Changeset 4011 in Sophya for trunk/Cosmo/RadioBeam


Ignore:
Timestamp:
Jul 8, 2011, 2:02:13 PM (14 years ago)
Author:
ansari
Message:

Version quasi finale papier sensibilite, Reza 08/07/2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r3977 r4011  
    3939\newcommand{\dang}{d_A}
    4040\newcommand{\hub}{ h_{70} }
    41 \newcommand{\hubb}{ h_{100} }
    42 
    43 \newcommand{\etaHI}{ \eta_{\tiny HI} }
     41\newcommand{\hubb}{ h }    % h_100
     42
     43\newcommand{\etaHI}{ n_{\tiny HI} }
    4444\newcommand{\fHI}{ f_{H_I}(z)}
    4545\newcommand{\gHI}{ g_{H_I}}
     
    5252\newcommand{\citep}[1]{ (\cite{#1}) }
    5353%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
     54
     55%%% Definition pour la section sur les param DE par C.Y
     56\def\Mpc{\mathrm{Mpc}}
     57\def\hMpcm{\,h \,\Mpc^{-1}}
     58\def\hmMpc{\,h^{-1}\Mpc}
     59\def\kperp{k_\perp}
     60\def\kpar{k_\parallel}
     61\def\koperp{k_{BAO\perp }}
     62\def\kopar{k_{BAO\parallel}}
    5463
    5564%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     
    100109   }
    101110
    102    \date{Received June 15, 2011; accepted xxxx, 2011}
     111   \date{Received July 15, 2011; accepted xxxx, 2011}
    103112
    104113% \abstract{}{}{}{}{}
     
    116125instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
    117126  % methods heading (mandatory)
    118  { For each configuration, we determine instrument response by computing the (u,v) plane (Fourier angular frequency plane)
    119   coverage using visibilities. The (u,v) plane response is then used to compute the three dimensional noise power spectrum,
     127 { For each configuration, we determine instrument response by computing the (u,v) or Fourier angular frequency
     128plane  coverage using visibilities. The (u,v) plane response is then used to compute the three dimensional noise power spectrum,
    120129hence the instrument sensitivity for LSS P(k) measurement. We describe also   a simple foreground subtraction method to
    121130separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
    122131  % results heading (mandatory)
    123132   { We have computed the noise power spectrum for different instrument configuration as well as the extracted
    124    LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. }
     133   LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
     134  the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
    125135  % conclusions heading (optional), leave it empty if necessary
    126    { We show that a radio instrument with few hundred simultaneous beamns and a surface coverage of
    127   $\lesssim 10000 \mathrm{m^2}$ will be able to  detect BAO signal at redshift z $\sim 1$ }
     136   { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
     137  $\lesssim 10000 \mathrm{m^2}$ will be able to  detect BAO signal at redshift z $\sim 1$ and will be
     138  competitive with optical surveys. }
    128139
    129140   \keywords{ Cosmology:LSS --
    130                  Cosmology:Dark energy
     141                 Cosmology:Dark energy -- Radio interferometer -- 21 cm
    131142               }
    132143
     
    171182The BAO modulation has been subsequently observed in the distribution of galaxies
    172183at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
    173 \citep{eisenstein.05}  \citep{percival.07} and 2dGFRS  \citep{cole.05}  optical galaxy surveys.
    174 
    175 Ongoing or future surveys plan to measure precisely the BAO scale in the redshift range
    176 $0 \lesssim z \lesssim 3$, using either optical observation of galaxies \citep{baorss}     %  CHECK/FIND baorss baolya references
    177 or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars \cite{baolya}.
     184\citep{eisenstein.05}  \citep{percival.07}  \citep{percival.10}  and 2dGFRS  \citep{cole.05}  optical galaxy surveys.
     185
     186Ongoing \citep{eisenstein.11}   or future surveys \citep{lsst.science} 
     187plan to measure precisely the BAO scale in the redshift range
     188$0 \lesssim z \lesssim 3$, using either optical observation of galaxies   %  CHECK/FIND baorss baolya references
     189or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars \citep{baolya},\citep{baolya2}.
    178190Mapping matter distribution using 21 cm emission of neutral hydrogen appears as
    179191a very promising technique to map matter distribution up to redshift $z \sim 3$,
     
    186198We show also  the results for the 3D noise power spectrum for several  instrument configurations.
    187199The contribution of foreground emissions due to the galactic synchrotron and radio sources
    188 is described in section 4, as well as a simple component separation method  The performance of this
    189 method using sky model or known radio sources are also presented in section 4.
     200is described in section 4, as well as a simple component separation method. The performance of this
     201method using two different sky models is also presented in section 4.
    190202The constraints which can be obtained on the Dark Energy parameters and DETF figure
    191 of merit for typical 21 cm intensity mapping survey are shown in section 5.
    192 
    193 \citep{ansari.08}
     203of merit for typical 21 cm intensity mapping survey are discussed in section 5.
    194204
    195205
     
    207217The BAO features in particular are at the degree angular scale on the sky
    208218and thus can be resolved easily with a rather modest size radio instrument
    209 ($D \lesssim 100 \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$
    210 can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
    211 or along the longitudinal (line of sight or redshift, $k_{\mathrm{BAO}}^\parallel$ ) direction. A direct measurement of
     219($D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
     220can be measured both in the transverse plane (angular correlation function, ($k_{\mathrm{BAO}}^\perp$)
     221or along the longitudinal (line of sight or redshift ($k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
    212222the Hubble parameter $H(z)$ can be obtained by comparing   the longitudinal and transverse
    213 BAO scale. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
     223BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
    214224longitudinal BAO clustering, which is a challenge for photometric optical surveys.   
    215225
    216226In order to obtain a measurement of the LSS power spectrum with small enough statistical
    217227uncertainties (sample or cosmic variance),  a large volume of the universe should be observed,
    218 typically few $Gpc^3$. Moreover, stringent constrain on DE parameters can be obtained when
     228typically few $\mathrm{Gpc^3}$. Moreover, stringent constrain on DE parameters can be obtained when
    219229comparing the distance or Hubble parameter measurements as a function of redshift with
    220230DE models, which translates into a survey depth $\Delta z \gtrsim 1$.
    221231
    222232Radio instruments intended for BAO surveys must thus have large instantaneous field
    223 of view (FOV $\gtrsim 10 \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$).
     233of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$).
    224234
    225235Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
     
    230240of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
    231241\begin{equation}
    232 S_{lim} = \frac{ \sqrt{2} \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
     242S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
    233243\end{equation}
    234 where $t_{int}$ is the total integration time $\delta \nu$ is the detection frequency band. In table
    235 \ref{slims21} (left)  we have computed the sensitivity for 4 different set of instrument effective area and system
     244where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
     245\ref{slims21} (left)  we have computed the sensitivity for 6 different set of instrument effective area and system
    236246temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
    237247The width of this frequency band is well adapted  to detection of \HI source with an intrinsic velocity
    238248dispersion of few 100 km/s. Theses detection limits should be compared with the expected 21 cm brightness
    239 $S_{21}$ of compact sources which can be computed using the expression below:
     249$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
    240250\begin{equation}
    241251 S_{21}  \simeq  0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot}   \times
     
    244254 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum$ is the luminosity distance and $\sigma_v$
    245255is the source velocity dispersion.
    246 {\color{red} Faut-il developper le calcul en annexe ? }
     256% {\color{red} Faut-il developper le calcul en annexe ? }
    247257 
    248258In table \ref{slims21} (right), we show the 21 cm brightness for
    249259compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
    250 $200 \mathrm{km/s}$. The luminosity distance is computed for the standard
     260$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
    251261WMAP \LCDM universe. $10^9 - 10^{10} M_\odot$ of neutral gas mass
    252262is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
     
    254264
    255265Intensity mapping has been suggested as an alternative and economic method to map the
    256 3D distribution of neutral hydrogen \citep{chang.08} \citep{ansari.08}. In this approach,
    257 sky brightness map with angular resolution $\sim 10-30 \mathrm{arc.min}$ is made for a
     2663D distribution of neutral hydrogen \citep{chang.08} \citep{ansari.08} \citep{seo.10}.
     267In this approach, sky brightness map with angular resolution $\sim 10-30 \, \mathrm{arc.min}$ is made for a
    258268wide range of frequencies. Each 3D pixel  (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$) 
    259269would correspond to a cell with a volume of $\sim 10 \mathrm{Mpc^3}$, containing hundreds of galaxies and a total
     
    272282can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
    273283map as a function frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
    274 (radiation power/unit solid angle/unit surface/unit frequency).
     284(radiation power/unit solid angle/unit surface/unit frequency) 
    275285can be converted to brightness temperature using the well known black body Rayleigh-Jeans approximation:
    276286$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
     
