Changeset 482 for Selma


Ignore:
Timestamp:
Sep 10, 2009, 9:44:46 AM (15 years ago)
Author:
conforti
Message:
 
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Selma/PARISROC/parisroc-jinst.tex

    r478 r482  
    2121%
    2222
    23 \author{S. Conforti$^a$, Second Author$^b$\thanks{Corresponding
    24 author.}~ and Third Author$^b$\\
    25 \llap{$^a$}Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud 11,
     23\author{Selma Conforti Di Lorenzo$^a$, J. E Campagne$^a$, Christophe De La Taille$^a$, Sebastien Drouet$^b$, Dominique Duchesneau$^c$, Frederic Dulucq$^a$, Nicolas Dumon-Dayot$^c$, Abdelmowafak El Berni$^a$, Alexandre Gallas$^a$, Bernard Genolini$^b$, Kael Hanson$^d$, Richard Hermel$^c$, Gisele Martin-Chassard$^a$, T. Nguyen Trung$^b$, Jean Peyré$^b$, Joël Pouthas$^b$, Emmanuel Rindel$^b$, Philippe Rosier$^b$, Jean Tassan Viol$^c$, Eric Wanlin$^b$, Wei Wei$^e$, Xiongbo Yan$^e$, Beng Yun Ki$^b$, A. Zghiche$^c$.\\
     24\\
     25\llap{$^a$}Laboratoire de l'Accélérateur Linéaire,IN2P3-CNRS, Université Paris-Sud 11,
    2626Bât. 200, 91898 Orsay Cedex, France\\
    27 \llap{$^b$}Name of Institute,\\
    28   Address, Country\\
    29   E-mail: \email{conforti@lal.in2p3.fr}}
     27\llap{$^b$}Institut de Physique Nucléaire d'Orsay,
     28IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex, France\\
     29\llap{$^c$}Laboratoire d'Annecy-le-vieux de Physique des Particules
     30IN2P3-CNRS,Université de Haute Savoie\\
     31\llap{$^d$}Université Libre de Bruxelles,
     32Université d'Europe Bruxelles\\
     33\llap{$^e$}IHEP,
     34Beijing, China\\
     35
     36E-mail: \email{conforti@lal.in2p3.fr}}
    3037
    3138
     
    3542PARISROC is a complete read
    3643out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
    37 \cite{Genolini:2008uc}
     44\cite{ref1}
    3845%[1]
    3946, for photomultipliers array. It allows triggerless acquisition for
     
    4249PMm2: "`Innovative electronics for photodetectors array
    4350used in High Energy Physics and Astroparticles"'
    44 \cite{PMm2Site:2006}
     51\cite{ref2}
    4552%[2]
    4653(ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
     
    7077The PMm2 project: "`Innovative electronics for
    7178photodetectors array used in High Energy Physics and
    72 Astroparticles"' \cite{PMm2Site:2006}
     79Astroparticles"' \cite{ref2}
    7380%[2]
    7481proposes to segment the large surface of photodetection in macro
    7582pixel consisting of an array of 16 photomultipliers connected to an
    76 autonomous front-end electronics () and powered by a common High
     83autonomous front-end electronics (\refFig{fig:1}) and powered by a common High
    7784Voltage. These large detectors are used in next generation proton decay
    7885and neutrino experiment (i.e. the post-SuperKamiokande detectors as
     
    8188data. The micro-electronics group's (OMEGA from the LAL at Orsay)
    8289purpose is the front-end electronics conception and
    83 realization. This R\&D \cite{PMm2Site:2006}
     90realization. This R\&D \cite{ref2}
    8491%[2]
    8592involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
     
    95102\begin{figure}[!htbp]
    96103\begin{center}
    97 \includegraphics[width=0.7\columnwidth]{img1.jpg}
     104\includegraphics[width=0.5\columnwidth,height=10cm]{img1.jpg}
    98105\caption{Principal of PMm2 proposal for megaton scale Cerenkov water
    99106tank.}
     
