Changeset 4049 in Sophya for trunk


Ignore:
Timestamp:
Feb 13, 2012, 6:56:58 PM (14 years ago)
Author:
ansari
Message:

Version avec les corrections du language editor, Reza 13/02/2012

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r4045 r4049  
    1818%\documentclass[letter]{aa} % for the letters
    1919%
    20 \documentclass[structabstract]{aa} 
     20\documentclass[structabstract]{aa}    % version standard, utilise pour ce papier
    2121%\documentclass[traditabstract]{aa} % for the abstract without structuration
    2222                                   % (traditional abstract)
     
    2727\usepackage{graphicx}
    2828\usepackage{color}
     29
     30%% \usepackage{natbib}    Probleme - pas tente de le resoudre (Reza, Jan 2012)
     31%% \bibpunct{(}{)}{;}{a}{}{,} % to follow the A&A style
    2932
    3033%% Commande pour les references
     
    128131  }
    129132
    130    \date{Received August 5, 2011; accepted xxxx, 2011}
     133   \date{Received August 5, 2011; accepted December 22, 2011}
    131134
    132135% \abstract{}{}{}{}{}
     
    136139  % context heading (optional)
    137140  % {} leave it empty if necessary 
    138    { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
    139 cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
    140 properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
    141 using radio interferometers with large instantaneous field of view and waveband.}
     141   { Large scale structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
     142cm emission. Such a 3D matter distribution map can be used to test the cosmological model and to constrain the dark energy
     143properties or its equation of state. A novel approach, called intensity mapping, can be used to map the \HI distribution,
     144using radio interferometers with a large instantaneous field of view and waveband.}
    142145 % aims heading (mandatory)
    143   { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
    144 instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
     146  {We study the sensitivity of different radio interferometer configurations, or multi-beam
     147instruments for observing LSS and BAO oscillations in 21 cm, and we discuss the problem of foreground removal. }
    145148  % methods heading (mandatory)
    146  { For each configuration, we determine instrument response by computing the $(\uv)$ or Fourier angular frequency
     149 { For each configuration, we determined instrument response by computing the $(\uv)$ or Fourier angular frequency
    147150plane  coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
    148 hence the instrument sensitivity for LSS P(k) measurement. We describe also   a simple foreground subtraction method to
    149 separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
     151hence the instrument sensitivity for LSS P(k) measurement. We also describe a simple foreground subtraction method
     152of separating LSS 21 cm signal from the foreground due to the galactic synchrotron and radio source emission. }
    150153  % results heading (mandatory)
    151    { We have computed the noise power spectrum for different instrument configurations as well as the extracted
    152    LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
    153   the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
     154   { We have computed the noise power spectrum for different instrument configurations, as well as the extracted
     155   LSS power spectrum, after separating the 21cm-LSS signal from the foregrounds. We have also obtained
     156  the uncertainties on the dark energy parameters for an optimized 21 cm BAO survey.}
    154157  % conclusions heading (optional), leave it empty if necessary
    155158   { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
     
