ybc*DeuxPI); 63 80 } 64 81 return h2; -
trunk/Cosmo/RadioBeam/mdish.h
r3991 r4030 50 50 inline double operator()(double kx, double ky) 51 51 { return Value(kx, ky); } 52 // Retourne l'histo de reponse en fonction de k_x,k_y 52 53 virtual Histo2D GetResponse(int nx=255, int ny=255); 54 // Retourne l'histo de reponse en fonction de u=k_x/2 pi, v=k_y/2 pi 55 virtual Histo2D GetResponseUV(int nx=255, int ny=255); 56 53 57 // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2) 54 58 HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true); -
trunk/Cosmo/RadioBeam/pknoise.cc
r4028 r4030 50 50 << " -cszmpc sx,sy,sz : 3D real space box cell size in Mpc (default=3x3x1.5) \n" 51 51 << " -z redshift : redshift (default=1.0) \n" 52 << " -pnf : Apply frequency dependent noise factor=ComovDa^2*(1+z)^2/Hz (default= NON) \n" 52 53 << " -scut SCutValue (default= -100.) \n" 53 54 << " if SCutValue<0. ==> SCut=MinNoisePower*(-SCutValue) \n" … … 91 92 int box3dsz[3]={512,512,256}; 92 93 double cellsz[3]={3.,3.,3.}; 94 bool fgnoisefreq=false; 93 95 int NBINPK=256; 94 96 int prtlev=0; … … 122 124 else if (strcmp(arg[ka],"-nbin")==0) { 123 125 NBINPK=atoi(arg[ka+1]); ka+=2; 126 } 127 else if (strcmp(arg[ka],"-pnf")==0) { 128 fgnoisefreq=true; ka++; 124 129 } 125 130 else if (strcmp(arg[ka],"-prt")==0) { … … 191 196 << " DoL=" << DIAMETRE/lambda << " ) " << endl; 192 197 Histo2D h2drep = arep_p->GetResponse(); 198 Histo2D h2drepuv = arep_p->GetResponseUV(); 193 199 double repmax= h2drep.VMax(); 194 200 if (fgautoscut) { … … 210 216 double angscale=1.; 211 217 Vector angscales(box3dsz[2]); 218 double pnoise0=comov_dA_z*comov_dA_z*(1.+z_Redshift)*(1.+z_Redshift)/H_z; 219 Vector pnoisevec(box3dsz[2]); 220 pnoisevec=1.; 212 221 angscales=angscale; 213 222 if (NMAX<0) { box3dsz[0]=256; box3dsz[1]=256; box3dsz[2]=128; } … … 222 231 cout << " pknoise[2.c]: Freq0=" << freq0 << " dFreq=" << dfreq << " freq(z=" << z_Redshift << ")=" 223 232 << conv.getFrequency() << " zmin=" << 1420.4/freq0-1. << " zmax=" << 1420.4/(freq0+box3dsz[2]*dfreq)-1. << endl; 224 cout << " pknoise[2.d]: Four3DPk m3d(rg," << box3dsz[0]/2 << "," << box3dsz[1] << "," 233 if(fgnoisefreq) { 234 for(int kz=0; kz<box3dsz[2]; kz++) { 235 double zreds=1420.4/(freq0+(double)kz*dfreq)-1.; 236 double comda=redshift2da(zreds); 237 pnoisevec(kz)=comda*comda*(1.+zreds)*(1.+zreds)/redshift2hz(zreds)/pnoise0; 238 } 239 cout << " pknoise[2.d]: PnoiseFactor:" << pnoisevec(0) << " ... " << pnoisevec(pnoisevec.Size()-1) << endl; 240 } 241 cout << " pknoise[2.e]: Four3DPk m3d(rg," << box3dsz[0]/2 << "," << box3dsz[1] << "," 225 242 << box3dsz[2] << ")" << endl; 226 243 Four3DPk m3d(rg,box3dsz[0]/2,box3dsz[1],box3dsz[2]); 227 cout << " pknoise[2. d]: m3d.SetCellSize(" << dkxmpc << "," << dkympc << "," << dkzmpc244 cout << " pknoise[2.f]: m3d.SetCellSize(" << dkxmpc << "," << dkympc << "," << dkzmpc 228 245 << ") cell size (Mpc) : " << cellsz[0] << "x" << cellsz[1] << "x" << cellsz[2] << endl; 229 246 m3d.SetCellSize(dkxmpc, dkympc, dkzmpc); … … 235 252 pkn.SetFreqRange(freq0, dfreq); 236 253 pkn.SetAngScaleConversion(angscales); 254 pkn.SetPNoiseFactor(pnoisevec); 237 255 pkn.SetPrtLevel(prtlev,prtmod); 238 256 HProf hpn = pkn.Compute(NBINPK); … … 255 273 po << PPFNameTag("h1drep") << h1drep; 256 274 po << PPFNameTag("h2drep") << h2drep; 257 275 po << PPFNameTag("h2drepuv") << h2drepuv; 276 258 277 rc = 0; 259 278 } // End of try bloc -
trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
r4022 r4030 59 59 %% Definition fonction de transfer 60 60 \newcommand{\TrF}{\mathbf{T}} 61 61 %% Definition (u,v) , ... 62 \def\uv{\mathrm{u,v}} 63 \def\uvu{\mathrm{u}} 64 \def\uvv{\mathrm{v}} 65 \def\dudv{\mathrm{d u d v}} 66 67 % Commande pour marquer les changements du papiers pour le referee 68 \def\changemark{\bf } 62 69 63 70 %%% Definition pour la section sur les param DE par C.Y … … 257 264 temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz. 258 265 The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity 259 dispersion of few 100 km/s. These detection limits should be compared with the expected 21 cm brightness 266 dispersion of few 100 km/s. 267 These detection limits should be compared with the expected 21 cm brightness 260 268 $S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) : 261 269 \begin{equation} … … 264 272 \end{equation} 265 273 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$ 266 is the source velocity dispersion. 274 is the source velocity dispersion. 275 {\changemark The 1 MHz bandwidth mentioned above is only used for computing the 276 galaxy detection thresholds and does not determine the total survey bandwidth or frequency resolution 277 of an intensity mapping survey.