source: Selma/PARISROC/parisroc-jinst.tex @ 480

Last change on this file since 480 was 478, checked in by campagne, 15 years ago

make figures better (JEC)

File size: 44.0 KB
Line 
1\documentclass{JINST}
2\usepackage[pdftex]{graphicx}
3\graphicspath{{figures/}}
4\usepackage[figuresright]{rotating}
5%\usepackage{graphicx}
6%\usepackage[T1]{fontenc}
7\usepackage{eurosym}
8%\usepackage{rotating}
9%\usepackage[dvips]{color}
10
11
12%used explicitly in the text
13\newcommand{\refTab}[1]{Tab.~\ref{#1}}
14\newcommand{\refFig}[1]{Fig.~\ref{#1}}
15\newcommand{\refSec}[1]{Sec.~\ref{#1}}
16
17
18
19
20\title{PARISROC, a Photomultiplier Array Integrated Readout Chip.}
21%
22
23\author{S. Conforti$^a$, Second Author$^b$\thanks{Corresponding
24author.}~ and Third Author$^b$\\
25\llap{$^a$}Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud 11,
26Bât. 200, 91898 Orsay Cedex, France\\
27\llap{$^b$}Name of Institute,\\
28  Address, Country\\
29  E-mail: \email{conforti@lal.in2p3.fr}}
30
31
32
33
34\abstract{
35PARISROC is a complete read
36out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
37\cite{Genolini:2008uc}
38%[1]
39, for photomultipliers array. It allows triggerless acquisition for
40next generation neutrino experiments and it belongs to an R\&D program
41funded by French national agency for research (ANR) called
42PMm2: "`Innovative electronics for photodetectors array
43used in High Energy Physics and Astroparticles"'
44\cite{PMm2Site:2006}
45%[2]
46(ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
47triggered channels with variable gain and provides charge and time
48measurement by a 12-bit ADC and a 24-bit Counter. The charge
49measurement should be performed from 1 up to 300 pe with a good
50linearity. The time measurement allowed to a coarse time with a 24-bit
51counter at 10 MHz and a fine time on a 100ns ramp to achieve a
52resolution of 1 ns. The ASIC sends out only the relevant data through
53network cables to the central data storage.
54}%end of abstract
55
56%\pacs{13.30.a,14.20.Dh,14.60.Pq,26.65.t+,29.40.Gx,29.40.Ka,29.40.Mc,95.55.Vj,95.85.Ry,
57%97.60.Bw}
58
59%\submitto{Journal of Instrumentation}
60
61\keywords{Keyword1; Keyword2; Keyword3}
62
63\begin{document}
64%use BST file provided by SPIRES for JHEP and modify it to forbid "to lower case" title
65\bibliographystyle{Campagne}
66%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67\section{Introduction}
68\label{sec:Intro}
69%%%%%%%%%%%%%%%%%%%%%%
70The PMm2 project: "`Innovative electronics for
71photodetectors array used in High Energy Physics and
72Astroparticles"' \cite{PMm2Site:2006}
73%[2]
74proposes to segment the large surface of photodetection in macro
75pixel consisting of an array of 16 photomultipliers connected to an
76autonomous front-end electronics () and powered by a common High
77Voltage. These large detectors are used in next generation proton decay
78and neutrino experiment (i.e. the post-SuperKamiokande detectors as
79those that will take place in megaton size water tanks) and will
80require very large surfaces of photo detection and a large volume of
81data. The micro-electronics group's (OMEGA from the LAL at Orsay)
82purpose is the front-end electronics conception and
83realization. This R\&D \cite{PMm2Site:2006}
84%[2]
85involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
86Orsay) and ULB Bruxells for the DAQ. It is funded for three years by
87the French National Agency for Research (ANR) under the reference
88ANR-06-BLAN-0186.
89
90
91LAL Orsay is in charge of the design and tests of the readout chip
92named PARISROC which stands for Photomultiplier ARrray Integrated in
93Si-Ge Read Out Chip.
94
95\begin{figure}[!htbp]
96\begin{center}
97\includegraphics[width=0.7\columnwidth]{img1.jpg}
98\caption{Principal of PMm2 proposal for megaton scale Cerenkov water
99tank.}
100\label{fig:1}
101\end{center}
102\end{figure}
103
104The detectors such as SuperKamiokande, are large tanks covered by a
105significant number of large photomultipliers (20"),
106the next generation neutrino experiments will require a bigger surface
107of photo detection and thus more photomultipliers. As a consequence the
108total cost has an important relief \cite{Genolini:2008uc}.
109\begin{itemize}
110        \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
111a common electronics, even if it induces more electronic channels;
112        \item A common High Voltage for the 16 PMTs so a reduced number of
113underwater cables, cables  that are also used to brought the DATA to
114the surface;
115        \item The front-end closed to the PMTs that allow a suppression of
116underwater connector.
117\end{itemize}
118
119The general principle of PMm2 project is that the ASIC and a FPGA
120manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
121
122\begin{figure}[!!htbp]
123\centering
124\includegraphics[width=0.7\columnwidth]{img2.jpg}
125\caption{Principle of the PMm2 project.}
126\label{fig:2}
127\end{figure}
128%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
129\section{PARISROC architecture}
130\label{sec:PARISROCArchi}
131The ASIC Parisroc is composed of 16 analogue channels managed by a
132common digital part (\refFig{fig:3}).
133
134\begin{figure}[!htbp]
135\centering
136\includegraphics[width=0.7\columnwidth]{img3.jpg}
137\caption{PARISROC global schematic.}
138\label{fig:3}
139\end{figure}
140
141Each analogue channel is made of a low noise preamplifier with
142variable and adjustable gain. The variable gain is common for all
143channels and it can change from 8 to 1 on 4 bits. The gain is also
144tuneable channel by channel to adjust the input detector's gain, up to
145a factor 4 to an accuracy of 7\% with 8 bits.
146
147The preamplifier is followed by a slow channel for the charge
148measurement in parallel with a fast channel for the trigger output.
149
150The slow channel is made by a slow shaper followed by an analogue
151memory with a depth of 2 to provide a linear charge measurement up to
15250~pC; this charge is converted by a 12-bits Wilkinson ADC. One follower
153OTA is added to deliver an analogue multiplexed charge measurement.