    170173
    171174% {\color{red} \large \it Jim ( + M. Moniez ) }   \\[1mm]
    172 The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
    173 with redshift is one the major tools in observational cosmology. These structures are usually mapped through
    174 optical observation of galaxies which are used as a tracer of the underlying matter distribution.
    175 An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
    176 (\HI) as a tracer with intensity mapping has been proposed in recent years (\cite{peterson.06} , \cite{chang.08}).
    177 Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in literature
    178 \citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or
    179 MWA \citep{bowman.07} to observe reionisation  at redshifts z $\sim$ 10.
    180 
    181 Evidence in favor of the acceleration of the expansion of the universe have been
    182 accumulated over the last twelve years, thanks to the observation of distant supernovae,
    183 CMB anisotropies and detailed analysis of the LSS. 
    184 A cosmological Constant ($\Lambda$) or new cosmological
    185 energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
    186 Dark Energy is considered as one of the most intriguing puzzles in Physics and Cosmology.
     175The study of the statistical properties of large scale structures (LSS) in the Universe and of their evolution
     176with redshift is one of the major tools in observational cosmology. These structures are usually mapped through
     177optical observation of galaxies that are used as tracers of the underlying matter distribution.
     178An alternative and elegant approach for mapping the matter distribution, which uses neutral atomic hydrogen
     179(\HI) as a tracer with intensity mapping, has been proposed in recent years (\cite{peterson.06}; \cite{chang.08}).
     180Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in the literature
     181(\cite{furlanetto.06}; \cite{tegmark.09}) and is being used in projects such as LOFAR \citep{rottgering.06} or
     182MWA \citep{bowman.07} to observe reionization  at redshifts z $\sim$ 10.
     183
     184Evidence of the acceleration in the expansion of the universe has
     185accumulated over the last twelve years, thanks to the observation of
     186distant supernovae and CMB anisotropies and to detailed analysis of the LSS. 
     187A cosmological constant ($\Lambda$) or new cosmological
     188energy density called {\em dark energy} has been advocated as the origin of this acceleration.
     189dark energy is considered as one of the most intriguing puzzles in physics and cosmology.
    187190% Constraining the properties of this new cosmic fluid, more precisely
    188191% its equation of state is central to current cosmological researches.
    189192Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
    190 more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
     193more precisely its equation of state: the Hubble diagram, or the luminosity distance as a function
    191194of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
    192 and Baryon Acoustic Oscillations (BAO).
     195and baryon acoustic oscillations (BAO).
    193196
    194197BAO are features imprinted  in the distribution of galaxies, due to the frozen
    195 sound waves which were present in the photon-baryon plasma prior to recombination
     198sound waves that were present in the photon-baryon plasma prior to recombination
    196199at \mbox{$z \sim 1100$}.
    197200This scale can be considered as a standard ruler with a comoving
    198 length  of \mbox{$\sim 150 \mathrm{Mpc}$}.
    199 These features have been first observed in the CMB anisotropies
    200 and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}).
     201length  of \mbox{$\sim 150 \, \mathrm{Mpc}$}, and
     202these features have been first observed in the CMB anisotropies
     203and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}; \cite{larson.11}).
    201204The BAO modulation has been subsequently observed in the distribution of galaxies
    202205at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
    203 \citep{eisenstein.05}  \citep{percival.07}  \citep{percival.10}, 2dGFRS  \citep{cole.05}  as well as
    204 WiggleZ \citep{blake.11} optical galaxy surveys.
    205 
    206 Ongoing {\changemarkb surveys such as BOSS} \citep{eisenstein.11}  or future surveys
    207 {\changemarkb such as LSST} \citep{lsst.science}
    208 plan to measure precisely the BAO scale in the redshift range
     206(\cite{eisenstein.05};  \cite{percival.07};  \cite{percival.10}), 2dGFRS  \cite{cole.05},
     207as well as WiggleZ \citep{blake.11} optical galaxy surveys.
     208
     209Ongoing {\changemarkb surveys, such as BOSS} \citep{eisenstein.11}  or future surveys,
     210{\changemarkb such as LSST} \citep{lsst.science},
     211plan to measure the BAO scale precisely in the redshift range
    209212$0 \lesssim z \lesssim 3$, using either optical observation of galaxies 
    210 or through 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
    211 \citep{baolya},\citep{baolya2}.
    212 Radio observation of the 21 cm emission of neutral hydrogen appears as
    213 a very promising technique to map matter distribution up to redshift $z \sim 3$,
    214 complementary to optical surveys, especially in the optical redshift desert range
     213or 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
     214(\cite{baolya}; \cite{baolya2}).
     215Radio observation of the 21 cm emission of neutral hydrogen is %  ?ENG? appears as
     216a very promising technique for mapping matter distribution up to redshift $z \sim 3$,
     217and it complements optical surveys, especially in the optical redshift desert range
    215218$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
    216219
    217 In section 2, we  discuss the intensity mapping and its potential for measurement of the
     220In section 2, we  discuss the intensity mapping and its potential for measuring of the
    218221\HI mass distribution power spectrum. The method used in this paper to characterize
    219222a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
    220 We show also  the results for the 3D noise power spectrum for several  instrument configurations.
    221 The contribution of foreground emissions due to the galactic synchrotron and radio sources
    222 is described in section 4, as well as a simple component separation method. The performance of this
     223We also show  the results for the 3D noise power spectrum for several  instrument configurations.
     224The contribution of foreground emissions due to both the galactic synchrotron and radio sources
     225is described in section 4, as is a simple component separation method. The performance of this
    223226method using two different sky models is also presented in section 4.
    224 The constraints which can be obtained on the Dark Energy parameters and DETF figure
     227The constraints that can be obtained on the dark energy parameters and DETF figure
    225228of merit for typical 21 cm intensity mapping survey are discussed in section 5.
    226229
     