} 267 278 % {\color{red} Faut-il developper le calcul en annexe ? } 268 279 … … 270 281 compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of 271 282 $200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard 272 WMAP \LCDM universe . $10^9 - 10^{10} M_\odot$ of neutral gas mass283 WMAP \LCDM universe \citep{komatsu.11}. $10^9 - 10^{10} M_\odot$ of neutral gas mass 273 284 is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances 274 285 would require collecting area in the range of $10^6 \mathrm{m^2}$. … … 334 345 335 346 \subsection{ \HI power spectrum and BAO} 336 In the absence of any foreground or background radiation, the brightness temperature 337 for a given direction and wavelength $\TTlam$ would be proportional to 347 In the absence of any foreground or background radiation 348 {\changemark and assuming high spin temperature $\kb T_{spin} \gg h \nu_{21}$}, 349 the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to 338 350 the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation: 339 351 \begin{equation} … … 394 406 \end{equation} 395 407 where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance. 408 { \changemark The matter power spectrum $P(k)$ has been measured using 409 galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$ 410 (\cite{cole.05}, \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$ 411 shown here are comparable to one from the galaxy surveys, once the mean 21 cm 412 temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$ and redshift evolution 413 have been accounted for. } 396 414 % It should be noted that the maximum transverse $k^{comov} $ sensitivity range 397 415 % for an instrument corresponds approximately to half of its angular resolution. … … 474 492 the common receivers axis, the visibilty would be written as the 2D Fourier transform 475 493 of the product of the sky intensity and the receiver beam, for the angular frequency 476 \mbox{$( u,v)_{12} = 2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:494 \mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}: 477 495 \begin{equation} 478 496 \vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta) … … 483 501 two $(\alpha, \beta)$ angular planes. 484 502 485 Furthermore, we introduce the conjugate Fourier variables $( u,v)$ and the Fourier transforms503 Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms 486 504 of the sky intensity and the receiver beam: 487 505 \begin{center} 488 506 \begin{tabular}{ccc} 489 $(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $( u,v)$ \\490 $I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}( u,v, \lambda)$ \\491 $L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}( u,v, \lambda)$ \\507 $(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\ 508 $I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\ 509 $L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \\ 492 510 \end{tabular} 493 511 \end{center} … … 495 513 The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular 496 514 wave number domain located around 497 $( u,v)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is515 $(\uv)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is 498 516 given by the receiver beam Fourier transform. 499 517 \begin{equation} 500 \vis(\lambda) \simeq \iint d u d v \, \, {\cal I}(u,v, \lambda) \, {\cal L}(u - 2 \pi \frac{\Delta x}{\lambda} , v - 2 \pi\frac{\Delta y}{\lambda} , \lambda)518 \vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda) 501 519 \end{equation} 502 520 503 521 A single receiver instrument would measure the total power integrated in a spot centered around the 504 origin in the $( u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver522 origin in the $(\uv)$ or the angular wave mode plane. The shape of the spot depends on the receiver 505 523 beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical 506 524 size. 507 525 508 526 The correlation signal from a pair of receivers would measure the integrated signal on a similar 509 spot, located around the central angular wave mode $( u,v)_{12}$ determined by the relative527 spot, located around the central angular wave mode $(\uv)_{12}$ determined by the relative 510 528 position of the two receivers (see figure \ref{figuvplane}). 511 529 In an interferometer with multiple receivers, the area covered by different receiver pairs in the 512 $( u,v)$ plane might overlap and some pairs might measure the same area (same base lines).530 $(\uv)$ plane might overlap and some pairs might measure the same area (same base lines). 513 531 Several beams can be formed using different combination of the correlations from a set of 514 532 antenna pairs. 515 533 516 An instrument can thus be characterized by its $( u,v)$ plane coverage or response517 ${\cal R}( u,v,\lambda)$. For a single dish with a single receiver in the focal plane,534 An instrument can thus be characterized by its $(\uv)$ plane coverage or response 535 ${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane, 518 536 the instrument response is simply the Fourier transform of the beam. 519 537 For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or 520 538 a multi-horn system, each beam (b) will have its own response 521 ${\cal R}_b( u,v,\lambda)$.539 ${\cal R}_b(\uv,\lambda)$. 