    326336can be expressed as:
    327337\begin{equation}
    328 H(z)  \simeq  \hub  \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
    329 \times  70 \, \, \mathrm{km/s/Mpc} 
     338H(z)  \simeq  \hubb  \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
     339\times  100 \, \, \mathrm{km/s/Mpc} 
     340\label{eq:expHz}
    330341\end{equation}
    331342Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
    332 neutral hydrogen number density can be written as:
    333 \begin{equation}
    334 \etaHI (\vec{\Theta}, z(\lambda) ) = \gHIz \times \Omega_B  \frac{\rho_{crit}}{m_{H}}  \times
    335 \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)
    336 \end{equation}
     343neutral hydrogen number density relative fluctuations can be written as, and the corresponding
     34421 cm emission temperature can be written as:
     345\begin{eqnarray}
     346\frac{ \delta \etaHI}{\etaHI} (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B  \frac{\rho_{crit}}{m_{H}}  \times
     347\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) \\
     348 \TTlamz  &  = & \bar{T}_{21}(z) \times \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) 
     349\end{eqnarray}
    337350where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
    338351and critical densities, $m_{H}$ is the hydrogen atom mass, and
    339352$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
    340353
    341 The present day neutral hydrogen fraction $\gHI(0)$ has been measured to be
    342 $\sim 1\%$ of the baryon density \citep{zwann.05}:
     354The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
     355measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
    343356$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
    344357The neutral hydrogen fraction is expected to increase with redshift. Study
    345 of Lyman-$\alpha$ absorption indicate a factor 3 increase in the neutral hydrogen
    346 fraction at $z=1.5$, compared to the its present day value $\gHI(z=1.5) \sim 0.025$
    347 \citep{wolf.05}.
     358of Lyman-$\alpha$ absorption indicate a factor 3 increase in the neutral hydrogen 
     359fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
     360compared to the its present day value $\gHI(z=1.5) \sim 0.025$.
    348361The 21 cm brightness temperature and the corresponding power spectrum can be written as \citep{wyithe.07} :
    349362\begin{eqnarray}
    350   \TTlamz  &  = & \bar{T}_{21}(z) \times \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)  \\
    351   P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z)  \right)^2 \, P(k)  \\
    352  \bar{T}_{21}(z)  & \simeq & 0.054  \, \mathrm{mK} 
    353 \frac{ (1+z)^2 \, \hub }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
     363 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z)  \right)^2 \, P(k)    \label{eq:pk21z} \\
     364 \bar{T}_{21}(z)  & \simeq & 0.077  \, \mathrm{mK} 
     365\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
    354366 \dfrac{\Omega_B}{0.044}  \,  \frac{\gHIz}{0.01}
     367\label{eq:tbar21z}
    355368\end{eqnarray}
    356369
     
    363376shown for the standard WMAP \LCDM cosmology, according to the relation:
    364377\begin{equation}
    365 \mathrm{ang.sc} = \frac{2 \pi}{k^{comov} \, \dang(z) \, (1+z) } 
     378\theta_k = \frac{2 \pi}{k^{comov} \, \dang(z) \, (1+z) } 
    366379\hspace{3mm}
    367 k^{comov} = \frac{2 \pi}{ \mathrm{ang.sc}  \, \dang(z) \, (1+z) } 
     380k^{comov} = \frac{2 \pi}{ \theta_\mathrm{scale}  \, \dang(z) \, (1+z) } 
    368381\end{equation}
    369382where $k^{comov}$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
    370383It should be noted that the maximum transverse $k^{comov} $ sensitivity range
    371384for an instrument corresponds approximately to half of its angular resolution.
    372 {\color{red} Faut-il developper completement le calcul en annexe ? }
     385% {\color{red} Faut-il developper completement le calcul en annexe ? }
    373386
    374387\begin{table}
     
    393406
    394407\begin{figure}
    395 \centering
    396 \includegraphics[width=0.5\textwidth]{Figs/pk21cmz12.pdf}
     408\vspace*{-15mm}
     409\hspace{-5mm}
     410\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
     411\vspace*{-10mm}
    397412\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
    398413neutral gas fraction $\gHI=2\%$}
     
    402417
    403418\section{interferometric observations and P(k) measurement sensitivity }
    404 
     419\label{pkmessens}
    405420\subsection{Instrument response}
     421\label{instrumresp}
     422We introduce briefly here the principles of interferometric observations and the definition of
     423quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
     424and complete presentation of observation methods and signal processing in radio astronomy. 
    406425In astronomy we are usually interested in measuring the sky emission intensity,
    407 $I(\vec{\Theta},\lambda)$ in a given wave band, as a function  the direction. In radio astronomy
     426$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
    408427and interferometry in particular, receivers are sensitive to the sky emission complex
    409428amplitudes. However, for most sources, the phases vary randomly and bear no information:
     
    425444corresponds to the receiver intensity response:
    426445\begin{equation}
    427 L(\vec{\Theta}), \lambda = B(\vec{\Theta},\lambda)  \,  B^*(\vec{\Theta},\lambda)
     446L(\vec{\Theta}), \lambda) = B(\vec{\Theta},\lambda)  \,  B^*(\vec{\Theta},\lambda)
    428447\end{equation}
    429 The visibility signal between two receivers corresponds to the time averaged correlation between
     448The visibility signal of two receivers corresponds to the time averaged correlation between
    430449signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
    431450visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
     
    471490origin in the $(u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver
    472491beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
    473 size. The correlation signal from a pair of receivers would measure the integrated signal on a similar
     492size.
     493
     494The correlation signal from a pair of receivers would measure the integrated signal on a similar
    474495spot, located around the central angular wave mode  $(u, v)_{12}$ determined by the relative
    475496position of the two receivers (see figure \ref{figuvplane}).
    476497In an interferometer with multiple receivers, the area covered by different receiver pairs in the
    477498$(u,v)$ plane might overlap and some pairs might measure the same area (same base lines).
    478 Several beam can be formed using different combination of the correlation from different
     499Several beams can be formed using different combination of the correlations from a set of
    479500antenna pairs. 
    480501
     
    490511Obviously, different weighting schemes can be used, changing
    491512the effective beam shape and thus the response ${\cal R}_{w}(u,v,\lambda)$
    492 and the noise behaviour.
     513and the noise behaviour. If the same Fourier angular frequency mode is measured
     514by several receiver pairs, the raw instrument response might then be larger
     515that unity. This non normalized instrument response is used to compute the projected
     516noise power spectrum in the following section (\ref{instrumnoise}).
     517We can also define a  normalized instrument response, ${\cal R}_{norm}(u,v,\lambda) \lesssim 1$ as:
     518\begin{equation}
     519{\cal R}_{norm}(u,v,\lambda) = {\cal R}(u,v,\lambda) / \mathrm{Max_{(u,v)}} \left[ {\cal R}(u,v,\lambda) \right]
     520\end{equation}
     521This normalized  instrument response can be used to compute the effective instrument beam,
     522in particular in section \ref{recsec}. 
    493523
    494524\begin{figure}
     
    504534
    505535\subsection{Noise power spectrum}
     536\label{instrumnoise}
    506537Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
    507538bandwidth $\delta \nu$, with an integration time $t_{int}$, characterized by a system temperature
     
    510541corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
    511542noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
    512 corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
     543corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies  $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$), corresponding to a visibility
     544measurement from a pair of receivers can be written as:
     545\begin{eqnarray}
     546P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 }  \\
     547P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int}  \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
     548\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
     549\label{eq:pnoisepairD}
     550\end{eqnarray}
     551
    513552The sky temperature measurement can thus be characterized by the noise spectral power density in
    514553the angular frequencies plane $P_{noise}^{(u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$ 
    515554per unit area of angular frequencies  $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:
    516 \begin{eqnarray}
    517 P_{noise}^{(u,v)} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 }  \\
    518 P_{noise}^{(u,v)} & \simeq & \frac{2 \, \Tsys^2 }{t_{int}  \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
    519 \hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \\
    520 \end{eqnarray}
    521 
    522 In a given instrument configuration, if several ($n$) receiver pairs have the same baseline,
    523 the noise power density in the corresponding $(u,v)$ plane area is reduced by a factor $1/n$.
    524 When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
    525 $P(k)$ is computed, angles are translated into comoving transverse distance scale,
     555We can characterize the sky temperature measurement by a radio instrument by the noise
     556spectral power density in the angular frequencies plane $P_{noise}(u,v)$ in units of $\mathrm{Kelvin^2}$ 
     557per unit area of angular frequencies  $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$.
     558For an interferometer made of identical receiver elements, several ($n$) receiver pairs
     559might have the same baseline. The noise power density in the corresponding $(u,v)$ plane area
     560is then reduced by a factor $1/n$. More generally, we cam write the instrument  noise
     561spectral power density using the instrument response defined in section \ref{instrumresp} :
     562\begin{equation}
     563P_{noise}(u,v) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(u,v,\lambda) }
     564\end{equation}
     565
     566When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
     567$P(k)$ is computed, angles are translated into comoving transverse distances,
    526568and frequencies or wavelengths into comoving radial distance, using the following relations:
    527569\begin{eqnarray}
     