154
155The fast channel consists in a fast shaper (15~ns) followed by 2 low
156offset discriminators to auto-trig down to 50~fC. The thresholds are
157loaded by 2 internal 10-bit DACs common for the 16 channels and an
158individual 4bit DAC for one discriminator. The 2 discriminator outputs
159are multiplexed to provide only 16 trigger outputs. Each output trigger
160is latched to hold the state of the response until the end of the clock
161cycle. It is also delayed to open the hold switch at the maximum of the
162slow shaper. An "`OR"' of the 16 trigger gives a 17th output.
163
164
165For each channel, a fine time measurement is made by an analogue
166memory with depth of 2 which samples a 12-bit ramp, common for all
167channels, at the same time of the charge. This time is then converted
168by a 12 bit Wilkinson ADC.
169
170The two ADC discriminators have a common ramp, of 8/10/12 bits, as
171threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
172
173\begin{figure}[!htbp]
174\centering
175\includegraphics[width=0.7\columnwidth]{img4.jpg}
176\caption{PARISROC Layout.}
177\label{fig:4}
178\end{figure}
179%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
180\subsection{Analogue Channel description and simulations}
181\label{ssec:AnalogChannel}
182%%%%%%%%%%%%%%%%%%%%%%%%%%%
183\refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
184part.
185
186\begin{figure}[!htbp]
187\centering
188\includegraphics[width=0.7\columnwidth]{img5.jpg}
189\caption{PARISROC one channel analogue part schematic.}
190\label{fig:5}
191\end{figure}
192%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
193\subsection{Preamplifier}
194\label{ssec:Preamplifier}
195%%%%%%%%%%%%%%%%%%%%%%%%%%%
196The input preamplifier is a low noise preamplifier with variable gain
197thanks to the switched input ($C_{in}$) and feedback ($C_f$) capacitors that
198can be adjusted (\refFig{fig:6}).
199
200This gain can vary changing $C_{in}$, which is
201common to the 16 channels, over 4 bits and $C_{f}$, to adjust preamplifier
202gain channel by channel. This adjustment allows correction of the PMT
203gain dispersion due to a use of a common HV.
204
205
206\begin{figure}[!htbp]
207\centering
208\includegraphics[width=0.7\columnwidth]{img6.jpg}
209        \caption{PARISROC preamplifier schematic.}
210        \label{fig:6}
211\end{figure}
212
213
214The preamplifier is designed as a voltage
215preamplifier in p-type Cascode structure to allow the acquisition of a
216fast input signal with a large dynamic range.
217
218The input transistor is a PMOS in common source
219configuration: $W = 800~\mu$m; $L = 0.35~\mu$m; the big input transistor is
220chosen to keep the preamplifier noise contribution low and to achieve a
221high gm. It supplies the output (the drain terminal) to the input
222terminal (source terminal) of the second stage transistor: $W = 100~\mu$m;
223$L = 0.35~\mu$m; the output transistor must be small to reach preamplifier
224high speed performances. The utility of the cascode preamplifier is in
225the large input impedance of the common source (with also the
226characteristic of Current Buffer) and better frequency response of a
227common Gate. An output buffer stage is designed in order to adapt the
228output impedance to the loaded impedance. The input dc level is high
229(about 2.6~V) while the output dc level is low (about 1~V). Because of
230the single side structure of preamplifier, it is hard to use the
231external reference voltage to set the dc operating point; the idea is
232to use an OTA as the dc feedback amplifier.
233
234In  \refFig{fig:7} are shown preamplifier's output waveforms
235for fixed gain and different input signal (left panel) and for fixed
236input signal and different preamplifier gain (right panel).
237
238\begin{figure}[!htbp]
239\centering
240\begin{tabular}{rl}
241\includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} & 
242\includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
243\end{tabular} 
244\caption{Simulated preamplifier output waveforms for different input
245signals with fixed gain (left panel) and for fixed input
246signal at different gain (different input capacitor values (right
247panel).}
248\label{fig:7}
249\end{figure}
250
251The input signal, used in simulation, is a triangle signal with 4.5~ns
252rise and fall time and 5~ns of duration as shown in \refFig{fig:8}. This current
253signal is sent to an external resistor (50~Ohms) and varies from 0 to 5~mA
254in order to simulate a PMT charge from 0 to 50~pC which represents 0
255to 300 photo-electrons when the PM gain is $10^{6}$.
256
257
258\begin{figure}[!htbp]
259\centering
260\includegraphics[width=0.7\columnwidth]{img8.jpg}
261\caption{Simulation input signal.}
262\label{fig:8}
263\end{figure}
264
265The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
266linearity performance. \refTab{tab:1} lists the residuals obtained for different
267gains and shows a good linearity (better than $\pm 1\%$).
268
269\begin{figure}[!htbp]
270\centering
271\includegraphics[width=0.7\columnwidth]{img9.jpg}
272\caption{Preamplifier linearity.}
273\label{fig:9}
274\end{figure}
275
276
277\begin{table}
278\centering
279        \caption{TO BE COMPLETED}
280        \label{tab:1}
281\begin{tabular}{|c|c|c|c|}
282\hline
283$G_{pa}$ &  $V_{out-max}$ &  $Qi_{max}/n_{pe}$ & Residuals (\%) \\
284\hline
285 8 & 1.394~V  & 40~pC/250~pe & -0.6 to 0.2 \\
286 4 & 0.841~V  & 48~pC/300~pe & -0.1 to 0.3 \\
287 2 & 0.417~V  & 48~pC/300~pe & -0.2 to 0.3 \\
288\hline
289\end{tabular}
290\end{table}
291
292
293 
294The \refFig{fig:10} displays the preamplifier noise with an
295rms value of 13~fC and a Signal to Noise ratio of $\approx 12$.
296\refTab{tab:2} summarizes the results obtained.