522 540 For an interferometer, we can compute a raw instrument response 523 ${\cal R}_{raw}( u,v,\lambda)$ which corresponds to $(u,v)$ plane coverage by all541 ${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(u,v)$ plane coverage by all 524 542 receiver pairs with uniform weighting. 525 543 Obviously, different weighting schemes can be used, changing 526 the effective beam shape and thus the response ${\cal R}_{w}( u,v,\lambda)$544 the effective beam shape and thus the response ${\cal R}_{w}(\uv,\lambda)$ 527 545 and the noise behaviour. If the same Fourier angular frequency mode is measured 528 546 by several receiver pairs, the raw instrument response might then be larger 529 547 that unity. This non normalized instrument response is used to compute the projected 530 548 noise power spectrum in the following section (\ref{instrumnoise}). 531 We can also define a normalized instrument response, ${\cal R}_{norm}( u,v,\lambda) \lesssim 1$ as:532 \begin{equation} 533 {\cal R}_{norm}( u,v,\lambda) = {\cal R}(u,v,\lambda) / \mathrm{Max_{(u,v)}} \left[ {\cal R}(u,v,\lambda) \right]549 We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as: 550 \begin{equation} 551 {\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right] 534 552 \end{equation} 535 553 This normalized instrument response can be used to compute the effective instrument beam, 536 554 in particular in section \ref{recsec}. 555 556 {\changemark Detection of the reionisation at 21 cm band has been an active field 557 in the last decade and several groups 558 (\cite{rottgering.06}, \cite{bowman.07}, \cite{lonsdale.09}, \cite{parsons.09}) have built 559 instruments to detect reionisation signal around 100 MHz. 560 Several authors have studied the instrumental noise 561 and statistical uncertainties when measuring the reionisation signal power spectrum; 562 the methods presented here to compute the instrument response 563 and sensitivities are similar to the ones developed in these publications 564 (\cite{morales.04}, \cite{bowman.06}, \cite{mcquinn.06}). } 537 565 538 566 \begin{figure} … … 543 571 } 544 572 \vspace*{-15mm} 545 \caption{Schematic view of the $( u,v)$ plane coverage by interferometric measurement.}573 \caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.} 546 574 \label{figuvplane} 547 575 \end{figure} 548 576 549 \subsection{Noise power spectrum }577 \subsection{Noise power spectrum computation} 550 578 \label{instrumnoise} 551 579 Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency … … 555 583 corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated 556 584 noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement 557 corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies $\ frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$), corresponding to a visibility585 corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies $\delta \uvu \times \uvv$), corresponding to a visibility 558 586 measurement from a pair of receivers can be written as: 559 587 \begin{eqnarray} … … 565 593 566 594 The sky temperature measurement can thus be characterized by the noise spectral power density in 567 the angular frequencies plane $P_{noise}^{( u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$568 per unit area of angular frequencies $\ frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:595 the angular frequencies plane $P_{noise}^{(\uv)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$ 596 per unit area of angular frequencies $\delta \uvu \times \delta \uvv$: 569 597 We can characterize the sky temperature measurement with a radio instrument by the noise 570 spectral power density in the angular frequencies plane $P_{noise}( u,v)$ in units of $\mathrm{Kelvin^2}$571 per unit area of angular frequencies $\ frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$.598 spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$ 599 per unit area of angular frequencies $\delta \uvu \times \delta \uvv$. 572 600 For an interferometer made of identical receiver elements, several ($n$) receiver pairs 573 might have the same baseline. The noise power density in the corresponding $( u,v)$ plane area601 might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area 574 602 is then reduced by a factor $1/n$. More generally, we can write the instrument noise 575 603 spectral power density using the instrument response defined in section \ref{instrumresp} : 576 604 \begin{equation} 577 P_{noise}(u,v) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(u,v,\lambda) } 605 P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) } 606 \label{eq:pnoiseuv} 578 607 \end{equation} 579 608 … … 581 610 $P(k)$ is computed, angles are translated into comoving transverse distances, 582 611 and frequencies or wavelengths into comoving radial distance, using the following relations: 