Changeset 4045 in Sophya


Ignore:
Timestamp:
Dec 30, 2011, 12:58:39 AM (12 years ago)
Author:
ansari
Message:

Version papier avec correction de la legende des tables mise en conformite avec les regles A-A, Reza 30/12/2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r4044 r4045  
    6868% \def\changemark{\bf }
    6969\def\changemark{}
    70 \def\changemarkb{\bf }
     70% \def\changemarkb{\bf }
     71\def\changemarkb{}
    7172
    7273
     
    316317%%%%%%%%
    317318\begin{table}
    318 \caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
    319 frequency band (left). 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right)  }
     319\caption{21 cm source brightness and detection limits. }
    320320\label{slims21}
    321321\begin{center}
     
    348348\end{tabular}
    349349\end{center}
     350\tablefoot{The left panel shows the  sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
     351frequency band. The 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts is given
     352in the right panel.  }
    350353\end{table}
    351354
     
    425428
    426429\begin{table}
    427 \caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
    428 standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01  (a) or linearly
    429 increasing mass fraction (b)  $\gHIz=0.008(1+z)$ }
     430\caption{21 cm brightness temperature (mK) at different redshifts. }
    430431\label{tabcct21}
    431432% \begin{center}
     
    442443\end{tabular}
    443444%\end{center}
     445\tablefoot{ Mean 21 cm brightness temperature in mK  for the
     446standard \LCDM cosmology as a function of redshift:
     447\tablefoottext{a}{Constant \HI mass fraction \mbox{$\gHIz=0.01$}}
     448\tablefoottext{b}{Linearly increasing mass fraction \mbox{$\gHIz=0.008(1+z)$} }
     449}
    444450\end{table}
    445451
    446452\begin{figure}
    447 \vspace*{-4mm}
     453\vspace*{-5mm}
    448454\hspace{-5mm}
    449455\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
     
    979985\begin{table}
    980986\caption{
    981 Sky cube characteristics for the simulation performed in this paper.
    982 Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
    983 $1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells
    984 }
     987Sky cube characteristics for the simulations described in this paper.  }
    985988\label{skycubechars}
    986989\begin{center}
     
    10021005Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
    10031006\hline
    1004 \end{tabular} \\[1mm]
     1007\end{tabular}
    10051008\end{center}
     1009\tablefoot{ Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
     1010$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells }
    10061011\end{table}
    10071012%%%%
     
    11001105
    11011106\begin{table}
    1102 \caption{ Mean temperature and standard deviation for the different sky brightness
    1103 data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
     1107\caption{Mean temperature and standard deviation for different sky cubes.}
    11041108\label{sigtsky}
    11051109\centering
     
    11151119\hline
    11161120\end{tabular}
     1121% \tablefoot{See table \ref{skycubechars} for sky cube resolution and size.}
    11171122\end{table}
    11181123
     
    13981403
    13991404\begin{table}[hbt]
    1400 \caption{Transfer function (eq. \ref{eq:tfanalytique}) parameters
    1401   $(k_A,k_B,k_C)$  at different redshifts
    1402 for instrumental setup (e), $20\times20$ packed array interferometer.
    1403 {\changemarkb Note that the parameters are given in
    1404   $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$.}
    1405 }
     1405\caption{Transfer function parameters.}
    14061406\label{tab:paramtfk}
    14071407\begin{center}
     
    14171417\end{tabular}
    14181418\end{center}
     1419\tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$  (eq. \ref{eq:tfanalytique})
     1420at different redshifts and for instrumental setup (e), $20\times20$ packed array interferometer,
     1421are given in $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$. }
    14191422\end{table}
    14201423
     
    16341637\end{equation}   
    16351638\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
    1636 \ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
    1637 $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
     1639\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for a $N=400$ dish interferometer
     1640with $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
    16381641\item {\it Noise with transfer function}: we take into account the interferometer response and radio foreground
    16391642subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
     
    16421645
    16431646\begin{table}
    1644 \caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
     1647\caption{Noise spectral power.}
    16451648\label{tab:pnoiselevel}
    16461649\begin{tabular}{|l|ccccc|}
     
    16581661
    16591662\begin{table*}[ht]
    1660 \caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
    1661 function of the redshift $z$ for various simulation configuration.
    1662 $1^{\rm st}$ row: simulations without noise with pure cosmic variance;
    1663 $2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes;
    1664 $3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function ;
    1665 $4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
     1663\caption{Sensitivity on $\mathbf{k}_{BAO}$ measurement.}
    16661664\label{tab:ErrorOnK}
    16671665\begin{center}
     
    16691667\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 &  \bf 1.5 & \bf 2.0 & \bf 2.5 \\
    16701668\hline\hline
    1671 \bf No Noise & $\sigma(\koperp)/\koperp$  (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
     1669\bf No Noise (a) & $\sigma(\koperp)/\koperp$  (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
    16721670 & $\sigma(\kopar)/\kopar$  (\%) & 3.0 & 1.3 & 0.9 &  0.8 & 0.8\\
    16731671 \hline
    1674  \bf  Noise without Transfer Function   & $\sigma(\koperp)/\koperp$  (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
    1675  (3-months/redshift)& $\sigma(\kopar)/\kopar$  (\%) & 4.1 & 3.1  & 3.6 & 4.3 & 4.4\\
     1672 \bf  Noise without Transfer Function (b)  & $\sigma(\koperp)/\koperp$  (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
     1673 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$  (\%) & 4.1 & 3.1  & 3.6 & 4.3 & 4.4\\
    16761674 \hline
    1677  \bf   Noise with Transfer Function  & $\sigma(\koperp)/\koperp$  (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
    1678  (3-months/redshift)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
     1675 \bf   Noise with Transfer Function  (c) & $\sigma(\koperp)/\koperp$  (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
     1676 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
    16791677 \hline
    1680  \bf  Optimized survey & $\sigma(\koperp)/\koperp$  (\%)   & 3.0 & 2.5 & 2.3 &  2.0 &  2.7\\
     1678 \bf  Optimized survey (d) & $\sigma(\koperp)/\koperp$  (\%)   & 3.0 & 2.5 & 2.3 &  2.0 &  2.7\\
    16811679 (Observation time :  3 years)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 4.1 &  3.6  & 4.3 \\
    16821680 \hline
    16831681\end{tabular}
    16841682\end{center}
     1683\tablefoot{Relative errors on $\koperp$ and $\kopar$ measurements are given
     1684as a function of the redshift $z$ for various simulation configurations: \\
     1685\tablefoottext{a}{$1^{\rm st}$ row: simulations without noise with pure cosmic variance; } \\
     1686\tablefoottext{b}{$2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes;  } \\
     1687\tablefoottext{c}{$3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function; } \\
     1688\tablefoottext{d}{$4^{\rm th}$ row: optimized survey with a total observation time of 3 years: 3 months, 3 months,
     16896 months, 1 year and 1 year respectively for \\ redshifts 0.5, 1.0, 1.5, 2.0 and 2.5.}
     1690}
    16851691\end{table*}%
    16861692
Note: See TracChangeset for help on using the changeset viewer.