    106113the next generation neutrino experiments will require a bigger surface
    107114of photo detection and thus more photomultipliers. As a consequence the
    108 total cost has an important relief \cite{Genolini:2008uc}.
     115total cost has an important relief \cite{ref1}.
     116The project proposes to use 12" PMts with an improved cost ( by factor of 1.6 in comparison to 20 ") per unit of surface area and detected p.e (cost/QE*CE). This is mainly due to the different industrial fabrication of the PMTs, the better photon detection efficiency and a better reliability.
     117The reduced costs are, also, due to:
     118
    109119\begin{itemize}
    110120        \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
     
    119129The general principle of PMm2 project is that the ASIC and a FPGA
    120130manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
    121 
     131Alternative options may be chosen considering an analysis of the risks of this
     132full underwater strategy,one of these is that the Front-End electronics can be used
     133in a traditional schema with the electronic "in surface".
     134PARISROC can be perfectly integrated in a surface scheme.
     135
     136\begin{center}
    122137\begin{figure}[!!htbp]
    123 \centering
    124 \includegraphics[width=0.7\columnwidth]{img2.jpg}
     138\includegraphics[width=0.7\columnwidth,height=6cm]{img2.jpg}
    125139\caption{Principle of the PMm2 project.}
    126140\label{fig:2}
    127141\end{figure}
    128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     142\end{center}
     143
    129144\section{PARISROC architecture}
    130145\label{sec:PARISROCArchi}
     146%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     147\subsection{Requirements}
     148\label{ssec:Requirements}
     149%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     150The physics events, researched in this detectors, produce Cerenkov light that is spread over the PMTs. The number of events in this kind of experiences is "rare" and the number of pe per Mev deposed in the water is of 10pe/MeV on one circular scheme over 10000 PMTs. So for few MeV events the small number of p.e is spread over a large number of PMTs and as consequence is necessary being fully efficient to detect a single photo-electron (p.e).
     151For large energy events (such as supernova events) it is shown, in Superkamiokande experiment, that the dynamic range for a single PM should cover up to few hundred p.e (300pe).
     152All the type of events considered must be registered without any direct external trigger, this later is called 'triggerless mode'.
     153A precise time stamp of each event is required to reconstruct the topology of the events and so to synchronize the events among PMTs in each array and among the different arrays.
     154This aspect brought to an requirement: an electronic with full independent channels.
     155The most demanding in term of timing is the vertex reconstruction that needs typically 1 ns resolution.
     156The pe, reached by the PMTs, are multiplied with a gain G of 3*106; this value is owed to a cost reason. The array of PMTs is not homogeneous in terms of gain because of the common HV. A better homogeneity should have brought to an increasing of the costs.
     157It was estimate from a study that the gain dispersion at a given voltage is such that the ratio between the highest and the lowest gain is not more than 12. It is possible for the manufacturer to sort the PMTs at a reasonable cost when they are produced at a very large scale: the gain ratio can be reduced ton 6 in a batch of 16 PMTs.
     158To compensate this not homogeneity a preamplifier with a variable and adjustable gain is required (structure explain in the next section.
     159Finally the electronic requirements must be:
     160\begin{itemize}
     161        \item 1pe of efficiency
     162        \item triggerless       
     163        \item 1ns of time resolution
     164        \item high granularity
     165        \item scalability
     166        \item low cost
     167        \item independent channels
     168        \item charge and time measurement
     169        \item water-tight, common High Voltage
     170        \item only one wire out (DATA + VCC)
     171\end{itemize}
     172
     173%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     174%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     175\subsection{Analogue Channel description and simulations}
     176\label{ssec:AnalogChannel}
     177%%%%%%%%%%%%%%%%%%%%%%%%%%%
    131178The ASIC Parisroc is composed of 16 analogue channels managed by a
    132179common digital part (\refFig{fig:3}).
    133180
    134 \begin{figure}[!htbp]
    135 \centering
    136 \includegraphics[width=0.7\columnwidth]{img3.jpg}
     181\begin{center}
     182\begin{figure}[!htbp]
     183\includegraphics[width=0.7\columnwidth,height=6cm]{img3.jpg}
    137184\caption{PARISROC global schematic.}
    138185\label{fig:3}
    139186\end{figure}
    140 
    141 Each analogue channel is made of a low noise preamplifier with
    142 variable and adjustable gain. The variable gain is common for all
    143 channels and it can change from 8 to 1 on 4 bits. The gain is also
    144 tuneable channel by channel to adjust the input detector's gain, up to
    145 a factor 4 to an accuracy of 7\% with 8 bits.
    146 
     187\end{center}
     188
     189Each analog channel is made of a low noise preamplifier with variable and adjustable gain. 
     190The variable gain is common for all channels and it can change on 4 bits thanks to the input variable capacitance
     191(Cin from 1 to 4 pF). The gain is also tuneable channel by channel, to adjust the input detector not homogeneous gains,
     192on 8 bit thanks to a feedback variable capacitance (Cf from 1 to 0.007pF with step of 1/2).
     193The gain (G=Cin/Cf) can be adjustable on 8 bit for each channel.
    147194The preamplifier is followed by a slow channel for the charge
    148195measurement in parallel with a fast channel for the trigger output.
     