612 { \changemark 583 613 \begin{eqnarray} 584 \delta \alpha , \beta & \rightarrow & \delta \ell_\perp = (1+z) \, \dang(z) \, \delta \alpha,\beta \\ 614 \alpha , \beta & \rightarrow & \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \, \alpha,\beta \\ 615 \uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\ 585 616 \delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu} 586 617 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\ 587 \delta u , \delta v & \rightarrow & \delta k_\perp = \frac{ \delta u \, , \, \deltav }{ (1+z) \, \dang(z) } \\588 \frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}618 % \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\ 619 \frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = 2 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu} 589 620 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu} 590 621 \end{eqnarray} 591 592 If we consider a uniform noise spectral density in the $(u,v)$ plane corresponding to the 622 } 623 { \changemark 624 A brightness measurement at a point $(\uv,\lambda)$, covering 625 the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond 626 to cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$ 627 defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency. 628 The measurement noise spectral density given by the equation \ref{eq:pnoisepairD} can then be 629 translated into a 3D noise power spectrum, per unit of spatial frequencies 630 $ \frac{\delta k_x \times \delta k_y \times \delta k_z}{8 \pi^3} $ (units: $ \mathrm{K^2 \times Mpc^3}$) : 631 632 \begin{eqnarray} 633 (\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\ 634 P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv) 635 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\ 636 P_{noise}(k_x,k_y, z) & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right) 637 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 638 \label{eq:pnoisekxkz} 639 \end{eqnarray} 640 641 It is worthwhile to notice that the cosmological 3D noise power spectrum does not depend anymore on the 642 individual measurement bandwidth. 643 In the following paragraph, we will first consider an ideal instrument 644 with uniform $(\uv)$ coverage 645 in order to establish the general noise power spectrum behaviour for cosmological 21 cm surveys. 646 The numerical method used to compute the 3D noise power spectrum is then presented in section 647 \ref{pnoisemeth}. 648 } 649 650 \subsubsection{Uniform $(\uv)$ coverage} 651 652 If we consider a uniform noise spectral density in the $(\uv)$ plane corresponding to the 593 653 equation \ref{eq:pnoisepairD} above, the three dimensional projected noise spectral density 594 654 can then be written as: … … 644 704 645 705 For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$, 646 observations provide information up to $u_{max},v_{max} \lesssim 2 \pi D / \lambda $. This value of 647 $u_{max},v_{max}$ would be mapped to a maximum transverse cosmological wave number 648 $k^{\perp}_{max}$: 649 \begin{equation} 650 k^{\perp} = \frac{(u,v)}{(1+z) \dang} \hspace{8mm} 651 k^{\perp}_{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}} 706 observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of 707 $\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number 708 $k_{\perp}^{max}$: 709 \begin{equation} 710 k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}} 652 711 \label{kperpmax} 653 712 \end{equation} … … 657 716 beams and a system noise temperature $\Tsys = 50 \mathrm{K}$. 658 717 The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one 659 year. The maximum comoving wave number $k _{max}$ is also shown as a function718 year. The maximum comoving wave number $k^{max}$ is also shown as a function 660 719 of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order 661 720 to take into account the radial component of $\vec{k}$ and the increase of 662 the instrument noise level with $k ^{\perp}$, we have taken the effective $k_{ max}$663 as half of the maximum transverse $k ^{\perp} _{max}$ of \mbox{eq. \ref{kperpmax}}:721 the instrument noise level with $k_{\perp}$, we have taken the effective $k_{ max} $ 722 as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{eq. \ref{kperpmax}}: 664 723 \begin{equation} 665 724 k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}} … … 678 737 \label{pnkmaxfz} 679 738 \end{figure} 680 739 740 \subsubsection{3D noise power spectrum computation} 741 \label{pnoisemeth} 742 { \changemark 743 We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument 744 response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare 745 sensitivities for different instrument configurations, albeit the noise realization for a real instrument would not be 746 isotropic. 