    529571\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
    530572  = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
    531 \delta u , v & \rightarrow & \delta k_\perp = \frac{ \delta u , v }{  (1+z) \, \dang(z)  } \\
     573\delta u , \delta v & \rightarrow & \delta k_\perp = \frac{ \delta u \, , \, \delta v }{  (1+z) \, \dang(z)  } \\
    532574\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
    533575 =  \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
    534576\end{eqnarray}
    535577
    536 The three dimensional projected noise spectral density can then be written as:
     578If we consider a uniform noise spectral density in the $(u,v)$ plane corresponding to the
     579equation \ref{eq:pnoisepairD} above,  the three dimensional projected noise spectral density
     580can then be written as:
    537581\begin{equation}
    538582P_{noise}(k) = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     583\label{ctepnoisek}
    539584\end{equation}
    540585
     
    542587$t_{int}$ in second, $\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
    543588 $H(z)$ in $\mathrm{km/s/Mpc}$.
     589
    544590The matter or \HI distribution power spectrum determination statistical errors vary as the number of
    545591observed Fourier modes, which is inversely proportional to volume of the universe
    546 which is observed (sample variance).
    547 
    548 In the following, we will consider the survey of a fixed
    549 fraction of the sky, defined by  total solid angle $\Omega_{tot}$, performed during a fixed total
    550 observation time $t_{obs}$. We will consider several instrument configurations, having
    551 comparable instantaneous bandwidth, and comparable system receiver noise $\Tsys$:
    552 \begin{enumerate}
    553 \item Single dish instrument, diameter $D$ with one or several independent feeds (beams) in the focal plane
    554 \item Filled square shaped arrays, made of $n = q \times q$ dishes of diameter $D_{dish}$
    555 \item Packed or unpacked cylinder arrays
    556 \item Semi-filled array of $n$ dishes   
    557 \end{enumerate}
    558 
    559 We  compute below a simple expression for the noise spectral power density for radio
    560 sky 3D mapping surveys.
    561 It is important to notice that the instruments we are considering do not have a flat
     592which is observed (sample variance).  As the observed volume is proportional to the
     593surveyed solid angle, we  consider the survey of a fixed
     594fraction of the sky, defined by  total solid angle $\Omega_{tot}$, performed during a determined
     595total observation time $t_{obs}$.
     596A single dish instrument with diameter $D$ would have an instantaneous field of view
     597$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
     598a number of pointing $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
     599Each sky direction or pixel of size $\Omega_{FOV}$ will be observed during an integration
     600time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
     601for the integration time, we can compute a simple expression
     602for the noise spectral power density by a single dish instrument of diameter $D$:
     603\begin{equation}
     604P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     605\end{equation}
     606
     607It is important to note that any real instrument do not have a flat
    562608response in the $(u,v)$ plane, and the observations provide no information above
    563 $u_{max},v_{max}$. One has to take into account either a damping of the
    564 observed sky power spectrum or an increase of the noise spectral power if
     609a maximum angular frequency $u_{max},v_{max}$.
     610One has to take into account either a damping of the observed sky power
     611spectrum or an increase of the noise spectral power if
    565612the observed power spectrum is corrected for damping. The white noise
    566613expressions given below should thus be considered as a lower limit or floor of the
    567614instrument noise spectral density.
    568  
    569 % \noindent {\bf Single dish instrument} \\
    570 A single dish instrument with diameter $D$ would have an instantaneous field of view
    571 (or 2D pixel size) $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
    572 a number of pointing $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
    573 The noise power spectral density  could then be written as:
    574 \begin{equation}
    575 P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     615 
     616For a single dish instrument of diameter $D$ equipped with a multi-feed or
     617phase array receiver system, with $N$ independent beams on sky,
     618the noise spectral density decreases by a factor $N$,
     619thanks to the  increase of per pointing integration time.
     620
     621\begin{equation}
     622P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     623\label{eq:pnoiseNbeam}
    576624\end{equation}
    577 For a single dish instrument equipped with a multi-feed or phase array receiver system,
    578 with $n$ independent beam on sky, the noise spectral density decreases by a factor $n$,
    579 thanks to the an increase of per pointing integration time.
     625
     626The expression above (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
     627identical receivers with a  total collection area $\sim D^2$. Such an array could be made for example
     628of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.   
    580629
    581630For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
    582 observations provide information up to $u,v_{max} \lesssim 2 \pi D / \lambda $. This value of
    583 $u,v_{max}$ would be mapped to a maximum transverse cosmological wave number
     631observations provide information up to $u_{max},v_{max} \lesssim 2 \pi D / \lambda $. This value of
     632$u_{max},v_{max}$ would be mapped to a maximum transverse cosmological wave number
    584633$k^{comov}_{\perp \, max}$:
    585 \begin{eqnarray}
    586 k^{comov}_{\perp} & = & \frac{(u,v)}{(1+z) \dang}  \\
    587 k^{comov}_{\perp \, max} & \lesssim &  \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
    588 \end{eqnarray}   
    589 
    590 Figure \ref{pnkmaxfz} shows the evolution of a radio 3D  temperature mapping
    591 $P_{noise}^{survey}(k)$ as a function of survey redshift.
    592 The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \mathrm{srad}$, in one
     634\begin{equation}
     635k^{comov}_{\perp}  =  \frac{(u,v)}{(1+z) \dang}  \hspace{8mm}
     636k^{comov}_{\perp \, max}  \lesssim  \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
     637\label{kperpmax}
     638\end{equation}   
     639
     640Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
     641as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
     642beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
     643The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
    593644year. The maximum comoving wave number $k^{comov}$  is also shown as a function
    594 of redshift, for an instrument with $D=100 \mathrm{m}$ maximum extent. In order
     645of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
    595646to take into account the radial component of $\vec{k^{comov}}$ and the increase of
    596 the instrument noise level with $k^{comov}_{\perp}$, we have taken:
     647the instrument noise level with $k^{comov}_{\perp}$, we have taken the effective $k^{comov}_{ max}  $
     648as half of the maximum transverse $k^{comov}_{\perp \, max} $ of \mbox{eq. \ref{kperpmax}}:
    597649\begin{equation}
    598650k^{comov}_{ max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
     
    607659}
    608660\vspace*{-40mm}
    609 \caption{Minimal noise level for a 100 beam instrument as a function of redshift (top).
    610  Maximum $k$ value for  a 100 meter diameter primary antenna (bottom) }
     661\caption{Minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
     662as a function of redshift (top). Maximum $k$ value for  a 100 meter diameter primary antenna (bottom) }
    611663\label{pnkmaxfz}
    612664\end{figure}
     
    614666
    615667\subsection{Instrument configurations and noise power spectrum}
    616 
     668\label{instrumnoise}
    617669We have numerically computed the instrument response ${\cal R}(u,v,\lambda)$
    618670with uniform weights in the $(u,v)$ plane for several instrument configurations:
    619671\begin{itemize}
    620 \item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
     672\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
    621673a square $11 \times 11$ configuration ($q=11$). This array covers an area of
    622674$55 \times 55 \, \mathrm{m^2}$
    623 \item [{\bf b} :] An array of $n=128  \, D_{dish}=5 \mathrm{m}$ dishes, arranged
     675\item [{\bf b} :] An array of $n=128  \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
    624676in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
    625 $80 \times 80  \, \mathrm{m^2}$
    626 \item [{\bf c} :] An array of $n=129  \, D_{dish}=5 \mathrm{m}$ dishes, arranged
     677$80 \times 80  \, \mathrm{m^2}$. The array layout for this configuration is
     678shown in figure \ref{figconfab}.
     679\item [{\bf c} :] An array of $n=129  \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
    627680 over an area $80 \times 80  \, \mathrm{m^2}$. This configuration has in
    628681particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
    629 four array corners.
    630 \item [{\bf d} :] A single dish instrument, with diameter $D=75 \mathrm{m}$,
    631 equipped with a 100 beam focal plane instrument.
    632 \item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
     682four array corners. This array layout is also shown figure \ref{figconfab}.
     683\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
     684equipped with a 100 beam focal plane receiver array.
     685\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
    633686a square $20 \times 20$ configuration ($q=20$). This array covers an area of
    634687$100 \times 100 \, \mathrm{m^2}$
    635688\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
    636 wide. The focal line of each cylinder is equipped with 100 receivers, each with length
    637 $2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
     689wide. The focal line of each cylinder is equipped with 100 receivers, each
     690$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
    638691This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
    639692a total of $400$ receivers per polarisation, as in the (e) configuration.
     