    234237\subsection{21 cm intensity mapping}
    235238%%%
    236 Most of the cosmological information in the LSS is located at large scales
    237 ($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
    238 might suffer from the uncertainties on the non linear clustering effects. 
     239Most of the cosmological information in the LSS is located on large scales
     240($ \gtrsim 1 \mathrm{deg}$), while the interpretation on the smallest scales
     241might suffer from the uncertainties on the nonlinear clustering effects. 
    239242The BAO features in particular are at the degree angular scale on the sky
    240243and thus can be resolved easily with a rather modest size radio instrument
     
    246249longitudinal BAO clustering, which is a challenge for photometric optical surveys.   
    247250
    248 In order to obtain a measurement of the LSS power spectrum with small enough statistical
     251To obtain a measurement of the LSS power spectrum with small enough statistical
    249252uncertainties (sample or cosmic variance),  a large volume of the universe should be observed,
    250 typically few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
     253typically a few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
    251254obtained when comparing the distance or Hubble parameter measurements with
    252255DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
    253 
    254256Radio instruments intended for BAO surveys must thus have large instantaneous field
    255257of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
    256258to explore large redshift domains.
    257259
    258 Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
    259 discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}),
    260 the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
     260Although the application of 21 cm radio survey to cosmology, in particular LSS mapping, has been
     261discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}; \cite{abdalla.05}),
     262the method envisaged has mostly been through the detection of galaxies as \HI compact sources.
    261263However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
    262 The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarisations
     264The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarizations
    263265of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
    264266\begin{equation}
    265267S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
    266268\end{equation}
    267 where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
    268 \ref{slims21} (left)  we have computed the sensitivity for 6 different sets of instrument effective area and system
     269where $t_{int}$ is the total integration time and $\delta \nu$ the detection frequency band. In Table
     270\ref{slims21} (left)  we computed the sensitivity for six different sets of instrument effective area and system
    269271temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
    270 The width of this frequency band is well adapted  to detection of \HI source with an intrinsic velocity
    271 dispersion of few 100 km/s.
     272The width of this frequency band is well adapted  to detecting an \HI source with an intrinsic velocity
     273dispersion of a few 100 km/s.
    272274These detection limits should be compared with the expected 21 cm brightness
    273 $S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
     275$S_{21}$ of compact sources, which can be computed using the expression below (e.g. \cite{binney.98}):
    274276\begin{equation}
    275277 S_{21}  \simeq  0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot}   \times
    276278\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v}  (1+z)
    277279\end{equation}
    278  where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$
    279 is the source velocity dispersion. 
     280 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ the luminosity distance, and $\sigma_v$
     281the source velocity dispersion. 
    280282{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
    281283galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
     