    171218threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
    172219
    173 \begin{figure}[!htbp]
    174 \centering
    175 \includegraphics[width=0.7\columnwidth]{img4.jpg}
     220\begin{center}
     221\begin{figure}[!htbp]
     222\includegraphics[width=0.7\columnwidth,height=6cm]{img4.jpg}
    176223\caption{PARISROC Layout.}
    177224\label{fig:4}
    178225\end{figure}
    179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    180 \subsection{Analogue Channel description and simulations}
    181 \label{ssec:AnalogChannel}
    182 %%%%%%%%%%%%%%%%%%%%%%%%%%%
     226\end{center}
     227
    183228\refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
    184229part.
    185230
    186 \begin{figure}[!htbp]
    187 \centering
    188 \includegraphics[width=0.7\columnwidth]{img5.jpg}
     231\begin{center}
     232\begin{figure}[!htbp]
     233\includegraphics[width=0.7\columnwidth,height=6cm]{img5.jpg}
    189234\caption{PARISROC one channel analogue part schematic.}
    190235\label{fig:5}
    191236\end{figure}
     237\end{center}
     238
     239
    192240%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    193241\subsection{Preamplifier}
     
    203251gain dispersion due to a use of a common HV.
    204252
    205 
    206 \begin{figure}[!htbp]
    207 \centering
    208 \includegraphics[width=0.7\columnwidth]{img6.jpg}
     253\begin{center}
     254\begin{figure}[!htb]
     255\includegraphics[width=0.7\columnwidth,height=6cm]{img6.jpg}
    209256        \caption{PARISROC preamplifier schematic.}
    210257        \label{fig:6}
    211258\end{figure}
    212 
     259\end{center}
    213260
    214261The preamplifier is designed as a voltage
     
    232279to use an OTA as the dc feedback amplifier.
    233280
    234 In  \refFig{fig:7} are shown preamplifier's output waveforms
     281In \refFig{fig:7} are shown preamplifier's output waveforms
    235282for fixed gain and different input signal (left panel) and for fixed
    236283input signal and different preamplifier gain (right panel).
    237284
    238 \begin{figure}[!htbp]
    239 \centering
     285\begin{center}
     286\begin{figure}[!htbp]
    240287\begin{tabular}{rl}
    241288\includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} &
    242289\includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
    243290\end{tabular}
    244 \caption{Simulated preamplifier output waveforms for different input
     291        \caption{Simulated preamplifier output waveforms for different input
    245292signals with fixed gain (left panel) and for fixed input
    246293signal at different gain (different input capacitor values (right
    247294panel).}
    248 \label{fig:7}
    249 \end{figure}
     295        \label{fig:7}
     296\end{figure}
     297\end{center}
    250298
    251299The input signal, used in simulation, is a triangle signal with 4.5~ns
     