747 \begin{itemize} 748 \item We start by a 3D Fourier coefficient grid, with the two first coordinates being the transverse angular wave modes, 749 and the third being the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which 750 we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise}, 751 the grid cell size and dimensions have been chosen to represent a box in the universe 752 \mbox{$\sim 1500 \times 1500 \times 750 \mathrm{Mpc^3}$}, 753 with $3\times3\times3 \mathrm{Mpc^3}$ cells. 754 This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given 755 the small angular extent, we have neglected the curvature of redshift shells. 756 \item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization. $(k_x,k_y)$ is 757 converted to the $\uv$ coordinates using the equation \ref{eq:uvkxky}, and the 758 angular diameter distance $\dang(z)$ for \LCDM model with WMAP parameters. 759 The noise variance is taken proportional to $P_{noise}$ : 760 \begin{equation} 761 \sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 762 \end{equation} 763 \item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier 764 complex coefficients $n(k_x,k_y,k_z)$ and the power spectrum is estimated as : 765 \begin{equation} 766 \tilde{P}_{noise}(k) = < | n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm} 767 \sqrt{k_x^2+k_y^2+k_z^2} = k 768 \end{equation} 769 Noise samples corresponding to small instrument response, typically less than 1\% of the 770 maximum instrument response are ignored when calculating $\tilde{P}_{noise}(k)$. 771 However, we require to have a significant fraction, typically 20\% to 50\% of the possible modes 772 $(k_x,k_y,k_z)$ measured for a given $k$ value. 773 \item the above steps are repeated a number of time to decrease the statistical fluctuations 774 due to the random generations. The averaged computed noise power spectrum is normalized using 775 equation \ref{eq:pnoisekxkz} and the instrument and survey parameters ($\Tsys \ldots$). 776 \end{itemize} 777 778 It should be noted that it is possible to obtain a good approximation of noise 779 power spectrum shape, neglecting the redshift or frequency dependence of the 780 instrument response function and $\dang(z)$ for a small redshift interval around $z_0$, 781 using a fixed instrument response ${\cal R}(u,v,\lambda(z_0))$ and 782 a constant the radial distance $\dang(z_0)*(1+z_0)$. 783 \begin{equation} 784 \tilde{P}_{noise}(k) = < | n(k_x,k_y,k_z) |^2 > \simeq < P_{noise}(u,v) , k_z > 785 \end{equation} 786 The approximate power spectrum obtain through this simplified and much faster 787 method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument 788 configurations. 789 } 681 790 682 791 \subsection{Instrument configurations and noise power spectrum} 683 792 \label{instrumnoise} 684 We have numerically computed the instrument response ${\cal R}( u,v,\lambda)$685 with uniform weights in the $( u,v)$ plane for several instrument configurations:793 We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$ 794 with uniform weights in the $(\uv)$ plane for several instrument configurations: 686 795 \begin{itemize} 687 796 \item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in … … 734 843 \end{figure} 735 844 736 We have used simple triangular shaped dish response in the $( u,v)$ plane.845 We have used simple triangular shaped dish response in the $(\uv)$ plane. 737 846 However, we have introduced a filling factor or illumination efficiency 738 847 $\eta$, relating the effective dish diameter $D_{ill}$ to the … … 740 849 as $\eta^2$ or $\eta_x \eta_y$. 741 850 \begin{eqnarray} 742 {\cal L}_\circ ( u,v,\lambda) & = & \bigwedge_{[\pm 2 \piD^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\851 {\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm D^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\ 743 852 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2 744 853 \hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2} … … 751 860 rectangular shaped antenna. The illumination efficiency factor has been taken 752 861 equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$ 753 along the cylinder length. It should be noted that the small angle approximation 862 along the cylinder length. {\changemark We have used double triangular shaped 863 response function in the $(\uv)$ for each of the receiver elements along the cylinder: 864 \begin{equation} 865 {\cal L}_\Box(\uv,\lambda) = 866 \bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times 867 \bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv ) 868 \end{equation} 869 } 870 It should be noted that the small angle approximation 754 871 used here for the expression of visibilities is not valid for the receivers along 755 872 the cylinder axis. However, some preliminary numerical checks indicate that … … 758 875 is the case for a transit type telescope. 759 876 760 \begin{equation}761 {\cal L}_\Box(u,v,\lambda) =762 \bigwedge_{[\pm 2 \pi D^{ill}_x / \lambda]} (u ) \times763 \bigwedge_{[\pm 2 \pi D^{ill}_y / \lambda ]} (v )764 \end{equation}765 877 Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(u,v,\lambda)$ 766 878 for the four configurations (a,b,c,d) with $\sim 100$ receivers per 767 polarisation. The resulting projected noise spectral power density is shown in figure 879 polarisation. 