297
298\begin{figure}[!htbp]
299\centering
300\includegraphics[width=0.7\columnwidth]{img10.jpg}
301\caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
302$C_{f}=0.5$~pF.}
303\label{fig:10}
304\end{figure}
305
306\begin{table}
307\centering
308\caption{TO BE COMPLETED}
309\label{tab:2}
310\begin{tabular}{|c|c|c|}
311\hline
312RMS  & SNR & $V_{out}(1 p.e)$  \\
313\hline
314$468~\mu$V ($\approx 1/12$~p.e, $\approx 13$~fC ) & 11.6 & 5.43~mV\\
315\hline
316\end{tabular}
317\end{table}
318
319%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
320\subsection{Trigger output}
321\label{ssec:Trigger}
322%%%%%%%%%%%%%%%%%%%%%%%%%%%
323The PARISROC is a self-triggered device. The fast channel has been
324conceived for this purpose.The amplified signal flows in a fast shaper that is a CRRC filter with
325a time constant of 15~ns. Its high gain allows to send high signal to
326the discriminator and thus to trigger easily on 1/3 of photo-electron.
327It has a classical design: differential pair is followed by a buffer.
328
329\begin{figure}[!htbp]
330\centering
331\includegraphics[width=0.7\columnwidth]{img11.jpg}
332\caption{Fast shaper schematics.}
333\label{fig:11}
334\end{figure}
335
336The \refFig{fig:12} represents the fast shaper output
337waveforms for a variable input signal. The \refTab{tab:3} lists the fast
338shaper principal characteristics obtained in simulation.
339
340\begin{figure}[!htbp]
341\centering
342\begin{tabular}{rl}
343\includegraphics[width=0.5\columnwidth,height=6cm]{img12a.jpg} &
344\includegraphics[width=0.5\columnwidth,height=6cm]{img12b.jpg}
345\end{tabular}
346\caption{Simulated fast shaper outputs ($G_{pa} = 8$ with input from 1-10~pe (left panel) 
347and from 1/3~pe to 2~pe (right panel).}
348\label{fig:12}
349\end{figure}
350
351\begin{table}
352\centering
353        \caption{To be completed}
354        \label{tab:3}
355        \begin{tabular}{|c|c|c|c|}
356        \hline
357RMS  & SNR & $V_{out}(1 p.e)$  & $T_p$  \\
358\hline
359$2.36~\mu$V ($\approx 1/16$~p.e, $\approx 10$~fC ) & 16 & 37.85~mV & 8~ns\\
360        \hline
361        \end{tabular}
362\end{table}
363
364The fast shaper (15~ns) is followed by a low
365offset discriminator to auto-trig down to 50~fC (1/3~pe at $10^6$ gain).
366
367
368The two discriminators can be used alone or
369simultaneously. Their outputs are multiplexed to ease the choice. Both
370are simple low offset comparators with the same schematic. The
371difference comes from the way to set the threshold. The first
372discriminator has the threshold sets by one 10-bit DAC, common to all
37316 channels, and one 4-bit DAC for each channel. The second
374discriminator has the threshold sets by only the 10 bit common DAC.
375Each output trigger is latched to hold the state of the response in SCA
376channel. In  \refFig{fig:13} are shown the triggers and the zoom of the triggers rise
377time in order to see the time walk of around 4~ns.
378
379
380\begin{figure}[!htbp]
381\centering
382                \begin{tabular}{rl}
383                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13a.jpg}&
384                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13b.jpg}
385                \end{tabular}
386\caption{Simulated trigger output (input charge from 0 to 10~p.e;
387threshold at 1/3~p.e). Zoom of trigger rise time on right
388pannel.}
389\label{fig:13}
390\end{figure}
391
392Each output trigger is latched to hold the
393state of the response in SCA channel.  SCA channel is the also called
394"`Analogue memory"'. The SCA has a
395depth equal to two; this means that there are two T\&H for time
396measurement as well as for charge measurement.
397
398\begin{figure}[!htbp]
399\centering
400\includegraphics[width=0.7\columnwidth]{img14.jpg}
401\caption{SCA (switched capacitor array) scheme.}
402\label{fig:14}
403\end{figure}
404
405The voltage level of the signal coming from
406slow shaper or ramp TDC cell is memorised in the T\&H capacitor (500~fF)
407so "`Track \& Hold Cell"' allows
408to lock the capacitor value only when a calibrated trigger (from fast
409channel) occurs within the selected column. The SCA column is selected, read and erased by
410the digital part.
411
412\begin{figure}[!htbp]
413\centering
414\includegraphics[width=0.7\columnwidth]{img15.jpg}
415\caption{Operation of T\&H cell.}
416\label{fig:15}
417\end{figure}
418
419On  \refFig{fig:15} is illustrated the T\&H cell mode of
420operation: when a signal arrives in the discriminator cell is detected
421and the output trigger signal is sent to the T\&H cell.
422The output trigger is delayed and calibrated before being sent.
423
424
425%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
426\subsection{Charge channel}
427\label{ssec:Charge}
428%%%%%%%%%%%%%%%%%%%%%%%%%%%
429The charge channel is the slow channel: the signal amplified by the
430variable gain preamplifier is sent to the slow shaper, a typical
431$\mathrm{CRRC}^2$ filter with variable peaking time. The
432peaking time can be set from 50~ns (default value) to 200~ns thanks to
433the switched feedback capacitors.
434
435On left part of \refFig{fig:16} are represented the slow shaper waveforms for
436different shaping times and the same input signal. The noise value (\refTab{tab:4}
437and right part of \refFig{fig:16}), from $980~\mu$V to $1.6$~mV (simulation results), foresee
438good noise performance.
439
440\begin{figure}[!htbp]
441\centering
442                \begin{tabular}{rl}
443                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16a.jpg}&
444                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16b.jpg}
445                \end{tabular}
446\caption{Slow shaper output waveforms simulation (left panel). Slow shaper
447output noise simulation (right panel).}
448\label{fig:16}
449\end{figure}
450
451\begin{table}
452\centering
453\caption{TO BE COMPLETED. $G_{pa} = 8$}
454\label{tab:4}
455\begin{tabular}{|c|c|c|c|}
456\hline
457Time constant & RMS  & SNR & $V_{out}(1 p.e)$ \\
458\hline
45950~ns & \parbox[t]{20mm}{$1.68$~mV \\ $\approx 1/17$~p.e \\ $ \approx 9$~fC}
460     &  11
461                        & \parbox[t]{20mm}{$29$~mV \\ $T_p = 48$~ns } \\
462100~ns & \parbox[t]{20mm}{$1.26$~mV\\$\approx 1/12$~p.e \\ $ \approx 20$~fC}
463     &  8
464                        & \parbox[t]{20mm}{$15$~mV \\ $T_p = 78$~ns }\\
465200~ns & \parbox[t]{20mm}{$0.98$~mV\\$\approx 1/5$~p.e \\ $ \approx 32$~fC}
466     &  5
467                        & \parbox[t]{23mm}{$8$~mV \\ $ T_p = 141.5$~ns } \\
468\hline                 
469\end{tabular}
470\end{table}
471
472The \refFig{fig:17}  and \refTab{tab:5} illustrate the linearity performance for
473different time constants.  Simulations show a good linearity with
474residuals from -0.5\% to 0.2\% at $T_p = 50$~ns, from
475-1\% to 0.3\% at $T_p =100$~ns and -0.7\% to 0.3\% at
476$T_p=200$~ns.