    643696from different cylinders are used.
    644697\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
    645 wide. The focal line of each cylinder is equipped with 100 receivers, each with length
    646 $2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
     698wide. The focal line of each cylinder is equipped with 120 receivers, each
     699$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
    647700This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
    648701a total of 960  receivers per polarisation. As for the (f) configuration, 
     
    652705from different cylinders are used.
    653706\end{itemize}
    654 The array layout for configurations (b) and (c) are shown in figure \ref{figconfab}.
     707
    655708\begin{figure}
    656709\centering
     
    667720
    668721We have used simple triangular shaped dish response in the $(u,v)$ plane.
    669 However, we have introduced a fill factor or illumination efficiency
     722However, we have introduced a filling factor or illumination efficiency
    670723$\eta$, relating the effective dish diameter $D_{ill}$ to the
    671 mechanical dish size $D^{ill} = \eta \, D_{dish}$.
     724mechanical dish size $D^{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
     725as $\eta^2$ or $eta_x \eta_y$.
    672726\begin{eqnarray}
    673727{\cal L}_\circ (u,v,\lambda) & = & \bigwedge_{[\pm 2 \pi D^{ill}/ \lambda]}(\sqrt{u^2+v^2})  \\
     
    685739used here for the expression of visibilities is not valid for the receivers along
    686740the cylinder axis. However, some preliminary numerical checks indicate that
    687 the results obtained here for the noise power would not be significantly changed.
     741the results obtained here for the noise spectral power density  would not change significantly.
     742The instrument responses shown here correspond to fixed pointing toward the zenith, which
     743is the case for a transit type telescope.
     744
    688745\begin{equation}
    689746 {\cal L}_\Box(u,v,\lambda)  =
     
    705762\includegraphics[width=0.90\textwidth]{Figs/uvcovabcd.pdf}
    706763}
    707 \caption{(u,v) plane coverage for four configurations.
    708 (a) 121 D=5 meter diameter dishes arranged in a compact, square array
     764\caption{(u,v) plane coverage (non normalized instrument response ${\cal R}(u,v,\lambda)$
     765for four configurations.
     766(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
    709767of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each,
    710768(c) 129 dishes arranged as above, single D=65 meter diameter, with 100 beams.
     
    714772 
    715773\begin{figure*}
    716 \vspace*{-10mm}
     774\vspace*{-25mm}
    717775\centering
    718776\mbox{
    719 \hspace*{-10mm}
    720 \includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
     777\hspace*{-20mm}
     778\includegraphics[width=1.15\textwidth]{Figs/pkna2h.pdf}
    721779}
    722 \vspace*{-10mm}
     780\vspace*{-40mm}
    723781\caption{P(k) LSS power  and noise power spectrum for several interferometer
    724782configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.}
     
    728786
    729787\section{ Foregrounds and Component separation }
     788\label{foregroundcompsep}
    730789Reaching the required sensitivities is not the only difficulty of observing the large
    731790scale structures in 21 cm. Indeed, the synchrotron emission of the
     
    736795it has been suggested that the smooth frequency dependence of the synchrotron
    737796emissions can be used to separate the faint LSS signal from the Galactic and radio source
    738 emissions. However, any real radio instrument has a beam shape which changes with
     797emissions.
     798However, any real radio instrument has a beam shape which changes with
    739799frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
    740 technique. The effect of frequency dependent beam shape is often referred to as {\em
    741 mode mixing} \citep{morales.09}.
     800technique. The effect of frequency dependent beam shape is some time referred to as {\em
     801mode mixing}. See for example \citep{morales.06}, \citep{bowman.07}.
    742802
    743803In this section, we present a short description of the foreground emissions and
     
    745805range. We present also a simple component separation method to extract the LSS signal and
    746806its performance. We show in particular the effect of the instrument response on the recovered
    747 power spectrum, and possible way of getting around this difficulty. The results presented in this section concern the
     807power spectrum. The results presented in this section concern the
    748808total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
    749809corresponding to the central frequency $\nu \sim 884$ MHz. 
     
    753813brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
    754814and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
    755 $90 \times 30 \simeq 2500 \mathrm{deg^2}$ of the sky, centered on $\alpha= 10:00 \mathrm{h} , \delta=+10 \mathrm{deg.}$,
     815$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10:00 \, \mathrm{h} , \delta=+10 \, \mathrm{deg.}$,
    756816and  covering 128 MHz in frequency. The sky cube characteristics (coordinate range, size, resolution)
    757 used in the simulations is given in the table below:
     817used in the simulations is given in the table \ref{skycubechars}.
     818\begin{table}
    758819\begin{center}
    759820\begin{tabular}{|c|c|c|}
     
    775836\hline
    776837\end{tabular} \\[1mm]
    777 Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$   \\
     838\end{center}
     839\caption{
     840Sky cube characteristics for the simulation performed in this paper.
     841Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$   
    778842$ 1800 \times 600 \times 256 \simeq 123 \, 10^6$ cells
    779 \end{center}
    780 
     843}
     844\label{skycubechars}
     845\end{table}
     846%%%%
     847\par
    781848Two different methods have been used to compute the sky temperature data cubes.
    782849We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
     
    788855LSS power spectrum.
    789856
    790 We have thus also created a simple sky model using the Haslam Galactic synchrotron map
    791 at 408 Mhz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
    792 catalog \cite{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
     857We have thus made also a simple sky model using the Haslam Galactic synchrotron map
     858at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
     859catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
    793860has been computed through the following steps:
    794861
    795862\begin{enumerate}
    796 \item The Galactic synchrotron emission is modeled power law with spatially
     863\item The Galactic synchrotron emission is modeled as a power law with spatially
    797864varying spectral index. We assign a power law index $\beta = -2.8  \pm 0.15$ to each sky direction.
    798865$\beta$ has a gaussian distribution centered at -2.8 and with standard
     
    802869$$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 MHz}\right)^\beta $$
    803870%%
    804 \item A two dimensional $T_{nvss}(\alpha,\delta)$sky brightness temperature at 1.4 GHz is computed
     871\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
    805872by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
    806873the sky cubes. The source brightness in Jansky is converted to temperature taking the
     
    813880\item The sky brightness temperature data cube is obtained through the sum of
    814881the two contributions, Galactic synchrotron and resolved radio sources:
    815 $$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{sync}(\alpha, \delta, \nu) $$
     882$$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu) $$
    816883\end{enumerate}
    817884
     
    823890$1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
    824891sky cube angular and frequency resolution defined above.  The mass fluctuations has been
    825 converted into temperature through a factor $0.13 \mathrm{mK}$, corresponding to a hydrogen
    826 fraction $0.008 \times (1+0.6)$.  The total sky brightness temperature is then computed as the sum
     892converted into temperature through a factor $0.13 \, \mathrm{mK}$, corresponding to a hydrogen
     893fraction $0.008 \times (1+0.6)$, using equation \ref{eq:tbar21z}. 
     894The total sky brightness temperature is then computed as the sum
    827895of foregrounds and the LSS 21 cm emission:
    828896$$  T_{sky} = T_{sync}+T_{radsrc}+T_{lss}   \hspace{5mm} OR \hspace{5mm}
     
    831899Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
    832900temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
     901It should be noted that the standard deviation depends on the map resolution and the values given
     902in table \ref{sigtsky}  correspond to sky cubes computed here, with $\sim 3$ arc minute
     903angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
    833904Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
    834905with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
     
    838909
    839910\begin{table}
     911\centering
    840912\begin{tabular}{|c|c|c|}
    841913\hline
     
    850922\end{tabular}
    851923\caption{ Mean temperature and standard deviation for the different sky brightness
    852 data cubes computed for this study}
     924data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
    853925\label{sigtsky}
    854926\end{table}
    855927
    856928we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
    857 as for the radio foreground temperature cubes computed using our two foreground
     929as for the radio foreground temperature cubes obtained from the two
    858930models. We have also computed the power spectrum on sky brightness temperature
    859 cubes, as measured by a perfect instrument having a 25 arcmin gaussian beam.
     931cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
    860932The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
    861 The GSM model has more large scale power compared to our simple model, while
    862 it lacks power at higher spatial frequencies. The mode mixing due to
     933The GSM model has more large scale power compared to our simple Haslam+NVSS model,
     934while it lacks power at higher spatial frequencies. The mode mixing due to
    863935frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
    864936case. It can also be seen that the radio foreground power spectrum is more than
     
    872944increases at high k values (small scales). In practice, clean deconvolution is difficult to
    873945implement for real data and the power spectra presented in this section are NOT corrected
    874 for the instrumental response.
     946for the instrumental response.  The observed structures have thus a scale dependent damping
     947according to the instrument response, while the instrument noise is flat (white noise or scale independent).
    875948
    876949\begin{figure}
     
    891964\centering
    892965\mbox{
    893 \hspace*{-10mm}
     966% \hspace*{-10mm}
    894967\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
    895968}
    896969\caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
    897 The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin gaussian beam.}
     970The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
    898971\label{compgsmmap}
    899972\end{figure*}
     