880 881 {\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we have 882 computed the 3D noise power spectrum for each of the eight instrument configurations discussed 883 here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey 884 of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.} 885 The resulting noise spectral power densities are shown in figure 768 886 \ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$ 769 887 is due to the fact that we have ignored all auto-correlation measurements. … … 774 892 \centering 775 893 \mbox{ 776 \hspace*{-10mm}777 \includegraphics[width= 0.90\textwidth]{Figs/uvcovabcd.pdf}894 % \hspace*{-10mm} 895 \includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf} 778 896 } 779 \caption{ (u,v) plane coverage (raw instrument response ${\cal R}(u,v,\lambda)$897 \caption{$(\uv)$ plane coverage (raw instrument response ${\cal R}(\uv,\lambda)$ 780 898 for four configurations. 781 899 (a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array 782 900 of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each (fig. \ref{figconfbc}), 783 901 (c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams. 784 (color scale : black $<1$, blue, green, yellow, red $\gtrsim 80$)}902 The common color scale (1 \ldots 80) is shown on the right. } 785 903 \label{figuvcovabcd} 786 904 \end{figure*} 787 905 788 906 \begin{figure*} 789 \vspace*{- 25mm}907 \vspace*{-10mm} 790 908 \centering 791 909 \mbox{ 792 \hspace*{-20mm}793 \includegraphics[width= 1.15\textwidth]{Figs/pkna2h.pdf}910 % \hspace*{-5mm} 911 \includegraphics[width=\textwidth]{Figs/pkna2h.pdf} 794 912 } 795 \vspace*{- 40mm}913 \vspace*{-20mm} 796 914 \caption{P(k) LSS power and noise power spectrum for several interferometer 797 915 configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.} … … 810 928 it has been suggested that the smooth frequency dependence of the synchrotron 811 929 emissions can be used to separate the faint LSS signal from the Galactic and radio source 812 emissions. 930 emissions. {\changemark Discussion of contribution of different sources 931 to foregrounds for measurement of reionization through redshifted 21 cm, 932 as well foreground subtraction using their smooth frequency dependence can 933 be found in (\cite{shaver.99}, \cite{matteo.02},\cite{oh.03}) } 813 934 However, any real radio instrument has a beam shape which changes with 814 935 frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation 815 936 technique. The effect of frequency dependent beam shape is some time referred to as {\em 816 mode mixing}. See for example \citep{morales.06}, \citep{bowman.07}. 937 mode mixing}. {\changemark Effect of frequency dependent beam shape for foreground subtraction and 938 its application to MWA has been discussed in \citep{morales.06} \citep{bowman.09}.} 817 939 818 940 In this section, we present a short description of the foreground emissions and … … 879 1001 varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction. 880 1002 $\beta$ has a gaussian distribution centered at -2.8 and with standard 881 deviation $\sigma_\beta = 0.15$. 1003 deviation $\sigma_\beta = 0.15$. {\changemark The 1004 diffuse radio background spectral index has been measured for example by 1005 \citep{platania.98} or \cite{rogers.08} } 882 1006 The synchrotron contribution to the sky temperature for each cell is then 883 1007 obtained through the formula: … … 906 1030 of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of 907 1031 \citep{eisenhu.98}. We have used the standard cosmological parameters, 908 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.2 7$, $\Omega_b=0.044$,909 $\Omega_\lambda=0.73$ and $w=-1$ .1032 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$, 1033 $\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}. 910 1034 An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$ 911 1035 in the linear regime, … … 966 1090 to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K), 967 1091 compared to the mK LSS signal. 1092 1093 { \changemark Contrary to most similar studies, where it is assumed that bright sources 1094 can be nearly perfectly subtracted, our aim was to compute also their 1095 effect in the foreground subtraction process. 1096 The GSM model lacks the angular resolution needed to compute 1097 correctly the effect of bright compact sources for 21 cm LSS observations and 1098 the mode mixing due to frequency dependent instrument, while Model-II 1099 provides a reasonable description of these compact sources. Our simulated 1100 sky cubes have an angular resolution $3'\times3'$, well below the typical 1101 $15'$ resolution of the instrument configuration considered here. 1102 However, Model-II might lack spatial structures at large scales, above a degree, 1103 compared to Model-I/GSM, and the frequency variations as a simple power law 1104 might not be realistic enough. The differences for the two sky models can be seen 1105 in their power spectra shown in figure \ref{pkgsmlss}. We hope that by using 1106 these two models, we have explored some of the systematic uncertainties 1107 related to foreground subtraction.