477
478\begin{figure}[!htbp]
479\centering
480\includegraphics[width=0.7\columnwidth]{img17.jpg}
481\caption{Slow shaper linearity simulation.}
482\label{fig:17}
483\end{figure}
484
485\begin{table}
486\centering
487\caption{TO BE COMPLETED}
488\label{tab:5}
489\begin{tabular}{|c|c|c|c|}
490\hline
491Time constante & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
492\hline
493 50~ns &  1.437~V &  13~pC/80~pe &  -0.5 to 0.2 \\
494100~ns &  1.493~V &  24~pC/150~pe &  -1.0 to 0.3 \\
495200~ns &  1.385~V &  48~pC/300~pe &  -0.7 to 0.3 \\
496\hline
497\end{tabular}
498\end{table}
499
500The Slow shaper maximum value, therefore the charge value, is then
501memorized in the analogue memory, with a depth of 2, thanks to the
502delayed trigger. \refFig{fig:18} gives the simulated slow shaper and SCA
503signals.
504
505\begin{figure}[!htbp]
506\centering
507\includegraphics[width=0.7\columnwidth]{img18.jpg}
508\caption{Slow shaper \& SCA simulation.}
509\label{fig:18}
510\end{figure}
511This charge, stored as a voltage value, is then converted in digital
512value thanks to the 8/10/12 bit Wilkinson ADC.
513
514%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
515\subsection{Time measurement}
516\label{ssec:Timemeas}
517%%%%%%%%%%%%%%%%%%%%%%%%%%%
518For each channel, a fine time measurement is performed by the analogue
519memory with a depth of 2 which samples a 12 bit ramp (100~ns), common
520for all channels, at the same time of the charge.
521
522In \refFig{fig:19} is represented the TDC Ramp general schematic. The current,
523which flows in feedback, charges the capacitance $C_f$ when the switch is
524off. When the switch is turned off, $C_f$ discharges. Signals \verb|start\_ramp| and
525\verb|start\_ramp\_b| manage the switches. The rising signal starts the ramp
526and the falling signal stop the ramp (\refFig{fig:19}).
527
528\begin{figure}[!htbp]
529\centering
530\begin{tabular}{rl}
531\includegraphics[width=0.5\columnwidth,height=6cm]{img19a.jpg}&
532\includegraphics[width=0.5\columnwidth,height=6cm]{img19b.jpg}
533\end{tabular}
534\caption{TDC Ramp general schematic.}
535\label{fig:19}
536\end{figure}
537In order to avoid the large falling time of the ramp due to the $C_f$
538discharge time and the problem of non linearity at the start and the
539end of ramp signal (\refFig{fig:20}), the real ramp is created from two
540ramps.
541
542\begin{figure}[!htbp]
543\centering
544\includegraphics[width=0.7\columnwidth]{img20.jpg}
545\caption{TDC Ramp.}
546\label{fig:20}
547\end{figure}
548
549The signal start ramp, coming from the digital
550part, enters in two delay cells. The two delayed signals create the
551first and second ramps. Commutating alternatively two switches the 100~ns ramp TDC is created
552(\refFig{fig:21} and \refFig{fig:22}).
553
554\begin{figure}[!htbp]
555\centering
556\includegraphics[width=0.7\columnwidth]{img21.jpg}
557\caption{TDC Ramp scheme.}
558\label{fig:21}
559\end{figure}
560
561\begin{figure}[!htbp]
562\centering
563\includegraphics[width=0.7\columnwidth]{img22.jpg}
564\caption{TDC Ramp simulation.}
565\label{fig:22}
566\end{figure}
567
568This time value, stored as a voltage value, is then converted in
569digital value tanks to the 8/10/12 bit Wilkinson ADC.
570
571%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
572\subsection{ADC ramp}
573\label{ssec:ADCramp}
574%%%%%%%%%%%%%%%%%%%%%%%%%%%
575In \refFig{fig:23} is represented the Ramp ADC general scheme. It is the
576same as TDC ramp one, the difference is in a variable current source
577which allows obtaining 8bit/10bit/12bit ADC according to the injected
578current. \refTab{tab:6} gives, for each ramp, the time duration to reach 3.3~V.
579
580\begin{figure}[!htbp]
581\centering
582\includegraphics[width=0.7\columnwidth]{img23.jpg}
583\caption{ADC ramp schematic.}
584\label{fig:23}
585\end{figure}
586
587\begin{table}
588\centering
589\caption{TO BE COMPLETED}
590\label{tab:6}
591\begin{tabular}{|l|l|}
592\hline
593 Header 1      & Header 2 \\
594 12 bit ADC & From 0.9~V to 3.3~V in $102.0~\mu{}$s \\
595 10 bit ADC & From 0.9~V to 3.3~V in $25.6~\mu{}$s \\
596 \phantom{ }8 bit ADC & From 0.9~V to 3.3~V in $6.4~\mu{}$s \\
597\hline
598\end{tabular}
599\end{table}
600
601Then the ADC ramp is compared thanks to a Discriminator to the voltage
602values, which corresponds to charge and fine time values, stored in the
603SCA. The digital converted DATA are then treated by the digital part.
604%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
605\subsection{Digital part}
606\label{ssec:Digital}
607%%%%%%%%%%%%%%%%%%%%%%%%%%%
608The digital part of PARISROC is built around 4 modules which are "`acquisition"', "`conversion"', "`readout"' and "`top manager"'. Actually, PARISROC is based on 2 memories. During acquisition,
609discriminated analog signals are stored into an analog memory (the SCA:
610switched capacitor array). The analog to digital conversion module
611converts analog charges and times from SCA into 12 bits digital values.