    901974\begin{figure}
    902975\centering
    903 \vspace*{-20mm}
     976\vspace*{-25mm}
    904977\mbox{
    905 \hspace*{-20mm}
    906 \includegraphics[width=0.7\textwidth]{Figs/pk_gsm_lss.pdf}
     978\hspace*{-15mm}
     979\includegraphics[width=0.65\textwidth]{Figs/pk_gsm_lss.pdf}
    907980}
    908981\vspace*{-40mm}
     
    910983The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
    911984model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
    912 as observed by a perfect instrument with a 25 arcmin beam.}
     985as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.}
    913986\label{pkgsmlss}
    914987\end{figure}
     
    917990
    918991\subsection{ Instrument response and LSS signal extraction }
    919 
    920 The observed data cube is obtained from the sky brightness temperature 3D map
    921 $T_{sky}(\alpha, \delta, \nu)$ by applying the frequency dependent instrument response
     992\label{recsec}
     993The {\it observed} data cube is obtained from the sky brightness temperature 3D map
     994$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
    922995${\cal R}(u,v,\lambda)$.
    923 As a simplification, we have considered that the instrument response is independent
     996we have considered the simple case where  the instrument response constant throughout the survey area, or independent
    924997of the sky direction.
    925998For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
     
    9271000\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
    9281001$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(u, v, \lambda_k)$$
    929 \item Apply instrument response in the angular wave mode plane
    930 $$  {\cal T}_{sky}(u, v, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda) $$
     1002\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
     1003$ {\cal R}(u,v,\lambda_k)  \lesssim 1$.
     1004$$  {\cal T}_{sky}(u, v, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda_k) $$
    9311005\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
    9321006without instrumental (electronic/$\Tsys$) white noise:
    9331007$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda)   
    9341008\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
    935 \item Add white noise (gaussian fluctuations) to obtain the measured sky brightness temperature
    936 $T_{mes}(\alpha, \delta, \nu_k)$. We have also considered that the system temperature and thus the
     1009\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
     1010the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
     1011We have also considered that the system temperature and thus the
    9371012additive white noise level was independent of the frequency or wavelength.   
    9381013\end{enumerate}
     
    9401015The results shown here correspond to the (a) instrument configuration, a packed array of
    9411016$11 \times 11 = 121$ 5 meter diameter dishes, with a white noise level corresponding
    942 to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500 kHz$
     1017to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
    9431018cell.
    9441019
    945 Our simple component separation procedure is described below:
     1020A brief description of the simple component separation procedure that we have applied is given here:
    9461021\begin{enumerate}
    947 \item The measured sky brightness temperature is first corrected for the frequency dependent
    948 beam effects through a convolution by a virtual, frequency independent beam. We assume
    949 that we have a perfect knowledge of the intrinsic instrument response.
     1022\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
     1023beam effects through a convolution by a virtual, frequency independent beam. This {\em correction}
     1024corresponds to a smearing or degradation of the angular resolution. We assume
     1025that we have a perfect knowledge of the intrinsic instrument response, up to a threshold numerical level
     1026of about $ \gtrsim 1 \%$ for  ${\cal R}(u,v,\lambda)$. We recall that this is the normalized instrument response,
     1027${\cal R}(u,v,\lambda) \lesssim 1$.
    9501028$$  T_{mes}(\alpha, \delta, \nu) \longrightarrow T_{mes}^{bcor}(\alpha,\delta,\nu) $$
    951 The virtual target instrument has a beam width larger to the worst real instrument beam,
     1029The virtual target instrument has a beam width larger than the worst real instrument beam,
    9521030i.e at the lowest observed frequency. 
    9531031 \item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
    954  is fitted to the beam-corrected brightness temperature. $b$ is the power law index and  $10^a$
    955 is the brightness temperature at the reference frequency $\nu_0$:
     1032 is fitted to the beam-corrected brightness temperature. The fit is done through a linear $\chi^2$ fit in
     1033the $\log10 ( T ) , \log10 (\nu)$ plane and we show here the results for a pure power law (P1)
     1034or modified power law (P2):
    9561035\begin{eqnarray*}
    9571036P1 & :  & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) \\
    9581037P2 & :  & \log10 ( T_{mes}^{bcor}(\nu) ) = a + b \log10 ( \nu / \nu_0 ) + c \log10 ( \nu/\nu_0 ) ^2
    9591038\end{eqnarray*}
     1039where $b$ is the power law index and  $T_0 = 10^a$ is the brightness temperature at the
     1040reference frequency $\nu_0$:
    9601041\item The difference between the beam-corrected sky temperature and the fitted power law
    9611042$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
     
    9641045Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
    9651046for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
    966 21 cm LSS power spectrum, as seen by a perfect instrument with a gaussian frequency independent
    967 beam is shown in orange (solid line), and the extracted power spectrum, after beam correction
     104721 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
     1048gaussian frequency independent beam is shown in orange (solid line),
     1049and the extracted power spectrum, after beam {\em correction}
    9681050and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
    9691051We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
    9701052or with the first order polynomial fit (P1).
    9711053
    972 It can be seen that a precise knowledge of the instrument beam and the beam correction
    973 is a key ingredient for recovering the 21 cm LSS power spectrum. It is also worthwhile to
    974 note that while it is enough to correct the beam to the lowest resolution instrument beam
    975 ($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM model, a stronger beam correction
     1054Figure \ref{extlssmap} shows a comparison of  the original 21 cm brightness temperature map at 884 MHz
     1055with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
     1056present in the original map have been correctly recovered, although the amplitude of the temperature
     1057fluctuations on the recovered map is significantly smaller (factor $sim 5$) than in the original map. This is mostly
     1058due to the damping of the large scale ($k \lesssim 0.04 h \mathrm{Mpc^{-1}} $) due the poor interferometer
     1059response at large angle    ($\theta \gtrsim 4^\circ $).
     1060
     1061We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
     1062presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
     1063However, a rather  precise knowledge of the instrument beam and the beam {\em correction}
     1064or smearing procedure described here  are key ingredient for recovering the 21 cm LSS power spectrum.
     1065It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
     1066($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
    9761067has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
    977 significantly the ripples from bright radio sources. The effect of mode mixing is reduced for
    978 an instrument with smooth (gaussian) beam, compared to the instrument response
    979 ${\cal R}(u,v,\lambda)$ used here.
    980 
    981 Figure \ref{extlssratio} shows the overall {\em transfer function} for 21 cm LSS power
    982 spectrum measurement. We have shown (solid line, orange) the ratio of measured LSS power spectrum
    983 by a perfect instrument $P_{perf-obs}(k)$, with a gaussian beam of $\sim$ 36 arcmin, respectively $\sim$ 30 arcmin,
    984 in the absence of any foregrounds or instrument noise, to the original 21 cm power spectrum $P_{21cm}(k)$.
    985 The ratio of the recovered LSS power spectrum $P_{ext}(k)$ to $P_{perf-obs}(k)$ is shown in red, and the
    986 ratio of the recovered spectrum to  $P_{21cm}(k)$  is shown in black (thin line).
     1068significantly the ripples from bright radio sources.
     1069We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
     1070with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
     1071such a smooth beam, compared to the more complex instrument response
     1072${\cal R}(u,v,\lambda)$ used for the results shown in figure \ref{extlsspk}.
     1073
     1074\begin{figure*}
     1075\centering
     1076\vspace*{-25mm}
     1077\mbox{
     1078\hspace*{-20mm}
     1079\includegraphics[width=1.15\textwidth]{Figs/extlsspk.pdf}
     1080}
     1081\vspace*{-35mm}
     1082\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
     1083continuum radio emissions at $z \sim 0.6$, for the instrument configuration (a), $11\times11$
     1084packed array interferometer.
     1085Left: GSM/Model-I , right: Haslam+NVSS/Model-II. black curve shows the residual after foreground subtraction,
     1086corresponding to the 21 cm signal, WITHOUT applying the beam correction. Red curve shows the recovered 21 cm
     1087signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange/yellow curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
     1088\label{extlsspk}
     1089\end{figure*}
     1090
    9871091
    9881092\begin{figure*}
     