    283285% {\color{red} Faut-il developper le calcul en annexe ? }
    284286 
    285 In table \ref{slims21} (right), we show the 21 cm brightness for
     287In Table \ref{slims21} (right), we show the 21 cm brightness for
    286288compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
    287 $200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
    288 WMAP \LCDM universe \citep{komatsu.11}. $10^9 - 10^{10} M_\odot$ of neutral gas mass
    289 is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
     289$200 \, \mathrm{km/s}$. The luminosity distance was computed for the standard
     290WMAP \LCDM universe \citep{komatsu.11}. From $10^9$ to  $10^{10} M_\odot$ of neutral gas mass
     291is typical of large galaxies \citep{lah.09}. It is clear that detecting \HI sources at cosmological distances
    290292would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
    291293
    292 Intensity mapping has been suggested as an alternative and economic method to map the
    293 3D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} and \citep{seo.10}.
     294Intensity mapping has been suggested as an alternative and economic method of mapping the
     2953D distribution of neutral hydrogen by (\cite{chang.08}; \cite{ansari.08}; \citep{seo.10}).
    294296{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
    295297\citep{chang.10} and at GMRT \citep{ghosh.11}}.
    296 In this approach, sky brightness map with angular resolution \mbox{$\sim 10-30 \, \mathrm{arc.min}$} is made for a
    297 wide range of frequencies. Each 3D pixel  (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$) 
    298 would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to hundred galaxies
     298In this approach, a sky brightness map with angular resolution
     299\mbox{$\sim 10-30 \, \mathrm{arc.min}$} is created for a   %% ?ENG? was created ?
     300wide range of frequencies. Each 3D pixel  (2 angles $\vec{\Theta}$, frequency $\nu$, or wavelength $\lambda$) 
     301would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to a hundred galaxies
    299302and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
    300 the observed frequency $\nu$ would be translated to the emission redshift $z$ through
    301 the well known relation:
     303the observed frequency $\nu$ would be translated into the emission redshift $z$ through
     304the well known relation
    302305\begin{eqnarray}
    303306 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
     
    306309 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
    307310\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
    308 \hspace{1mm} \mathrm{with}   \hspace{1mm}  \lambda_{21} = 0.211 \, \mathrm{m}
     311\hspace{1mm} \mathrm{with}   \hspace{1mm}  \lambda_{21} = 0.211 \, \mathrm{m.}
    309312\end{eqnarray}
    310 The large scale distribution of the neutral hydrogen, down to angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
    311 can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
    312 map as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
     313The large-scale distribution of the neutral hydrogen, down to an angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
     314can then be observed without detecting individual compact \HI sources, using the set of sky-brightness
     315maps as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
    313316(radiation power/unit solid angle/unit surface/unit frequency)
    314317can be converted to brightness temperature using the Rayleigh-Jeans approximation of  black body radiation law:
    315 $$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
     318$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} .$$
    316319 
    317320%%%%%%%%
     
    348351\end{tabular}
    349352\end{center}
    350 \tablefoot{The left panel shows the  sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
    351 frequency band. The 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts is given
    352 in the right panel.  }
     353\tablefoot{Left panel: sensitivity or source detection limit for 1-day integration time (86400 s) and 1-MHz
     354frequency band. Right panel: 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts.}
    353355\end{table}
    354356
    355357\subsection{ \HI power spectrum and BAO}
    356358In the absence of any foreground or background radiation
    357 {\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
     359{\changemark and assuming a high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
    358360the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
    359361the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
    360 relation {\changemarkb (\cite{field.59} , \cite{zaldarriaga.04})}:
     362relation {\changemarkb (\cite{field.59}; \cite{zaldarriaga.04})}:
    361363\begin{equation}
    362364  \TTlamz  =   \frac{3}{32 \pi}  \, \frac{h}{\kb} \,  A_{21}  \, \lambda_{21}^2 \times
     
    364366\end{equation}
    365367where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
    366 coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
    367 constant and $H(z)$ is the Hubble parameter at the emission
     368coefficient, $h$ the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
     369constant, and $H(z)$ the Hubble parameter at the emission
    368370redshift.
    369371For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
    370 can be expressed as:
     372can be expressed as
    371373\begin{equation}
    372374H(z)  \simeq  \hubb  \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
    373 \times  100 \, \, \mathrm{km/s/Mpc
     375\times  100 \, \, \mathrm{km/s/Mpc.
    374376\label{eq:expHz}
    375377\end{equation}
    376 Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
     378After introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
    377379neutral hydrogen number density and the corresponding 21 cm emission temperature
    378380can be written as a function of \HI relative density fluctuations:
     