} 968 1108 969 1109 It should also be noted that in section 3, we presented the different instrument … … 1057 1197 The virtual target instrument has a beam width larger than the worst real instrument beam, 1058 1198 i.e at the lowest observed frequency. 1059 1199 \item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$ 1060 1200 is fitted to the beam-corrected brightness temperature. The fit is done through a linear $\chi^2$ fit in 1061 1201 the $\lgd ( T ) , \lgd (\nu)$ plane and we show here the results for a pure power law (P1) … … 1066 1206 \end{eqnarray*} 1067 1207 where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the 1068 reference frequency $\nu_0$: 1208 reference frequency $\nu_0$. 1209 1210 {\changemark Interferometers have poor response at small $(\uv)$ corresponding to baselines 1211 smaller than interferometer element size. The $(0,0)$ mode, corresponding the mean temperature 1212 can not be measured with an interferometer. We have used a simple trick to make the power law 1213 fitting procedure to work: we have set the mean value of the temperature for 1214 each frequency plane to a power law with an index close to the synchrotron index 1215 and we have checked that results are not too sensitive to the arbitrarily fixed mean temperature 1216 power law parameters. } 1217 1069 1218 \item The difference between the beam-corrected sky temperature and the fitted power law 1070 1219 $(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal. … … 1608 1757 \bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27 1609 1758 1759 % reference DETF - DE eq.state parameter figure of merit 1610 1760 \bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591 1611 1761 1762 % Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008 1612 1763 \bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich, 1613 1764 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614 … … 1625 1776 % Galactic astronomy, emission HI d'une galaxie 1626 1777 \bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press 1778 % 21cm reionisation P(k) estimation and sensitivities 1779 \bibitem[Bowman et al. (2006)]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26 1627 1780 % MWA description 1628 1781 \bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518 1629 1782 1630 1783 %% Soustraction avant plans ds MWA 1631 \bibitem[Bowman et al. (2009)]{bowman.0 7} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-1991784 \bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199 1632 1785 1633 1786 % Intensity mapping/HSHS … … 1641 1794 Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693 1642 1795 1643 % Parametrisation P(k) 1644 \bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112) 1796 % Effet des radio-sources sur le signal 21 cm reionisation 1797 \bibitem[Di Matteo et al. (2002)]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580 1798 1799 % Parametrisation P(k) - (astro-ph/9709112) 1800 \bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj 496, 605-614 1645 1801 1646 1802 % SDSS first BAO observation … … 1661 1817 \bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187 1662 1818 1819 % WMAP 7 years cosmological parameters 1820 \bibitem[Komatsu et al. (2011)]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley {\it et al.} 2011, \apjs, 192, p. 18 \\ 1821 \mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm} 1822 1663 1823 % HI mass in galaxies 1664 \bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al.2009, \mnras, 399, 14471824 \bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.} 2009, \mnras, 399, 1447 1665 1825 % ( astro-ph/0907.1416) 1666 1826 … … 1672 1832 \bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16 1673 1833 1834 %% Description MWA 1835 \bibitem[Lonsdale et al. (2009)]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. {\it et al.} 2009, arXiv:0903.1828 1674 1836 % LSST Science book 1675 1837 \bibitem[LSST.Science]{lsst.science} … … 1688 1850 \bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59 1689 1851 1852 %% PNoise and cosmological parameters with reionization 1853 \bibitem[McQuinn et al. (2006)]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R. 1854 2006, \apj 653, 815-834 1855 1856 % Papier sur la mesure de sensibilite P(k)_reionisation 1857 \bibitem[Morales \& Hewitt (2004)]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7-18 1858 1690 1859 % Papier sur le traitement des observations radio / mode mixing 1691 1860 \bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773 1861 1862 %% Foreground removal using smooth frequency dependence 1863 \bibitem[Oh \& Mack (2003)]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877 1692 1864 1693 1865 % Global Sky Model Paper … … 1695 1867 \mnras, 388, 247-260 1696 1868 1869 %% Description+ resultats PAPER 1870 \bibitem[Parsons et al. (2009)]{parsons.09} Parsons A.R.,Backer D.C.,Bradley R.F. {\it et al.