    9901094\vspace*{-20mm}
    9911095\mbox{
    992 \hspace*{-20mm}
    993 \includegraphics[width=1.1\textwidth]{Figs/extlsspk.pdf}
     1096\hspace*{-25mm}
     1097\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
    9941098}
    995 \vspace*{-30mm}
    996 \caption{Power spectrum of the 21cm LSS temperature fluctuations, separated from the
    997 continuum radio emissions at $z \sim 0.6$.
    998 Left: GSM/Model-I , right: Haslam+NVSS/Model-II. }
    999 \label{extlsspk}
     1099\vspace*{-25mm}
     1100\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
     1101with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom),  for the instrument configuration (a), $11\times11$ packed array interferometer.
     1102Notice the difference between the temperature color scales (mK)  for the top and bottom maps. }
     1103\label{extlssmap}
    10001104\end{figure*}
    10011105
     1106\subsection{$P_{21}(k)$ measurement transfer function}
     1107\label{tfpkdef}
     1108The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
     1109 compared to the original $P_{21}(k)$ due to  the instrument response and the component separation procedure.
     1110We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
     1111if total power measurements (auto-correlations) are not used in the case of interferometers.
     1112The sky reconstruction and the component separation introduce additional filtering and distortions.
     1113Ideally, one has to define a power spectrum measurement response or {\it transfer function} in the
     1114radial direction,  ($\lambda$ or redshift, $TF(k_\parallel)$) and in the transverse plane ( $TF(k_\perp)$ ).
     1115The real transverse plane transfer function might even be anisotropic.
     1116
     1117However, in the scope of the present study, we define an overall transfer function $TF(k)$ as the ratio of the
     1118recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$:
     1119\begin{equation}
     1120TF(k) = P_{21}^{rec}(k) / P_{21}(k)
     1121\end{equation}
     1122
     1123Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
     1124separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes.
     1125The orange/yellow curve shows the ratio $P_{21}^{smoothed}(k)/P_{21}(k)$ of the computed to the original
     1126power spectrum, if the original LSS temperature cube is smoothed by the frequency independent target beam
     1127FWHM=30' for the GSM simulations (left), 36' for Model-II (right). This orange/yellow
     1128curve shows the damping effect due to the finite instrument size at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$). 
     1129The recovered power spectrum suffers also significant damping at large scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $ due to poor interferometer
     1130response at large angles ($ \theta \gtrsim 4^\circ-5^\circ$), as well as to the filtering of radial or longitudinal Fourier modes along
     1131the frequency or redshift direction ($k_\parallel$) by the component separation algorithm.
     1132The red curve shows the ratio of $P(k)$ computed on the recovered or extracted 21 cm LSS signal, to the original
     1133LSS temperature cube $P_{21}^{rec}(k)/P_{21}(k)$ and corresponds to the transfer function $TF(k)$ defined above,
     1134for $z=0.6$ and instrument setup (a).
     1135The black (thin line) curve shows the ratio of recovered to the smoothed
     1136power spectrum $P_{21}^{rec}(k)/P_{21}^{smoothed}(k)$. This latter ratio (black curve) exceeds one for $k \gtrsim 0.2$, which is
     1137due to the noise or system temperature. It should stressed that the simulations presented in this section were
     1138focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
     1139$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
     1140
     1141This transfer function is well represented a the analytical form:
     1142\begin{equation}
     1143TF(k) = \sqrt{ \frac{ k-k_A}{ k_B}  } \times \exp \left( - \frac{k}{k_C} \right)
     1144\label{eq:tfanalytique}
     1145\end{equation}
     1146
     1147We have performed  simulation of observations and radio foreground subtraction using
     1148the procedure described here for different redshifts and instrument configurations, in particular
     1149for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
     1150increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
     1151becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
     1152
     1153We have determined the transfer function parameters of eq. \ref{eq:tfanalytique} $k_A, k_B, k_C$
     1154for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
     1155for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
     1156and the smoothed transfer functions are shown on  figure \ref{tfpkz0525}.
     1157
     1158\begin{table}[hbt]
     1159\begin{tabular}{|c|ccccc|}
     1160\hline
     1161\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm}  & \hspace{2mm} 1.0 \hspace{2mm} &
     1162\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm}  & \hspace{2mm} 2.5 \hspace{2mm} \\
     1163\hline
     1164$k_A$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
     1165$k_B$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
     1166$k_C$ & 0.16   & 0.08   & 0.05   & 0.038   & 0.032 \\
     1167\hline
     1168\end{tabular}
     1169\caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift
     1170for instrumental setup (e), $20\times20$ packed array interferometer.  }
     1171\label{tab:paramtfk}
     1172\end{table}
    10021173
    10031174\begin{figure*}
    10041175\centering
    1005 \vspace*{-20mm}
     1176\vspace*{-30mm}
    10061177\mbox{
    10071178\hspace*{-20mm}
    1008 \includegraphics[width=1.1\textwidth]{Figs/extlssratio.pdf}
     1179\includegraphics[width=1.15\textwidth]{Figs/extlssratio.pdf}
    10091180}
    1010 \vspace*{-30mm}
    1011 \caption{Power spectrum of the 21cm LSS temperature fluctuations, separated from the
    1012 continuum radio emissions at $z \sim 0.6$.
     1181\vspace*{-35mm}
     1182\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $TF(k) = P_{21}^{rec}(k) / P_{21}(k) $, at $z \sim 0.6$,  for the instrument configuration (a), $11\times11$ packed array interferometer.
    10131183Left: GSM/Model-I , right: Haslam+NVSS/Model-II.  }
    10141184\label{extlssratio}
    10151185\end{figure*}
    10161186
    1017 \section{ BAO scale determination and constrain on dark energy parameters}
     1187
     1188\begin{figure}
     1189\centering
     1190\vspace*{-25mm}
     1191\mbox{
     1192\hspace*{-10mm}
     1193\includegraphics[width=0.55\textwidth]{Figs/tfpkz0525.pdf}
     1194}
     1195\vspace*{-30mm}
     1196\caption{Fitted/smoothed  transfer function obtained for the recovered 21 cm power spectrum at different redshifts,
     1197$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
     1198\label{tfpkz0525}
     1199\end{figure}
     1200
     1201
     1202
     1203%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     1204%% \section{ BAO scale determination and constrain on dark energy parameters}
    10181205% {\color{red} \large \it  CY ( + JR  )  } \\[1mm]
    1019 We compute  reconstructed LSS-P(k) (after component separation) at different z's
    1020 and determine BAO scale as a function of redshifts.
    1021 Method:
     1206%% We compute  reconstructed LSS-P(k) (after component separation) at different z's
     1207%% and determine BAO scale as a function of redshifts.
     1208%% Method:
     1209%% \begin{itemize}
     1210%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
     1211%% \item Compute / guess the instrument noise level for the same redshit values
     1212%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
     1213%% \item Compute the DETF ellipse with different priors
     1214%% \end{itemize}
     1215
     1216%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     1217%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
     1218%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     1219
     1220\section{Sensitivity to cosmological parameters}
     1221\label{cosmosec}
     1222
     1223In section \ref{pkmessens},
     1224The impact of the various telescope configurations on the sensitivity for 21 cm
     1225power spectrum measurement has been discussed in section \ref{pkmessens}.
     1226Fig.~\ref{powerfig} shows the noise power spectra, and allows us to rank visually the configurations
     1227in terms of instrument noise contribution to P(k) measurement.
     1228The differences in $P_{noise}$ will translate into differing precisions
     1229in the reconstruction of the BAO peak positions and in
     1230the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
     1231that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
     1232has also an effect on the measured 21 cm power spectrum.
     1233In this paragraph, we present our method and the results for the precisions on the estimation
     1234of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
     1235with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
     1236dishes, arranged into a filled $20 \times 20$ array.
     1237
     1238
     1239\subsection{BAO peak precision}
     1240
     1241In order to estimate the precision with which BAO peak positions can be
     1242measured, we  used a method similar to the one established in \citep{blake.03}.
     1243
     1244
     1245
     1246To this end, we  generated reconstructed power spectra $P^{rec}(k)$ for
     1247 slices of Universe with a quarter-sky coverage and a redshift depth,
     1248 $\Delta z=0.5$ for  $0.25<z<2.75$.
     1249The peaks in the generated spectra were then determined by a
     1250fitting procedure and the reconstructed peak positions compared with the
     1251generated peak positions.
     1252The reconstructed power spectrum used in the simulation is 
     1253the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
     1254damped by the transfer function $TF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
     1255and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
     1256established in section \ref{instrumnoise} with $N=400$:
     1257\begin{equation}
     1258 P^{rec}(k) = P_{21}(k) \times TF(k) + P_{noise}
     1259\end{equation}
     1260where the different terms ($P_{21}(k) , TF(k), P_{noise}$depend on the slice redshift. 
     1261The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
     1262%\begin{equation}
     1263\begin{eqnarray}
     1264\label{eq:signal}
     1265\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
     12661\; +
     1267\hspace*{40mm}
     1268\nonumber
     1269\\ \hspace*{20mm}
     1270A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
     1271\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
     1272\frac{\kpar^2}{\kopar^2}}\;\right)
     1273\end{eqnarray}
     1274%\end{equation}
     1275where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
     1276are adjusted to the  formula presented in
     1277\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
     1278envelop curve of the HI power spectrum without baryonic oscillations.
     1279The parameters $\koperp$ and $\kopar$
     1280are the inverses of the oscillation periods in k-space.
     1281The following values have been used for these
     1282parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
     1283$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
     1284
     1285Each simulation is performed for a given set of parameters
     1286which are: the system temperature,$\Tsys$, an observation time,
     1287$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
     1288Then,  each simulated  power spectrum  is fitted with a two dimensional
     1289normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
     1290the sum of the signal power spectrum damped by the transfer function and the
     1291noise power spectrum  multiplied by a
     1292linear term,  $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
     1293corresponds to the approximate position of the linear/non-linear transition.
     1294This limit is established on the basis of the criterion discussed in 
     1295\citep{blake.03}.
     1296In practice, we used for the redshifts
     1297$z=0.5,\,\, 1.0$ and  $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
     1298and $0.23 \hMpcm$.
     1299 
     1300Figure \ref{fig:fitOscill} shows the result of the fit for
     1301one of theses simulations.
     1302Figure \ref{fig:McV2} histograms the recovered values of  $\koperp$ and $\kopar$
     1303for 100 simulations.
     1304The widths of the two distributions give an estimate
     1305the statistical errors.
     1306
     1307In addition, in the fitting procedure, both the parameters modeling the
     1308signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
     1309spectrum $(a_0,a_1)$ are floated to take into account the possible
     1310ignorance  of the signal shape and the uncertainties in the
     1311computation of the noise power spectrum.
     1312In this way, we can correct possible imperfections and the
     1313systematic uncertainties are directly propagated to statistical errors
     1314on the relevant parameters  $\koperp$ and $\kopar$. By subtracting the
     1315fitted noise contribution to each simulation, the baryonic oscillations
     1316are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
     1317
     1318 
     1319\begin{figure}[htbp]
     1320\begin{center}
     1321\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
     1322\caption{1D projection of the power spectrum for one simulation.
     1323The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
     1324corresponding to the power spectrum without baryonic oscillations.