612These digital values are saved into registers (RAM). At the end of the
613cycle, the RAM is readout by an external system. The block diagram is
614given on \refFig{fig:24}.
615
616
617\begin{figure}[!htbp]
618\centering
619\includegraphics[width=0.7\columnwidth]{img24.jpg}
620\caption{Block diagram of the digital part.}
621\label{fig:24}
622\end{figure}
623
624This sequence is made thanks to the top manager module which controls
625the 3 other ones. When 1 or more channels are hit, it starts ADC
626conversion and then the readout of digitized data. The maximum cycle
627length is about $200~\mu$s. During
628conversion and readout, acquisition is never stopped. It means that
629discriminated analog signals can be stored in the SCA at any time of
630the sequence shown in on \refFig{fig:25}.
631
632\begin{figure}[!htbp]
633\centering
634\includegraphics[width=0.7\columnwidth]{img25.jpg}
635\caption{Top manager sequence.}
636\label{fig:25}
637\end{figure}
638
639The first module in the sequence is the acquisition
640which is dedicated to charge and fine time measurements. It manages the
641SCA where charge and fine time are stored as a voltage like. It also
642integrates the coarse time measurement thanks to a 24-bit gray counter
643with a resolution of 100~ns. Each channel has a depth of 2 for the SCA
644and they are managed individually. Besides, SCA is treated like a FIFO
645memory: analog voltage can be written, read and erased from this
646memory.
647
648
649\begin{figure}[!htbp]
650\centering
651\includegraphics[width=0.7\columnwidth]{img26.jpg}
652\caption{SCA analogue voltage}
653\label{fig:26}
654\end{figure}
655
656Then, the conversion module converts analog values stored in
657the SCA (charge and fine time: cf. \`refFig{fig:26}) in digital ones thanks to a 12-bit
658Wilkinson ADC. The counter clock frequency is 40~MHz, it implies a
659maximum ADC conversion time of $103~\mu$s
660when it overflows. This module makes 32 conversions in 1 run (16
661charges and 16 fine times).
662
663Finally, the readout module permits to empty all the registers
664to an external system. As it will only transfer hit channels, this
665module will tag each frame with its channel number: it works as a
666selective readout. The pattern used is composed of 4 data: 4-bit
667channel number, 24-bit coarse time, 12-bit charge and 12-bit fine time.
668The total length of one frame is 52 bits. The maximum readout time
669appears when all channels are hit. About 832 bits of data are
670transferred to the concentrator with a 10~MHz clock: the readout takes
671about $100~\mu$s with $1~\mu$s between 2 frames.
672
673%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
674\section{ASIC Laboratory tests}
675\label{sec:ASICLAbTest}
676%%%%%%%%%%%%%%%%%%%%%%%%%%%
677The PARISROC has been submitted in June 2008; a first batch of 6 ASICs
678has been produced and received in January 2009 (a second batch of 14
679ASICs in May 2009.
680
681The ASIC test has been a critical step in the PARISROC planning due to
682the ASIC complexity.A dedicated test board has been designed and realized for this purpose
683(\refFig{fig:27}). Its role is to allow the characterization of the chip and the
684communication between photomultipliers and ASIC. This is possible
685thanks to a dedicated Labview program that allows sending the ASIC
686configuration (slow control parameters; ASIC parameters, etc) and
687receiving the output bits via a USB cable connected to the test board.
688The Labview is developed by LAL.
689
690\begin{figure}[!htbp]
691\centering
692\includegraphics[width=0.7\columnwidth]{img27.jpg}
693\caption{Test Board.}
694\label{fig:27}
695\end{figure}
696
697%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
698\subsection{General tests}
699\label{ssec:GeneralTest}
700%%%%%%%%%%%%%%%%%%%%%%%%%%%
701On  \refFig{fig:28} is shown the Test Bench used in laboratory. It is composed by a
702test board, a signal generator, an oscilloscope, multimeters and PC to
703run labview program.
704
705\begin{figure}[!htbp]
706\centering
707\includegraphics[width=0.7\columnwidth]{img28.jpg}
708\caption{Test Bench.}
709\label{fig:28}
710\end{figure}
711
712The signal generator is a TEKTRONIX single
713channel function generator. It is used to create the input charge
714injected in the ASIC. The signal injected has the shaping as similar as
715possible to the PMT signal. On \refFig{fig:28} is represented the generator input
716signal and its characteristics.
717
718\begin{figure}[!htbp]
719\centering
720\includegraphics[width=0.7\columnwidth]{img29.jpg}
721%%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
722\caption{Input signals}
723\label{fig:29}
724\end{figure}
725
726At the beginning all the standard electrical
727characteristics have been tested: DC levels, analogue output signals,
728the analogue part characteristics and then the pedestals, the DAC
729linearity, S\-curves (trigger efficiency as a function of the injected
730charge or the threshold), the ADC linearity. The first purpose is the
731comparison between simulation results and test measurements; most of
732them are in agreement with the ASIC characteristics, obtained in
733simulation.
734%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
735\subsection{Analogue tests}
736\label{ssec:AnalogueTest}
737%%%%%%%%%%%%%%%%%%%%%%%%%%%
738The DC level characterization is the first step in ASIC
739characterization; in particular the DC uniformity of the analogue part
740DC level for the different channels has to be measured.
741
742In \refFig{fig:30} are represented the preamplifier, slow
743shaper and fast shaper DC uniformity plots. The DC uniformity test has a small dispersion
744of 0.4\%, 0.1\% and 0.05\% respectively for the preamplifier, the slow
745shaper and the fast shaper (\refTab{tab:7}).
746
747\begin{figure}[!htbp]
748\centering
749\begin{tabular}{c}
750\includegraphics[width=0.7\columnwidth,height=6cm]{img30a.jpg}\\
751\includegraphics[width=0.7\columnwidth,height=6cm]{img30b.jpg}\\
752\includegraphics[width=0.7\columnwidth,height=6cm]{img30c.jpg}
753\end{tabular}
754\caption{DC uniformity.}
755\label{fig:30}
756\end{figure}
757
758\begin{table}
759\centering
760\caption{TO BE COMPLETED}
761\label{tab:7}
762\begin{tabular}{|l|c|c|c|}
763\hline
764DC level & RMS \\
765Preamplifier & 3.8~mV (0.40~\%) \\ 
766Slow shaper  & 1.3~mV (0.10~\%) \\
767Fast shaper  & 1.0~mV (0.05\%\\
768\hline
769\end{tabular}
770\end{table}
771
772The second step is the analogue part output signals: Injecting a
773charge equivalent to 10~pe, and setting a preamplifier gain at 8, are
774observed and compared with simulation results all the output waveforms.