} 2009, arXiv:0904.2334 1871 1872 % Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz 1873 \bibitem[Platania et al. (1998)]{platania.98} Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998, \apj 505, 473-483 1874 1697 1875 % Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings) 1698 1876 \bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104 … … 1703 1881 % SDSS BAO 2010 - arXiv:0907.1660 1704 1882 \bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168 1883 1884 % Radio spectral index between 100-200 MHz 1885 \bibitem[Rogers \& Bowman (2008)]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648 1705 1886 1706 1887 %% LOFAR description … … 1710 1891 %% SDSS-3 1711 1892 \bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf 1893 1894 % Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background? 1895 \bibitem[Shaver et al. (1999))]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390 1712 1896 1713 1897 % Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker … … 1720 1904 % Papier 21cm-BAO Fermilab ( arXiv:0910.5007) 1721 1905 \bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173 1906 1907 % Mesure P(k) par SDSS 1908 \bibitem[Tegmark et al. (2004)]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. et al. 2004, \apj, 606, 702-740 1722 1909 1723 1910 % FFT telescope -
trunk/Cosmo/RadioBeam/specpk.cc
r4028 r4030 209 209 210 210 // Generate mass field Fourier Coefficient 211 void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales )211 void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales, Vector& noisevec) 212 212 // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers 213 213 // typically = ComovRadialDistance 214 214 { 215 215 uint_8 nmodeok=0; 216 if ( angscales.Size() != fourAmp.SizeZ())217 throw SzMismatchError("ComputeNoiseFourierAmp(): angscales .Size()!=fourAmp.SizeZ()");216 if ((angscales.Size() != fourAmp.SizeZ())||(noisevec.Size() != fourAmp.SizeZ())) 217 throw SzMismatchError("ComputeNoiseFourierAmp(): angscales/noisevec.Size()!=fourAmp.SizeZ()"); 218 218 H21Conversions conv; 219 219 // fourAmp represent 3-D fourier transform of a real input array. … … 225 225 resp.setLambda(conv.getLambda()); 226 226 double angsc=angscales(kz); 227 double noisepow=noisevec(kz); 227 228 if (prtlev_>2) 228 cout << " Four3DPk::ComputeNoiseFourierAmp(...) - freq=" << f0+kz*df << " -> AngSc=" << angsc << endl; 229 cout << " Four3DPk::ComputeNoiseFourierAmp(...) - freq=" << f0+kz*df << " -> AngSc=" << angsc 230 << " NoisePow=" << noisepow << endl; 229 231 for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { 230 232 kyy = (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; … … 234 236 if (rep<1.e-19) rep=1.e-19; 235 237 else nmodeok++; 236 amp = 1./sqrt(rep)/sqrt(2.);238 amp = sqrt(noisepow/rep/2.); 237 239 fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp)); 238 240 } … … 445 447 PkNoiseCalculator::PkNoiseCalculator(Four3DPk& pk3, Four2DResponse& rep, double s2cut, int ngen, 446 448 const char* tit) 447 : pkn3d(pk3), frep(rep), S2CUT(s2cut), NGEN(ngen), title(tit), angscales_(pk3.SizeZ()) 449 : pkn3d(pk3), frep(rep), S2CUT(s2cut), NGEN(ngen), title(tit), angscales_(pk3.SizeZ()), pnoisefac_(pk3.SizeZ()) 448 450 { 449 451 SetFreqRange(); 450 452 SetAngScaleConversion(); 453 SetPNoiseFactor(); 451 454 SetPrtLevel(); 452 455 } … … 461 464 << " ... " << angscales_(angscales_.Size()-1) << endl; 462 465 for(int igen=0; igen<NGEN; igen++) { 463 pkn3d.ComputeNoiseFourierAmp(frep, freq0_, dfreq_, angscales_ );466 pkn3d.ComputeNoiseFourierAmp(frep, freq0_, dfreq_, angscales_, pnoisefac_); 464 467 if (igen==0) hnd = pkn3d.ComputePk(S2CUT,nbin,kmin,kmax,true); 465 468 else pkn3d.ComputePkCumul(); -
trunk/Cosmo/RadioBeam/specpk.h
r4027 r4030 56 56 // typically = ComovRadialDistance 57 57 void ComputeNoiseFourierAmp(Four2DResponse& resp, double angscale=1., bool crmask=false); 58 void ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales );58 void ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales, Vector& noisp); 59 59 60 60 // Return the array size … … 112 112 inline void SetAngScaleConversion(Vector& angscs) 113 113 { angscales_=angscs; } 114 inline void SetPNoiseFactor(double pnoisef=1.) 115 { pnoisefac_=pnoisef; } 116 inline void SetPNoiseFactor(Vector& pnoisefac) 117 { pnoisefac_=pnoisefac; } 114 118 inline void SetS2Cut(double s2cut=100.) 115 119 { S2CUT=s2cut; } … … 124 128 double freq0_,dfreq_; 125 129 Vector angscales_; 130 Vector pnoisefac_; 126 131 double S2CUT; 127 132 int NGEN;
Note:
See TracChangeset
for help on using the changeset viewer.