    255303to 300 photo-electrons when the PM gain is $10^{6}$.
    256304
    257 
    258 \begin{figure}[!htbp]
    259 \centering
    260 \includegraphics[width=0.7\columnwidth]{img8.jpg}
     305\begin{center}
     306\begin{figure}[!htbp]
     307\includegraphics[width=0.7\columnwidth,height=6cm]{img8.jpg}
    261308\caption{Simulation input signal.}
    262309\label{fig:8}
    263310\end{figure}
     311\end{center}
    264312
    265313The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
     
    267315gains and shows a good linearity (better than $\pm 1\%$).
    268316
    269 \begin{figure}[!htbp]
    270 \centering
    271 \includegraphics[width=0.7\columnwidth]{img9.jpg}
     317\begin{center}
     318\begin{figure}[!htbp]
     319\includegraphics[width=0.7\columnwidth,height=6cm]{img9.jpg}
    272320\caption{Preamplifier linearity.}
    273321\label{fig:9}
    274322\end{figure}
     323\end{center}
    275324
    276325
     
    296345\refTab{tab:2} summarizes the results obtained.
    297346
    298 \begin{figure}[!htbp]
    299 \centering
    300 \includegraphics[width=0.7\columnwidth]{img10.jpg}
     347\begin{center}
     348\begin{figure}[!htbp]
     349\includegraphics[width=0.7\columnwidth,height=6cm]{img10.jpg}
    301350\caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
    302351$C_{f}=0.5$~pF.}
     352\end{figure}
    303353\label{fig:10}
    304 \end{figure}
     354\end{center}
    305355
    306356\begin{table}
     
    329379\begin{figure}[!htbp]
    330380\centering
    331 \includegraphics[width=0.7\columnwidth]{img11.jpg}
     381\includegraphics[width=0.7\columnwidth,height=6cm]{img11.jpg}
    332382\caption{Fast shaper schematics.}
    333383\label{fig:11}
     
    398448\begin{figure}[!htbp]
    399449\centering
    400 \includegraphics[width=0.7\columnwidth]{img14.jpg}
     450\includegraphics[width=0.7\columnwidth,height=6cm]{img14.jpg}
    401451\caption{SCA (switched capacitor array) scheme.}
    402452\label{fig:14}
     
    412462\begin{figure}[!htbp]
    413463\centering
    414 \includegraphics[width=0.7\columnwidth]{img15.jpg}
     464\includegraphics[width=0.7\columnwidth,height=6cm]{img15.jpg}
    415465\caption{Operation of T\&H cell.}
    416466\label{fig:15}
     
    478528\begin{figure}[!htbp]
    479529\centering
    480 \includegraphics[width=0.7\columnwidth]{img17.jpg}
     530\includegraphics[width=0.7\columnwidth,height=6cm]{img17.jpg}
    481531\caption{Slow shaper linearity simulation.}
    482532\label{fig:17}
     
    505555\begin{figure}[!htbp]
    506556\centering
    507 \includegraphics[width=0.7\columnwidth]{img18.jpg}
     557\includegraphics[width=0.7\columnwidth,height=6cm]{img18.jpg}
    508558\caption{Slow shaper \& SCA simulation.}
    509559\label{fig:18}
     
    542592\begin{figure}[!htbp]
    543593\centering
    544 \includegraphics[width=0.7\columnwidth]{img20.jpg}
     594\includegraphics[width=0.7\columnwidth,height=6cm]{img20.jpg}
    545595\caption{TDC Ramp.}
    546596\label{fig:20}
     
    554604\begin{figure}[!htbp]
    555605\centering
    556 \includegraphics[width=0.7\columnwidth]{img21.jpg}
     606\includegraphics[width=0.7\columnwidth,height=6cm]{img21.jpg}
    557607\caption{TDC Ramp scheme.}
    558608\label{fig:21}
     
    561611\begin{figure}[!htbp]
    562612\centering
    563 \includegraphics[width=0.7\columnwidth]{img22.jpg}
     613\includegraphics[width=0.7\columnwidth,height=6cm]{img22.jpg}
    564614\caption{TDC Ramp simulation.}
    565615\label{fig:22}
     