     1325The dots represents one simulation for a "packed" array of cylinders 
     1326with a system temperature,$T_{sys}=50$K, an observation time,
     1327$T_{obs}=$ 1 year,
     1328a solid angle of $1\pi sr$,
     1329an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
     1330The solid line is the result of the fit to the data.}
     1331\label{fig:fitOscill}
     1332\end{center}
     1333\end{figure}
     1334
     1335\begin{figure}[htbp]
     1336\begin{center}
     1337%\includegraphics[width=\textwidth]{McV2.eps}
     1338\includegraphics[width=9.0cm]{Figs/McV2.pdf}
     1339\caption{ Distributions of the reconstructed
     1340wavelength  $\koperp$ and $\kopar$
     1341respectively, perpendicular and parallel to the line of sight
     1342for simulations as in Fig. \ref{fig:fitOscill}.
     1343The fit by a Gaussian of the distribution (solid line) gives the
     1344width of the distribution  which represents the statistical error
     1345expected on these parameters.}
     1346\label{fig:McV2}
     1347\end{center}
     1348\end{figure}
     1349
     1350
     1351\begin{figure}[htbp]
     1352\begin{center}
     1353\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
     1354\caption{1D projection of the power spectrum averaged over 100 simulations
     1355of the packed cylinder array $b$.
     1356The simulations are performed for the following conditions: a system
     1357temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
     1358a solid angle of $1 \pi sr$,
     1359an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
     1360The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
     1361corresponding to the power spectrum without baryonic oscillations
     1362and the background estimated by a fit is subtracted. The errors are
     1363the RMS of the 100 distributions for each $k$ bin and the dots are
     1364the mean of the distribution for each $k$ bin. }
     1365\label{fig:AverPk}
     1366\end{center}
     1367\end{figure}
     1368
     1369
     1370
     1371
     1372%\subsection{Results}
     1373
     1374In our comparison of the various configurations, we have considered
     1375the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
    10221376\begin{itemize}
    1023 \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
    1024 \item Compute / guess the instrument noise level for the same redshit values
    1025 \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
    1026 \item Compute the DETF ellipse with different priors
     1377\item {\it Simulation without electronics noise}: the statistical errors on the power
     1378spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
     1379 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
     1380The number of mode $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
     1381\begin{equation}
     1382V  =  \frac{c}{H(z)} \Delta z  \times (1+z)^2 \dang^2  \Omega_{tot} \hspace{10mm}
     1383N_{\delta k}  =  \frac{ V }{4 \pi^2} k^2 \delta k
     1384\end{equation}   
     1385\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
     1386\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
     1387$\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
     1388\item {\it Noise with transfer function}: we take into account of the interferometer and radio foreground
     1389subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
     1390well as instrument noise $P_{noise}$.
    10271391\end{itemize}
    10281392
     1393\begin{table}
     1394\begin{tabular}{|l|ccccc|}
     1395\hline
     1396z & \hspace{1mm} 0.5 \hspace{1mm} &  \hspace{1mm} 1.0 \hspace{1mm} &
     1397\hspace{1mm} 1.5 \hspace{1mm} &  \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
     1398\hline
     1399$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ &  8.5 & 35 & 75 & 120 & 170 \\
     1400\hline
     1401\end{tabular}
     1402\caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
     1403\label{tab:pnoiselevel}
     1404\end{table}
     1405
     1406Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
     1407decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results.  Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
     1408
     1409\begin{table*}[ht]
     1410\begin{center}
     1411\begin{tabular}{lc|c c c c c }
     1412\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 &  \bf 1.5 & \bf 2.0 & \bf 2.5 \\
     1413\hline\hline
     1414\bf No Noise & $\sigma(\koperp)/\koperp$  (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
     1415 & $\sigma(\kopar)/\kopar$  (\%) & 3.0 & 1.3 & 0.9 &  0.8 & 0.8\\
     1416 \hline
     1417 \bf  Noise without Transfer Function   & $\sigma(\koperp)/\koperp$  (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
     1418 (3-months/redshift)& $\sigma(\kopar)/\kopar$  (\%) & 4.1 & 3.1  & 3.6 & 4.3 & 4.4\\
     1419 \hline
     1420 \bf   Noise with Transfer Function  & $\sigma(\koperp)/\koperp$  (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
     1421 (3-months/redshift)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
     1422 \hline
     1423 \bf  Optimized survey & $\sigma(\koperp)/\koperp$  (\%)   & 3.0 & 2.5 & 2.3 &  2.0 &  2.7\\
     1424 (Observation time :  3 years)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 4.1 &  3.6  & 4.3 \\
     1425 \hline
     1426\end{tabular}
     1427\end{center}
     1428\caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
     1429function of the redshift $z$ for various simulation configuration.
     1430$1^{\rm st}$ row: simulations without noise with pure cosmic variance;
     1431$2^{\rm nd}$
     1432row: simulations with electronics noise for a telescope with dishes;
     1433$3^{\rm th}$ row: simulations
     1434with same electronics noise and with correction with the transfer function ;
     1435$4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
     1436\label{tab:ErrorOnK}
     1437\end{table*}%
     1438
     1439
     1440
     1441\subsection{Expected sensitivity on $w_0$  and $w_a$}
     1442
     1443\begin{figure}
     1444\begin{center}
     1445\includegraphics[width=8.5cm]{Figs/dist.pdf}
     1446\caption{
     1447The two ``Hubble diagrams'' for BAO experiments.
     1448The four falling curves give the angular size of the acoustic horizon
     1449(left scale) and the four
     1450rising curves give the redshift interval of the acoustic horizon (right scale).
     1451The solid lines are for
     1452$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
     1453the dashed  for
     1454$(1,0,-1)$
     1455the dotted for
     1456$(0.27,0,-1)$, and
     1457the dash-dotted  for
     1458$(0.27,0.73,-0.9)$,
     1459The error bars on the solid curve correspond to the four-month run
     1460(packed array)
     1461of Table \ref{tab:ErrorOnK}.
     1462 }
     1463\label{fig:hubble}
     1464\end{center}
     1465\end{figure}
     1466
     1467
     1468The observations give the \HI power spectrum in
     1469angle-angle-redshift space rather than in real space.
     1470The inverse of the peak positions  in the observed power spectrum therefore 
     1471gives the angular and redshift intervals corresponding to the
     1472sonic horizon.
     1473The peaks in the angular spectrum are proportional to
     1474$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
     1475$a_s \sim 105  h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
     1476$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
     1477(see Eq. \ref{eq:expHz}):
     1478\begin{equation}
     1479d_H = \frac{c}{H(z)} =  \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} }   \hspace{5mm}
     1480d_T = \int_0^z d_H(z) dz
     1481\label{eq:dTdH}
     1482\end{equation}
     1483The quantities $d_T$, $d_H$ and $a_s$ all depend on
     1484the cosmological parameters.
     1485Figure \ref{fig:hubble} gives the angular and redshift intervals
     1486as a function of redshift for four cosmological models.
     1487The error bars on the lines for
     1488$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
     1489correspond to the expected errors
     1490on the peak positions
     1491taken from Table \ref{tab:ErrorOnK}
     1492for the four-month runs with the packed array.
     1493We see that with these uncertainties, the data would be able to
     1494measure $w$ at better than the 10\% level.
     1495
     1496
     1497To estimate the sensitivity
     1498to parameters describing dark energy equation of
     1499state, we follow the procedure explained in
     1500\citep{blake.03}. We can introduce the equation of
     1501state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
     1502replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
     1503(Eq. \ref{eq:dTdH}) by:
     1504\begin{equation}
     1505\Omega_\Lambda = \Omega_{\Lambda}^0 \exp \left[ 3  \int_0^z   
     1506\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime  \right]
     1507\end{equation}
     1508where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
     1509respect to the critical density.
     1510Using the relative errors on  $\koperp$ and  $\kopar$ given in
     1511Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for 
     1512five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
     1513Then, the combination of this BAO Fisher
     1514matrix with the Fisher matrix obtained for Planck mission, allows us to
     1515compute the errors on dark energy parameters.
     1516The Planck Fisher matrix is
     1517obtained for the 8 parameters (assuming a flat universe):
     1518$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
     1519$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
     1520$\tau$  (optical depth to the last-scatter surface).
     1521
     1522
     1523For an optimized project over a redshift range, $0.25<z<2.75$, with a total
     1524observation time of 3 years, the packed 400-dish interferometer array has a
     1525precision of  12\% on $w_0$ and 48\% on $w_a$.
     1526The  Figure of Merit, the inverse of the area in the 95\% confidence level
     1527contours  is 38.
     1528 Finally, Fig.~\ref{fig:Compw0wa}
     1529shows a comparison of different BAO projects, with a set of priors on
     1530$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
     1531these parameters in early 2010's. This BAO project based on \HI intensity
     1532mapping is clearly competitive with the current generation of optical
     1533surveys such as SDSS-III \citep{sdss3}.
     1534
     1535
     1536\begin{figure}[htbp]
     1537\begin{center}
     1538\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
     1539\caption{$1\sigma$ and $2\sigma$ confidence level contours  in the
     1540parameter plane $(w_0,w_a)$ for two BAO projects:   SDSS-III (LRG) project
     1541(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
     1542\label{fig:Compw0wa}
     1543\end{center}
     1544\end{figure}
    10291545
    10301546\section{Conclusions}
    1031 
     1547The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
     1548approach to optical surveys to study the statistical properties of the large scale structures in the universe
     1549up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
     1550(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
     1551to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
     1552a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
     1553focal plane array with a $\sim 100$ meter primary reflector will have the required sensitivity to measure
     1554the 21 cm power spectrum. A method to compute the instrument response for interferometers 
     1555has been developed and we have  computed the noise power spectrum for various telescope configurations.
     1556The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
     1557making the measurement of this latter signal a major scientific and technical challenge. We have also studied  the performance of a simple foreground subtraction method through realistic models of the sky
     1558emissions in the GHz domain and simulation of interferometric observations.
     1559We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
     1560requires a very good knowledge of the instrument response. Our method has allowed to define and
     1561compute the overall  {\it transfer function} or {\it response function} for the measurement of the 21 cm
     1562power spectrum.
     1563Finally, we have used the computed noise power spectrum and  P(k)
     1564measurement response function to estimate
     1565the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
     1566could be carried using the current technology and would be comptetitive with the ongoing or planned
     1567optical surveys for dark energy,  with a fraction of their cost.
     1568 
    10321569% \begin{acknowledgements}
    10331570% \end{acknowledgements}
    10341571
    1035 %%% Quelques figures pour illustrer les resultats attendus
    1036 
    1037 
    1038 
    1039 % \caption{Comparison of the original simulated LSS (frequency plane) and the recovered LSS.
    1040 % Color scale in mK }  \label{figcompexlss}
    1041 
    1042 % \caption{Comparison of the original simulated foreground  (frequency plane) and
    1043 % the recovered foreground map. Color scale in Kelvin }  \label{figcompexfg}
    1044 
    1045 % \caption{Comparison of the LSS power spectrum at 21 cm at 900 MHz ($z \sim 0.6$)
    1046 % and the synchrotron/radio sources - GSM (Global Sky Model) foreground sky cube}
    1047 % \label{figcompexfg}
    1048 
    1049 
    1050 % \caption{Recovered LSS power spectrum, after component separation - - GSM (Global Sky Model) foreground sky cube}
    1051 % \label{figexlsspk}
    1052 
    10531572\bibliographystyle{aa}
    10541573
     