775
776There is a good agreement in preamplifier results ( \refFig{fig:31} and \refTab{tab:8}), the
777amplitude has the same value while time rise value has a difference of
7783~ns. This difference is due to the output buffer placed in the test
779board.
780
781\begin{figure}[!htbp]
782\centering
783                \begin{tabular}{rl}
784                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31a.jpg}&
785                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31b.jpg}
786                \end{tabular}
787\caption{Measurement and simulation of the preamplifier output for
788an input charge of 10~pe.}
789\label{fig:31}
790\end{figure}
791
792\begin{table}
793\centering
794\caption{TO BE COMPLETED. Preamplifier parameters.... $G_{pa} = 8$. WHY not same parameters 1~pe and 10~p.e}
795\label{tab:8}
796\begin{tabular}{|l|c|c|}
797\hline
798             &  Measurement    & Simulation \\
799\hline
800Maximum voltage (10~pe) & 50.00~mV  & 50.83~mV \\
801Rise time (10~pe) & 7.78~ns & 4.79~ns \\
802RMS noise &       1~mV       & 0.47~mV \\
803without USB cable & 0.66~mV  &         \\
804Noise in pe   & 0.2  & 0.086 \\
805without USB cable & 0.132 &         \\
806Maximum voltage (1~pe) & 5.00~mV  & 5.43~mV \\
807SNR (1~pe ????) & 5 & 11.6 \\
808without USB cable & 7.5 &         \\
809\hline
810\end{tabular}
811\end{table}
812
813The slow shaper waveforms are shown in \refFig{fig:32} while \refTab{tab:9} 
814summarizes the results. The first differences appear: a different value
815in amplitude for slow shaper signal and fast shaper signal that is
816probably associate, also, to the Output Buffer. The second relevant
817difference is in noise value, in particular in slow shaper noise
818performance (\refTab{tab:9}).
819
820\begin{figure}[!htbp]
821\centering
822                \begin{tabular}{rl}
823                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}&
824                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
825                \end{tabular}
826\caption{Measurement and simulation of the slow shaper output for an
827input charge of 10~pe.}
828\label{fig:32}
829\end{figure}
830
831\begin{table}
832\centering
833\caption{TO BE COMPLETED. $G_{pa} = 8$ and $RC = 50$~ns.}
834\label{tab:9}
835\begin{tabular}{|l|c|c|}
836\hline
837             &  Measurement    & Simulation \\
838\hline
839Maximum Voltage (10~pe) & 117~mV & 290~mV \\
840Rise time (10~pe) & 18.0~ns & 19.1~ns \\
841RMS noise &  4.0~mV & 1.7~mV \\
842Noise in pe &  0.3 & 0.08 \\
843Maximum Voltage (1~pe) & 12~mV & 19~mV \\
844SNR &  3 & 11  \\
845\hline
846\end{tabular}
847\end{table}
848
849The Fast shaper results are shown in \refFig{fig:33}
850and \refTab{tab:10}.
851\begin{figure}[!htb]
852        \centering
853                \begin{tabular}{rl}
854                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}&
855                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
856                \end{tabular}
857        \caption{Measurement and simulation of the fast shaper output for an
858input charge of 1 pe.}
859        \label{fig:33}
860\end{figure}
861
862
863\begin{table}
864\centering
865\caption{TO BE COMPLETED. $G_{pa} = 8$.}
866\label{tab:10}
867\begin{tabular}{|l|c|c|}
868\hline
869             &  Measurement    & Simulation \\
870\hline
871RMS noise &  2.5~mV & 2.4~mV \\
872Noise in pe &  0.08 & 0.05 \\
873Maximum Voltage (1~pe) & 30~mV & 42~mV \\
874SNR &  12 & 18  \\
875\hline
876\end{tabular}
877\end{table}
878Another important characteristic is the
879linearity. The output voltage in function of the input injected charge
880is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
881the preamplifier at different gains. \refTab{tab:11} summarizes the fit
882results of these linearities. Good linearity performances are shown by
883residuals (better than $\pm 2~\%$) value but for a
884smaller dynamic range than simulation.
885
886\begin{figure}[!htbp]
887\centering
888                \begin{tabular}{c}
889                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}\\
890                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}\\
891                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}\\
892                \end{tabular}
893\caption{Preamplifier linearity for different gains.}
894\label{fig:34}
895\end{figure}
896
897\begin{table}
898\centering
899        \caption{TO BE COMPLETED}
900        \label{tab:11}
901\begin{tabular}{|c|c|c|c|}
902\hline
903Preamplifier Gains & Maximum voltage & Charge/Nb of pe & Residuals \\
904\hline
9058                  &   0.52~V        & 12~pC / 78~pe & -1.0~\% to 0.8~\% \\
9064                  &   0.64~V        & 32~pC / 198~pe & -1.0~\% to 1.0~\% \\
9072                  &   0.51~V        & 50~pC / 312~pe & -2.0~\% to 1.5~\% \\
908\hline
909\end{tabular}
910\end{table}
911
912
913\refFig{fig:35} represents an example of slow shaper
914linearity for a time constant of 50~ns and  a preamplifier gain of 8
915with residuals better than $pm 1~\%$.
916
917\begin{figure}[!htbp]
918\centering
919\includegraphics[width=0.7\columnwidth]{img35.jpg}
920\caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
921\label{fig:35}
922\end{figure}
923
924\refFig{fig:36} gives an example of the fast shaper linearity until an injected
925charge of 10~pe. Residuals better than $ \pm 2~\%$
926are obtained.
927
928\begin{figure}[!htbp]
929\centering
930\includegraphics[width=0.7\columnwidth]{img36.jpg}
931\caption{Fast shaper linearity up to 10~pe.}
932\label{fig:36}
933\end{figure}
934
935The preamplifier linearity in function of
936variable feedback capacitor value with an input charge of 10~pe and
937with residuals from $-2.5~\%$ to $1.4~\%$ is represented on \refFig{fig:37} . The gain
938adjustment linearity is nice at 2~\% on 8 bits.