    580630\begin{figure}[!htbp]
    581631\centering
    582 \includegraphics[width=0.7\columnwidth]{img23.jpg}
     632\includegraphics[width=0.7\columnwidth,height=6cm]{img23.jpg}
    583633\caption{ADC ramp schematic.}
    584634\label{fig:23}
     
    617667\begin{figure}[!htbp]
    618668\centering
    619 \includegraphics[width=0.7\columnwidth]{img24.jpg}
     669\includegraphics[width=0.7\columnwidth,height=6cm]{img24.jpg}
    620670\caption{Block diagram of the digital part.}
    621671\label{fig:24}
     
    632682\begin{figure}[!htbp]
    633683\centering
    634 \includegraphics[width=0.7\columnwidth]{img25.jpg}
     684\includegraphics[width=0.7\columnwidth,height=6cm]{img25.jpg}
    635685\caption{Top manager sequence.}
    636686\label{fig:25}
     
    649699\begin{figure}[!htbp]
    650700\centering
    651 \includegraphics[width=0.7\columnwidth]{img26.jpg}
     701\includegraphics[width=0.7\columnwidth,height=6cm]{img26.jpg}
    652702\caption{SCA analogue voltage}
    653703\label{fig:26}
     
    690740\begin{figure}[!htbp]
    691741\centering
    692 \includegraphics[width=0.7\columnwidth]{img27.jpg}
     742\includegraphics[width=0.7\columnwidth,height=6cm]{img27.jpg}
    693743\caption{Test Board.}
    694744\label{fig:27}
     
    705755\begin{figure}[!htbp]
    706756\centering
    707 \includegraphics[width=0.7\columnwidth]{img28.jpg}
     757\includegraphics[width=0.7\columnwidth,height=6cm]{img28.jpg}
    708758\caption{Test Bench.}
    709759\label{fig:28}
     
    718768\begin{figure}[!htbp]
    719769\centering
    720 \includegraphics[width=0.7\columnwidth]{img29.jpg}
     770\includegraphics[width=0.7\columnwidth,height=6cm]{img29.jpg}
    721771%%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
    722772\caption{Input signals}
     
    821871\centering
    822872                \begin{tabular}{rl}
    823                         \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}&
     873                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}
    824874                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
    825875                \end{tabular}
     
    852902        \centering
    853903                \begin{tabular}{rl}
    854                         \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}&
     904                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}
    855905                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
    856906                \end{tabular}
     
    879929linearity. The output voltage in function of the input injected charge
    880930is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
    881 the preamplifier at different gains. \refTab{tab:11} summarizes the fit
     931the preamplifier at different gains. \refTab{11} summarizes the fit
    882932results of these linearities. Good linearity performances are shown by
    883933residuals (better than $\pm 2~\%$) value but for a
     
    887937\centering
    888938                \begin{tabular}{c}
    889                         \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}\\
    890                         \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}\\
    891                         \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}\\
     939                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}
     940                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}
     941                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}
    892942                \end{tabular}
    893943\caption{Preamplifier linearity for different gains.}
     
    917967\begin{figure}[!htbp]
    918968\centering
    919 \includegraphics[width=0.7\columnwidth]{img35.jpg}
     969\includegraphics[width=0.7\columnwidth,height=6cm]{img35.jpg}
    920970\caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
    921971\label{fig:35}
     
    928978\begin{figure}[!htbp]
    929979\centering
    930 \includegraphics[width=0.7\columnwidth]{img36.jpg}
     980\includegraphics[width=0.7\columnwidth,height=6cm]{img36.jpg}
    931981\caption{Fast shaper linearity up to 10~pe.}
    932982\label{fig:36}
     
    940990\begin{figure}[!htbp]
    941991\centering
    942 \includegraphics[width=0.7\columnwidth]{img37.jpg}
     992\includegraphics[width=0.7\columnwidth,height=6cm]{img37.jpg}
    943993\caption{Preamplifier linearity vs feedback capacitor value.}
    944994\label{fig:37}
     
    9541004\begin{figure}[!htbp]
    9551005\centering
    956 \includegraphics[width=0.7\columnwidth]{img38.jpg}
     1006\includegraphics[width=0.7\columnwidth,height=6cm]{img38.jpg}
    9571007\caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
    9581008\label{fig:38}
     