    10571576%%%
    10581577\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
    1059     V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , ArXiv:0807.3614
    1060 
     1578    V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
     1579
     1580%%%% References extraites de la section fournie par C. Yeche
     1581\bibitem[Abdala \& Rawlings(2005)]{SKA} Abdalla, F.B. \& Rawlings, S.  2005,  \mnras, 360,  27     
     1582
     1583\bibitem[Albrecht et al.(2006)]{DETF}  Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
     1584       
     1585\bibitem[Barkana \& Loeb(2007)]{h1temp} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70 627
     1586
     1587\bibitem[Binney \& Merrifield(1998)]{binneymerrifield} Binney, J. \&  Merrifield, M. 1998, Galactic Astronomy.
     1588(Princeton Univ. Press, Princeton)
     1589
     1590\bibitem[Blake and Glazebrook(2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665;
     1591Glazebrook, K. \&  Blake, C. 2005 \apj, 631, 1
     1592
     1593% Galactic astronomy, emission HI d'une galaxie
     1594\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
    10611595% MWA description
    10621596\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518 
     1597
     1598%% Soustraction avant plans ds MWA
     1599\bibitem[Bowman et al. (2009)]{bowman.07} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199 
    10631600
    10641601%  Intensity mapping/HSHS
     
    10781615\bibitem[Eisentein et al. (2005)]{eisenstein.05}  Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005,  \apj, 633, 560
    10791616
     1617% SDSS-III description
     1618\bibitem[Eisentein et al. (2011)]{eisenstein.11}  Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
     1619
    10801620%   21 cm emission for mapping matter distribution 
    10811621\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \&  Briggs, F. 2006, \physrep, 433, 181-301
     
    10881628\bibitem[Hinshaw et al. (2008)]{hinshaw.08}  Hinshaw, G., Weiland, J.L., Hill, R.S.  {\it et al.} 2008, arXiv:0803.0732)
    10891629
     1630% Distribution des radio sources
     1631\bibitem[Jackson(2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187 
     1632
    10901633% HI mass in galaxies
    10911634\bibitem[Lah et al. (2009)]{lah.09}  Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al.  2009,  \mnras
    10921635( astro-ph/0907.1416)
    10931636
     1637% LSST Science book
     1638\bibitem[LSST.Science]{lsst.science}
     1639{\it LSST Science book}, LSST Science Collaborations, 2009, arXiv:0912.0201 
     1640
     1641% Foret Ly alpha - 1
     1642\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S.  {\it et al.}  2006, \apjs, 163, 80
     1643
     1644% Foret Ly alpha - 2 , BAO from Ly-a
     1645\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J.  2007, Phys Rev D 76, 6, 063009
     1646
    10941647%  Boomerang 2000, Acoustic pics
    10951648\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.}  2000, \apjl, 536,59
    10961649
    1097 %  Papier sur le traitement des obseravtions radio / mode mixing - REFERENCE A CHERCHER
    1098 \bibitem[Morales et al. (2009)]{morales.09} Morales, M and other 2009, arXiv:0999.XXXX
     1650%  Papier sur le traitement des observations radio / mode mixing
     1651\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
    10991652
    11001653%  Global Sky Model Paper
     
    11081661\bibitem[Percival et al. (2007)]{percival.07}   Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
    11091662
     1663% SDSS BAO 2010  - arXiv:0907.1660
     1664\bibitem[Percival et al. (2010)]{percival.10}   Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.},  2010, \mnras 401, 2148-2168   
     1665
    11101666%% LOFAR description
    11111667\bibitem[Rottering et a,. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.}  2006, arXiv:astro-ph/0610596
    11121668%%%%
     1669
     1670%% SDSS-3
     1671\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
    11131672
    11141673%  Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
     
    11191678{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
    11201679
     1680% Papier 21cm-BAO Fermilab  ( arXiv:0910.5007)
     1681\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al,  2010, \apj, 721, 164-173
     1682
    11211683% FFT telescope
    11221684\bibitem[Tegmark \& Zaldarriaga (2008)]{tegmark.08} Tegmark, M. \& Zaldarriaga, M. 2008, arXiv:0802.1710
     1685
     1686%  Thomson-Morane livre interferometry
     1687\bibitem[Radio Astronomy (1998)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
     1688Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
    11231689
    11241690% Lyman-alpha, HI fraction
Note: See TracChangeset for help on using the changeset viewer.