939
940\begin{figure}[!htbp]
941\centering
942\includegraphics[width=0.7\columnwidth]{img37.jpg}
943\caption{Preamplifier linearity vs feedback capacitor value.}
944\label{fig:37}
945\end{figure}
946
947On \refFig{fig:38}  is given the gain uniformity. For the
948different preamplifier gains is plotted the maximum voltage value for
949all channels in order to investigate the homogeneity among the whole
950chip, essential for a multichannels ASIC. Residual dispersion of 0.05~\%,
9510.013~\% and 0.012~\% have respectively been obtained for gain 8, 4 and
9522.
953
954\begin{figure}[!htbp]
955\centering
956\includegraphics[width=0.7\columnwidth]{img38.jpg}
957\caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
958\label{fig:38}
959\end{figure}
960
961%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
962\subsection{DAC linearity}
963\label{ssec:DAClinearity}
964%%%%%%%%%%%%%%%%%%%%%%%%%%%
965The DAC linearity has been measured and it consists in measuring the
966voltage DAC ($V_{dac}$) amplitude obtained for different DAC register
967values. \refFig{fig:39} gives the evolution of $V_{dac}$ as a function of the register for the two
968DACs and residuals from $-0.1~\%$ to $0.1~\%$.
969
970\begin{figure}[!htbp]
971\centering
972                \begin{tabular}{rl}
973                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39a.jpg}&
974                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39b.jpg}
975                \end{tabular}
976\caption{DAC linearity; DAC1 and DAC2 respectively.}
977\label{fig:39}
978\end{figure}
979%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
980\subsection{Trigger output}
981\label{ssec:TriggerMeas}
982%%%%%%%%%%%%%%%%%%%%%%%%%%%
983The trigger output behavior was studied scanning the threshold for
984different injected charges. At first no charge was injected which
985corresponds to measure the fast shaper pedestal. The result is
986represented on \refFig{fig:40}  for each channel. The  S-curves
987are superimposed meaning good homogeneity. The spread
988is of one DAC count ($LSB DAC = 1.78$~mV) or 0.06~pe.
989
990\begin{figure}[!htbp]
991\centering
992\includegraphics[width=0.7\columnwidth]{img40.jpg}
993\caption{Pedestal S-curves for channel 1 to 16.}
994\label{fig:40}
995\end{figure}
996
997The trigger efficiency was then measured for a
998fixed injected charge of 10~pe. On \refFig{fig:41} are represented the S-curves
999obtained with 200 measurements of the trigger for all channels varying
1000the threshold. The homogeneity is proved by a spread of 7 DAC unit (0.4~pe) and a noise of 0.07 pe ($RMS =2.19$).
1001
1002\begin{figure}[!htbp]
1003\centering
1004                \begin{tabular}{rl}
1005                        \multicolumn{2}{c}{\includegraphics[width=0.5\columnwidth,height=6cm]{img41a.jpg}}\\
1006                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41b.jpg}&
1007                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41c.jpg}
1008                \end{tabular}
1009\caption{Fast shaper and trigger (top panel); S-curves for input of 10~pe (left panel);
1010uniformity plot for channel 1 to 16 (right panel).}
1011\label{fig:41}
1012\end{figure}
1013
1014The trigger output is studied also by scanning
1015the threshold for a fixed channel and changing the injected charge. On \refFig{fig:42}
1016on the left panel  is shown the trigger efficiency versus the DAC unit and on
1017the right panel is plotted the threshold versus the injected charge but only
1018until 0.5~pC. From these measurements a noise of 10~fC has been
1019extrapolated. Therefore the threshold is only possible above $10~\sigma$ of the noise due to the discriminator coupling
1020(\refFig{fig:43}).
1021
1022\begin{figure}[!htbp]
1023\centering
1024                \begin{tabular}{rl}
1025                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}&
1026                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
1027                \end{tabular}
1028\caption{Trigger efficiency vs DAC count up to 300~pe (left panel) and
1029until 3~pe (right panel).}
1030\label{fig:42}
1031\end{figure}
1032
1033\begin{figure}[!htbp]
1034\centering
1035\includegraphics[width=0.7\columnwidth]{img43.jpg}
1036\caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
1037\label{fig:43}
1038\end{figure}
1039
1040The trigger coupling illustrated in \refFig{fig:44} with the
1041injected charge in channel 1 and output signal observed in channel 2,
1042shows a coupling signal around 25~mV (10~fC). This coupling signal is
1043due, probably, to the input power supply ($V_{dd-pa}$ and $V_{ss}$).
1044
1045\begin{figure}[!htbp]
1046\centering
1047\includegraphics[width=0.7\columnwidth]{img44.jpg}
1048\caption{Trigger coupling signal.}
1049\label{fig:44}
1050\end{figure}
1051
1052%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1053\subsection{ADC characterisation}
1054\label{ssec:ADCMeas}
1055%%%%%%%%%%%%%%%%%%%%%%%%%%%
1056The ADC performance has been studied alone and with the whole chain. Injecting to the
1057 ADC input directly a DC voltage by the internal DAC,
1058in order to have a voltage level as stable as possible, were measured
1059the ADC values for all channels (\refFig{fig:45}).
1060
1061The measurement is repeated 10000 times for
1062each channel and in the first plot of the LabView front panel window (\refFig{fig:45}). The
1063minimal, maximal and mean values, over all acquisitions, for each
1064channel are plotted. In the second plot there is the rms charge value
1065versus channel number with a value in the range $[0.5, 1]$ ADC unit.
1066Finally the third plot shows an example of charge amplitude
1067distribution for a single channel: a spread of 5 ADC counts is
1068obtained.
1069
1070\begin{figure}[!htbp]
1071\centering
1072\includegraphics[width=0.7\columnwidth]{img45.jpg}
1073\caption{ADC measurements with DC input 1.45~V (middle scale).}
1074\label{fig:45}
1075\end{figure}
1076
1077The ADC is suited to a multichannel conversion
1078so the uniformity and linearity are studied in order to characterize
1079the ADC behaviour. On \refFig{fig:46} is represented the ADC transfer function for the
108010-bit ADC versus the input voltage level. All channels are represented
1081and have plots superimposed.