    9901040\begin{figure}[!htbp]
    9911041\centering
    992 \includegraphics[width=0.7\columnwidth]{img40.jpg}
     1042\includegraphics[width=0.7\columnwidth,height=6cm]{img40.jpg}
    9931043\caption{Pedestal S-curves for channel 1 to 16.}
    9941044\label{fig:40}
     
    10231073\centering
    10241074                \begin{tabular}{rl}
    1025                         \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}&
     1075                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}
    10261076                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
    10271077                \end{tabular}
     
    10331083\begin{figure}[!htbp]
    10341084\centering
    1035 \includegraphics[width=0.7\columnwidth]{img43.jpg}
     1085\includegraphics[width=0.7\columnwidth,height=6cm]{img43.jpg}
    10361086\caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
    10371087\label{fig:43}
     
    10441094
    10451095\begin{figure}[!htbp]
    1046 \centering
    1047 \includegraphics[width=0.7\columnwidth]{img44.jpg}
     1096\includegraphics[width=0.7\columnwidth,height=6cm]{img44.jpg}
    10481097\caption{Trigger coupling signal.}
    10491098\label{fig:44}
     
    10701119\begin{figure}[!htbp]
    10711120\centering
    1072 \includegraphics[width=0.7\columnwidth]{img45.jpg}
     1121\includegraphics[width=0.7\columnwidth,height=6cm]{img45.jpg}
    10731122\caption{ADC measurements with DC input 1.45~V (middle scale).}
    10741123\label{fig:45}
     
    10831132\begin{figure}[!htbp]
    10841133\centering
    1085 \includegraphics[width=0.7\columnwidth]{img46.jpg}
     1134\includegraphics[width=0.7\columnwidth,height=6cm]{img46.jpg}
    10861135\caption{10  bits ADC transfer function vs input charge.}
    10871136\label{fig:46}
     
    11301179                \begin{tabular}{c}
    11311180                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
    1132                         \includegraphics[width=0.7\columnwidth,height=6cm]{img48b.jpg}\\
    1133                         \includegraphics[width=0.7\columnwidth,height=6cm]{img48c.jpg}
     1181                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48b.jpg}\\
     1182                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48c.jpg}
    11341183                \end{tabular}
    11351184\caption{12, 10, 8 bit ADC linearity.}
     
    11411190preliminary measurements.
    11421191
    1143 \begin{figure}[!htbp]
     1192\begin{figure}[!htb]
    11441193        \centering
    11451194                \begin{tabular}{rl}
    1146                         \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}&
     1195                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}
    11471196                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
    11481197                \end{tabular}
     
    11801229\begin{figure}[!htbp]
    11811230\centering
    1182 \includegraphics[width=0.7\columnwidth]{img50.jpg}
     1231\includegraphics[width=0.7\columnwidth,height=6cm]{img50.jpg}
    11831232\caption{10 bit ADC linearity.}
    11841233\label{fig:50}
     
    11911240\begin{figure}[!htbp]
    11921241\centering
    1193 \includegraphics[width=0.7\columnwidth]{img51.jpg}
     1242\includegraphics[width=0.7\columnwidth,height=6cm]{img51.jpg}
    11941243\caption{8 bit ADC linearity.}
    11951244\label{fig:51}
     
    12021251\begin{figure}[!htbp]
    12031252\centering
    1204 \includegraphics[width=0.7\columnwidth]{img52.jpg}
     1253\includegraphics[width=0.7\columnwidth,height=6cm]{img52.jpg}
    12051254\caption{12 bit ADC linearity.}
    12061255\label{fig:52}
     
    12161265\begin{figure}[!htbp]
    12171266\centering
    1218 \includegraphics[width=0.7\columnwidth]{img53.jpg}
     1267\includegraphics[width=0.7\columnwidth,height=6cm]{img53.jpg}
    12191268\caption{TO BE COMPLETED}
    12201269\label{fig:53}
Note: See TracChangeset for help on using the changeset viewer.