    382384 \TTlamz  &  = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)  + 1 \right)
    383385\end{eqnarray}
    384 where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
    385 and critical densities, $m_{H}$ is the hydrogen atom mass, and
    386 $\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
    387 
    388 The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
    389 measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
    390 $$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
     386where $\Omega_B$ and $\rho_{crit}$ are the present-day mean baryon cosmological
     387and critical densities, respectively, $m_{H}$ the hydrogen atom mass, and
     388$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ the \HI density fluctuations.
     389
     390The present-day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
     391measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}
     392$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B .$$
    391393The neutral hydrogen fraction is expected to increase with redshift, as gas is used
    392394in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
    393 indicate a factor 3 increase in the neutral hydrogen
     395indicates a factor 3 increase in the neutral hydrogen
    394396fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
    395 compared to its present day value $\gHI(z=1.5) \sim 0.025$.
     397compared to its current value $\gHI(z=1.5) \sim 0.025$.
    396398The 21 cm brightness temperature and the corresponding power spectrum can be written as
    397 (\cite{madau.97}, \cite{zaldarriaga.04}), \cite{barkana.07}) :
     399(\cite{madau.97}; \cite{zaldarriaga.04}); \cite{barkana.07})
    398400\begin{eqnarray}
    399401 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z)  \right)^2 \, P(k)    \label{eq:pk21z} \\
    400402 \bar{T}_{21}(z)  & \simeq & 0.084  \, \mathrm{mK} 
    401403\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
    402  \dfrac{\Omega_B}{0.044}  \,  \frac{\gHIz}{0.01}
     404 \dfrac{\Omega_B}{0.044}  \,  \frac{\gHIz}{0.01} \, .
    403405\label{eq:tbar21z}
    404406\end{eqnarray}
    405407
    406 The table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
     408Table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
    407409standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
    408410linearly increasing  $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
    40941121 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
    410412($\gHI=0.02$). The matter power spectrum has been computed using the
    411 \cite{eisenhu.98} parametrisation. The correspondence  with the angular scales is also
    412 shown for the standard WMAP \LCDM cosmology, according to the relation:
     413\cite{eisenhu.98} parametrization. The correspondence  with the angular scales is also
     414shown for the standard WMAP \LCDM cosmology, according to the relation
    413415\begin{equation}
    414416\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) } 
    415 \hspace{3mm}
    416 k = \frac{2 \pi}{ \theta_k  \, \dang(z) \, (1+z) } 
     417\hspace{3mm} , \hspace{3mm}
     418k = \frac{2 \pi}{ \theta_k  \, \dang(z) \, (1+z) }  \hspace{5mm} ,
    417419\end{equation}
    418420where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
    419421{ \changemark The matter power spectrum $P(k)$ has been measured using
    420422galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
    421 (\cite{cole.05}, \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
     423(\cite{cole.05}; \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
    422424shown here are comparable to the power spectrum measured from the galaxy surveys,
    423425once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z)  \right)^2$,
    424 redshift evolution and different bias factors have been accounted for. }
     426redshift evolution, and different bias factors have been accounted for. }
    425427% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
    426428% for an instrument corresponds approximately to half of its angular resolution.
     
    465467\subsection{Instrument response}
    466468\label{instrumresp}
    467 We introduce briefly here the principles of interferometric observations and the definition of
    468 quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
     469We briefly introduce here the principles of interferometric observations and the definition of
     470quantities useful for our calculations. The interested reader may refer to \cite{radastron} for a detailed
    469471and complete presentation of observation methods and signal processing in radio astronomy. 
    470472In astronomy we are usually interested in measuring the sky emission intensity,
     
