Ignore:
Timestamp:
Apr 27, 2012, 11:47:27 AM (13 years ago)
Author:
ansari
Message:

dernières corrections (proofreading) du papier avant publication par A&A, 26 Mars 2012, 27/04/2012

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r4050 r4069  
    219219$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
    220220
    221 In section 2, we  discuss the intensity mapping and its potential for measuring of the
     221In section 2, we  discuss the intensity mapping and its potential for measuring the
    222222\HI mass distribution power spectrum. The method used in this paper to characterize
    223223a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
     
    398398compared to its current value $\gHI(z=1.5) \sim 0.025$.
    399399The 21 cm brightness temperature and the corresponding power spectrum can be written as
    400 (\cite{madau.97}; \cite{zaldarriaga.04}); \cite{barkana.07})
     400(\cite{madau.97}; \cite{zaldarriaga.04}; \cite{barkana.07})
    401401\begin{eqnarray}
    402402 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z)  \right)^2 \, P(k)    \label{eq:pk21z} \\
     
    628628{ \changemark
    629629\begin{eqnarray}
    630 \alpha , \beta & \rightarrow &  \ell_\perp = l_x, l_y = (1+z) \, \dang(z) \,  \alpha,\beta  \\
     630\alpha , \beta & \rightarrow &  \ell_\perp = \ell_x, \ell_y = (1+z) \, \dang(z) \,  \alpha,\beta  \\
    631631\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{  (1+z) \, \dang(z)  }   \label{eq:uvkxky} \\
    632632\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
     
    672672to a 3D white noise, with a uniform noise spectral density:}
    673673\begin{equation}
    674 P_{noise}(k_\perp, l_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     674P_{noise}(k_\perp, \ell_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
    675675\label{ctepnoisek}
    676676\end{equation}
     
    980980 
    981981\subsection{ Synchrotron and radio sources }
    982 We modeled the radio sky in the form of three 3D maps (data cubes) of sky temperature
     982We modeled the radio sky in the form of 3D maps (data cubes) of sky temperature
    983983brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
    984984and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
     
    15791579The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
    15801580corresponding to the power spectrum without baryonic oscillations.
    1581 The dots represents one simulation for a "packed" array of cylinder
     1581The dots represents one simulation for a "packed" array of dishe
    15821582with a system temperature,$T_{sys}=50$K, an observation time,
    15831583$T_{obs}=$ 1 year,
     
    16091609\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
    16101610\caption{1D projection of the power spectrum averaged over 100 simulations
    1611 of the packed cylinder array $b$.
     1611of the packed dish array.
    16121612The simulations are performed for the following conditions: a system
    16131613temperature $T_{sys}=50$K, an observation time $T_{obs}=1$ year,
     
    18091809
    18101810\section{Conclusions}
    1811 The 3D mapping of redshifted 21 cm emission though {\it intensity mapping} is a novel and complementary
     1811The 3D mapping of redshifted 21 cm emission through {\it intensity mapping} is a novel and complementary
    18121812approach to optical surveys for studying the statistical properties of the LSS in the universe
    18131813up to redshifts $z \lesssim 3$. A radio instrument with a large instantaneous field of view
Note: See TracChangeset for help on using the changeset viewer.