1082
1083\begin{figure}[!htbp]
1084\centering
1085\includegraphics[width=0.7\columnwidth]{img46.jpg}
1086\caption{10  bits ADC transfer function vs input charge.}
1087\label{fig:46}
1088\end{figure}
1089
1090The good homogeneity observed is confirmed by
1091the linear fit parameters comparison. In  are plotted the slope and the
1092intercept distributions for all channels. The RMS slope value of 0.143
1093and the RMS intercept value of 0.3 confirm the 10-bits ADC uniformity
1094(\refTab{tab:12}).
1095
1096\begin{figure}[!htbp]
1097\centering
1098                \begin{tabular}{rl}
1099                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47a.jpg}&
1100                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47b.jpg}
1101                \end{tabular}
1102\caption{Evolution of the fit parameters (slope on the
1103left panel and intercept on the right panel) as a function of the channel
1104number.}
1105\label{fig:47}
1106\end{figure}
1107
1108\begin{table}
1109\centering
1110\caption{TO BE COMPLETED. 10 bits ADC parameter fits.... 25 acquisitions per channel, $LSB = 1.06$~mV...}
1111\label{tab:12}
1112\begin{tabular}{|l|c|c|}
1113\hline
1114   & Slope      & Intercept \\
1115Mean & 936.17   & 859.8 \\
1116RMS  & 0.14     & 0.3   \\ 
1117\hline
1118\end{tabular}
1119\end{table}
1120
1121In \refFig{fig:48} are shown respectively the 12, 10 and 8 bits ADC
1122linearity plots with the 25 measurements made for each input voltage
1123level. The average ADC count value is plotted versus the input signal.
1124The residuals from $-1.5$ to $0.9$ ADC units for the 12-bits ADC; from $-0.5$
1125to $0.4$ for the 10-bit ADC and from $-0.5$ to $0.5$ for the 8-bit ADC. This prove
1126the good ADC behaviour in terms of Integral non linearity.
1127
1128\begin{figure}[!htbp]
1129\centering
1130                \begin{tabular}{c}
1131                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
1132                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48b.jpg}\\
1133                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48c.jpg}
1134                \end{tabular}
1135\caption{12, 10, 8 bit ADC linearity.}
1136\label{fig:48}
1137\end{figure}
1138In terms of Differential non linearity, the
1139value from $-1.0$ to $0.65$ for the 10 bit ADC and from $-0.3$ to $0.2$ for the 8
1140bit ADC, show us a good behaviour even if the plots are the results of
1141preliminary measurements.
1142
1143\begin{figure}[!htbp]
1144        \centering
1145                \begin{tabular}{rl}
1146                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}&
1147                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
1148                \end{tabular}
1149\caption{Differential non linearity.}
1150\label{fig:49}
1151\end{figure}
1152
1153Once the ADC performances have been tested
1154separately, the measurements are performed on the complete chain. The
1155results of the input signal autotriggered, held in the T\&H and
1156converted in the ADC are illustrated in  where are plotted the 10-bit
1157ADC counts in function of the variable input charge (up to 50~pe). A
1158good linearity of $1.4~\%$ and a noise of 6 ADC units are obtained. In \refTab{tab:13}
1159are listed the setting value for measurements.
1160
1161\begin{table}
1162        \centering
1163        \caption{TO BE COMPELTED. $G_{pa}=14$ ($C_{in}=7$~pF , $C_f=0.5$~pF),
1164Slow shaper $RC=50$~ns,
1165DAC delay: $bit<0> = 1$ \& $bit<2> = 1$.
1166}
1167        \label{tab:13}
1168\begin{tabular}{|l|c|c|c|}
1169\hline
1170Parameters & 12 bits ADC & 10 bits ADC & 8 bits ADC\\
1171\hline 
1172LSB         & $0.27$ & $1.06$~mV  & $4.26$~mV\\
1173Min ADC count at 3~pe& $509$ &  $132$ & $33$  \\
1174Max ADC count at 50~pe & $3873$ &  $989$ & $241$ \\
1175Residuals in ADC units &$[21,54]$ & $[6,14]$  & $[2,3]$ \\
1176\hline
1177\end{tabular}
1178\end{table}
1179
1180\begin{figure}[!htbp]
1181\centering
1182\includegraphics[width=0.7\columnwidth]{img50.jpg}
1183\caption{10 bit ADC linearity.}
1184\label{fig:50}
1185\end{figure}
1186
1187On \refFig{fig:51} is plotted the 8-bit linearity at $1.4~\%$
1188and a noise of 1.53 ADC unit. In \refTab{tab:13} are listed the setting value for
1189measurements.
1190
1191\begin{figure}[!htbp]
1192\centering
1193\includegraphics[width=0.7\columnwidth]{img51.jpg}
1194\caption{8 bit ADC linearity.}
1195\label{fig:51}
1196\end{figure}
1197
1198On  \refFig{fig:53} is plotted the 12-bit linearity
1199at $1.4~\%$ and a noise of 23.69 ADC unit. In \refTab{tab:13} are listed the setting
1200value for measurements.
1201
1202\begin{figure}[!htbp]
1203\centering
1204\includegraphics[width=0.7\columnwidth]{img52.jpg}
1205\caption{12 bit ADC linearity.}
1206\label{fig:52}
1207\end{figure}
1208
1209%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1210\section{Measurements with PMTs}
1211\label{sec:MeasWithPMT}
1212%%%%%%%%%%%%%%%%%%%%%%%%%%%
1213The first measurements with a photomultiplier at input are started in
1214IPNO at Orsay.
1215
1216\begin{figure}[!htbp]
1217\centering
1218\includegraphics[width=0.7\columnwidth]{img53.jpg}
1219\caption{TO BE COMPLETED}
1220\label{fig:53}
1221\end{figure}
1222
1223\acknowledgments
1224%\begin{acknowledgments}
1225This work, especially one of the author, is supported by the National Reasaerch Agency under contract ANR-06-BLAN-0186.
1226%\end{acknowledgments}
1227%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1228\newpage
1229%\section*{References}
1230\bibliography{campagne}
1231\end{document}
1232
1233
Note: See TracBrowser for help on using the repository browser.