    472474and interferometry in particular, receivers are sensitive to the sky emission complex
    473475amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
    474 length significantly smaller than the instrument resolution.
     476length significantly smaller than the instrument resolution,
    475477\begin{eqnarray}
    476478& &
    477479I(\vec{\Theta},\lambda)  =  | A(\vec{\Theta},\lambda) |^2  \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
    478 & & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time}  = 0 \hspace{2mm} \mathrm{for}   \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '
     480& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time}  = 0 \hspace{2mm} \mathrm{for}   \hspace{1mm} \vec{\Theta} \ne \vec{\Theta ' \, .
    479481\end{eqnarray}
    480482A single receiver can be  characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
    481 its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
     483its position $\vec{r}$ in a reference frame. The waveform complex amplitude $s$ measured by the receiver,
    482484for each frequency can be written as a function of the electromagnetic wave vector
    483 $\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
     485$\vec{k}_{EM}(\vec{\Theta}, \lambda) $:
    484486\begin{equation}
    485487s(\lambda)  =  \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
    486488\end{equation}
    487 We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
     489We set the electromagnetic (EM) phase origin at the center of the coordinate frame, and
    488490the EM wave vector is related to the wavelength $\lambda$ through the usual equation
    489491$ | \vec{k}_{EM} |  =  2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
    490492corresponds to the receiver intensity response:
    491493\begin{equation}
    492 L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda)  \,  B^*(\vec{\Theta},\lambda)
     494L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda)  \,  B^*(\vec{\Theta},\lambda) \, .
    493495\end{equation}
    494 The visibility signal of two receivers corresponds to the time averaged correlation between
     496The visibility signal of two receivers corresponds to the time-averaged correlation between
    495497signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
    496 visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
    497 $\vec{r_2}$ can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
     498visibility $\vis$ signal from two identical receivers, located at the positions $\vec{r_1}$ and
     499$\vec{r_2}$, can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
    498500\begin{equation}
    499501\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
    500502e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
    501503\end{equation}
    502 This expression can be simplified if we consider receivers with narrow field of view
     504This expression can be simplified if we consider receivers with a narrow field of view
    503505($ L(\vec{\Theta},\lambda) \simeq  0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
    504 and coplanar in respect to their common axis.
    505 If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
     506and coplanar with respect to their common axis.
     507If we introduce two cartesian-like angular coordinates $(\alpha,\beta)$ centered on
    506508the common receivers axis, the visibilty would be written as the 2D Fourier transform
    507509of the product of the sky intensity and the receiver beam, for the angular frequency
     
    512514\end{equation}
    513515where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
    514 the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
     516the receiver axis. The $x$ and $y$ axes in the receiver plane are taken parallel to the
    515517two $(\alpha, \beta)$ angular planes.
    516 
    517518Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
    518519of the sky intensity and the receiver beam:
     
    521522$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
    522523$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
    523 $L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \\
     524$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \, .\\
    524525\end{tabular}
    525526\end{center}
     
    528529wave number domain located around
    529530$(\uv)_{12}=( \frac{\Delta x}{\lambda} ,  \frac{\Delta y}{\lambda} )$. The weight function is
    530 given by the receiver beam Fourier transform.
    531 \begin{equation}
    532 \vis(\lambda) \simeq  \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda)
     531given by the receiver-beam Fourier transform
     532\begin{equation}
     533\vis(\lambda) \simeq  \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda) \, .
    533534\end{equation}
    534535
    535 A single receiver instrument would measure the total power integrated in a spot centered around the
    536 origin in the $(\uv)$ or the angular wave mode plane. The shape of the spot depends on the receiver
     536\noindent A single receiver instrument would measure the total power integrated in a spot centered on the
     537origin in the $(\uv)$ or the angular wave-mode plane. The shape of the spot depends on the receiver
    537538beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
    538539size.
    539540
    540541The correlation signal from a pair of receivers would measure the integrated signal on a similar
    541 spot, located around the central angular wave mode  $(\uv)_{12}$ determined by the relative
     542spot, located around the central angular wave-mode  $(\uv)_{12}$, determined by the relative
    542543position of the two receivers (see figure \ref{figuvplane}).
    543544In an interferometer with multiple receivers, the area covered by different receiver pairs in the
    544 $(\uv)$ plane might overlap and some pairs might measure the same area (same base lines).
    545 Several beams can be formed using different combination of the correlations from a set of 
     545$(\uv)$ plane might overlap, and some pairs might measure the same area (same base lines).
     546Several beams can be formed using different combinations of the correlations from a set of 
    546547antenna pairs. 
    547548
     
