Changeset 4069 in Sophya for trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
- Timestamp:
- Apr 27, 2012, 11:47:27 AM (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Cosmo/RadioBeam/sensfgnd21cm.tex
r4050 r4069 219 219 $1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}. 220 220 221 In section 2, we discuss the intensity mapping and its potential for measuring ofthe221 In section 2, we discuss the intensity mapping and its potential for measuring the 222 222 \HI mass distribution power spectrum. The method used in this paper to characterize 223 223 a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3. … … 398 398 compared to its current value $\gHI(z=1.5) \sim 0.025$. 399 399 The 21 cm brightness temperature and the corresponding power spectrum can be written as 400 (\cite{madau.97}; \cite{zaldarriaga.04} ); \cite{barkana.07})400 (\cite{madau.97}; \cite{zaldarriaga.04}; \cite{barkana.07}) 401 401 \begin{eqnarray} 402 402 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\ … … 628 628 { \changemark 629 629 \begin{eqnarray} 630 \alpha , \beta & \rightarrow & \ell_\perp = l_x,l_y = (1+z) \, \dang(z) \, \alpha,\beta \\630 \alpha , \beta & \rightarrow & \ell_\perp = \ell_x, \ell_y = (1+z) \, \dang(z) \, \alpha,\beta \\ 631 631 \uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\ 632 632 \delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu} … … 672 672 to a 3D white noise, with a uniform noise spectral density:} 673 673 \begin{equation} 674 P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4674 P_{noise}(k_\perp, \ell_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 675 675 \label{ctepnoisek} 676 676 \end{equation} … … 980 980 981 981 \subsection{ Synchrotron and radio sources } 982 We modeled the radio sky in the form of three3D maps (data cubes) of sky temperature982 We modeled the radio sky in the form of 3D maps (data cubes) of sky temperature 983 983 brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$ 984 984 and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of … … 1579 1579 The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$ 1580 1580 corresponding to the power spectrum without baryonic oscillations. 1581 The dots represents one simulation for a "packed" array of cylinders1581 The dots represents one simulation for a "packed" array of dishes 1582 1582 with a system temperature,$T_{sys}=50$K, an observation time, 1583 1583 $T_{obs}=$ 1 year, … … 1609 1609 \includegraphics[width=8.5cm]{Figs/AveragedPk.pdf} 1610 1610 \caption{1D projection of the power spectrum averaged over 100 simulations 1611 of the packed cylinder array $b$.1611 of the packed dish array. 1612 1612 The simulations are performed for the following conditions: a system 1613 1613 temperature $T_{sys}=50$K, an observation time $T_{obs}=1$ year, … … 1809 1809 1810 1810 \section{Conclusions} 1811 The 3D mapping of redshifted 21 cm emission th ough {\it intensity mapping} is a novel and complementary1811 The 3D mapping of redshifted 21 cm emission through {\it intensity mapping} is a novel and complementary 1812 1812 approach to optical surveys for studying the statistical properties of the LSS in the universe 1813 1813 up to redshifts $z \lesssim 3$. A radio instrument with a large instantaneous field of view
Note:
See TracChangeset
for help on using the changeset viewer.