    549550${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
    550551the instrument response is simply the Fourier transform of the beam.
    551 For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
     552For a single dish with multiple receivers, either as a focal plane array (FPA) or
    552553a multi-horn system, each beam (b) will have its own response
    553554${\cal R}_b(\uv,\lambda)$.
    554555For an interferometer, we can compute a raw instrument response
    555 ${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(\uv)$ plane coverage by all
     556${\cal R}_{raw}(\uv,\lambda)$, which corresponds to $(\uv)$ plane coverage by all
    556557receiver pairs  with uniform weighting.
    557558Obviously, different weighting schemes can be used, changing
    558 the effective beam shape and thus the response ${\cal R}_{w}(\uv,\lambda)$
    559 and the noise behaviour. If the same Fourier angular frequency mode is measured
     559the effective beam shape, hence the response ${\cal R}_{w}(\uv,\lambda)$
     560and the noise behavior. If the same Fourier angular frequency mode is measured
    560561by several receiver pairs, the raw instrument response might then be larger
    561 that unity. This non normalized instrument response is used to compute the projected
     562that unity. This non-normalized instrument response is used to compute the projected
    562563noise power spectrum in the following section (\ref{instrumnoise}).
    563 We can also define a  normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as:
    564 \begin{equation}
    565 {\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right]
     564We can also define a  normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as
     565\begin{equation}
     566{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right] \, .
    566567\end{equation}
    567 This normalized  instrument response can be used to compute the effective instrument beam,
    568 in particular in section \ref{recsec}. 
    569 
    570 {\changemark Detection of the reionisation at 21 cm has been an active field
    571 in the last decade and different groups have built
    572 instruments to detect reionisation signal around 100 MHz: LOFAR
    573 \citep{rottgering.06}, MWA (\cite{bowman.07}, \cite{lonsdale.09}) and PAPER \citep{parsons.09} .
     568This normalized  instrument response is the basic ingredient for computing the effective
     569instrument beam, in particular in section \ref{recsec}. 
     570
     571{\changemark Detection of the reionization at 21 cm has been an active field
     572in the last decade, and different groups have built
     573instruments to detect a reionization signal around 100 MHz: LOFAR
     574\citep{rottgering.06}, MWA (\cite{bowman.07}; \cite{lonsdale.09}), and PAPER \citep{parsons.10}.
    574575Several authors have studied the instrumental noise
    575 and statistical uncertainties when measuring the reionisation signal power spectrum;
     576and statistical uncertainties when measuring the reionization signal power spectrum, and
    576577the methods presented here to compute the instrument response
    577578and sensitivities are similar to the ones developed in these publications
    578 (\cite{morales.04}, \cite{bowman.06}, \cite{mcquinn.06}). }
     579(\cite{morales.04}; \cite{bowman.06}; \cite{mcquinn.06}). }
    579580
    580581\begin{figure}
     
    591592\subsection{Noise power spectrum computation}
    592593\label{instrumnoise}
    593 Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
     594We consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
    594595bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
    595596$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
    596 $\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
    597 corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
     597$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term also
     598corresponds to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
    598599noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
    599 corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies 
     600corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
     601The noise's spectral density, in the angular frequency plane (per unit area of angular frequency
    600602\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
    601 measurement from a pair of receivers can be written as:
     603measurement from a pair of receivers can be written as
    602604\begin{eqnarray}
    603605P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 }  \\
    604606P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int}  \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
    605 \hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
     607\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}  \, .
    606608\label{eq:pnoisepairD}
    607609\end{eqnarray}
    608610
    609 We can characterize the sky temperature measurement with a radio instrument by the noise
     611We can characterize the sky temperature measurement with a radio instrument by the noise's
    610612spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$ 
    611613per unit area of angular frequencies  $\delta \uvu \times \delta \uvv$.
     
    613615might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
    614616is then reduced by a factor $1/n$. More generally, we can write the instrument  noise
    615 spectral power density using the instrument response defined in section \ref{instrumresp} :
    616 \begin{equation}
    617 P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) }
     617spectral power density using the instrument response defined in section \ref{instrumresp} as
     618\begin{equation}
     619P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) }  \hspace{4mm} .
    618620\label{eq:pnoiseuv}
    619621\end{equation}
    620622
    621 When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
     623When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
    622624$P(k)$ is computed, angles are translated into comoving transverse distances,
    623625and frequencies or wavelengths into comoving radial distance, using the following relations
    624 {\changemarkb (e.g. \cite{cosmo.peebles} chap. 13, \cite{cosmo.rich})} :
     626{\changemarkb (e.g. chap. 13 of \cite{cosmo.peebles}; \cite{cosmo.rich})} :
    625627{ \changemark
    626628\begin{eqnarray}
     
    638640A brightness measurement at a  point $(\uv,\lambda)$, covering
    639641the 3D spot  $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
    640 to cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
     642to a cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
    641643defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
    642 The measurement noise spectral density given by the equation \ref{eq:pnoisepairD} can then be
     644The measurement noise spectral density given by the Eq. \ref{eq:pnoisepairD} can then be
    643645translated into a 3D noise power spectrum, per unit of spatial frequencies
    644646$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) : 
     
    657659In the following paragraph, we will first consider an ideal instrument
    658660with uniform $(\uv)$ coverage
    659 in order to establish the general noise power spectrum behaviour for cosmological 21 cm surveys.
     661in order to establish the general noise power spectrum behavior for cosmological 21 cm surveys.
    660662The numerical method used to compute the 3D noise power spectrum is then presented in section
    661663\ref{pnoisemeth}.
     
    665667{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage  (${\cal R}(\uv)=1$),
    666668and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
    667 The noise spectral power  density from equation (\ref{eq:pnoisekxkz}) would then be 
    668 constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum corresponds thus
     669The noise's spectral power  density from equation (\ref{eq:pnoisekxkz}) would then be 
     670constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum thus  corresponds
    669671to a 3D white noise, with a uniform noise spectral density:}
    670672\begin{equation}
     
    672674\label{ctepnoisek}
    673675\end{equation}
    674 
    675 $P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
     676%
     677where $P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
    676678$t_{int}$ is the integration time expressed in second,
    677679$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
     
    679681
    680682The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
    681 with the number of observed Fourier modes; this number is proportional to the volume of the universe
    682 which is observed (sample variance).  As the observed volume is proportional to the
     683with the number of observed Fourier modes, a number that is proportional to the volume of the universe
     684being observed (sample variance).  As the observed volume is proportional to the
    683685surveyed solid angle, we  consider the survey of a fixed
    684686fraction of the sky, defined by  total solid angle $\Omega_{tot}$, performed during a given
    685687total observation time $t_{obs}$.
    686 A single dish instrument with diameter $D$ would have an instantaneous field of view
     688A single-dish instrument with diameter $D$ would have an instantaneous field of view
    687689$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
    688690a number of pointings  $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
     
    690692time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
    691693for the integration time, we can compute a simple expression
    692 for the noise spectral power density by a single dish instrument of diameter $D$:
    693 \begin{equation}
    694 P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     694for the noise spectral power density by a single-dish instrument of diameter $D$:
     695\begin{equation}
     696P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4  \hspace{2mm} .
    695697\end{equation}
    696698
    697 It is important to note that any real instrument do not have a flat
     699It is important to note that any real instrument does not have a flat
    698700response in the $(\uv)$ plane, and the observations provide no information above
    699701a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
    700702One has to take into account either a damping of the observed sky power
    701 spectrum or an increase of the noise spectral density if
    702 the observed power spectrum is corrected for damping. The white noise
     703spectrum or an increase in the noise spectral density if
     704the observed power spectrum is corrected for damping. The white-noise
    703705expressions given below should thus be considered as a lower limit or floor of the
    704706instrument noise spectral density.
    705707 
    706 For a single dish instrument of diameter $D$ equipped with a multi-feed or
    707 phase array receiver system, with $N$ independent beams on sky,
     708For a single-dish instrument of diameter $D$ equipped with a multi-feed or
     709phase-array receiver system, with $N$ independent beams on sky,
    708710the noise spectral density decreases by a factor $N$,
    709 thanks to the  increase of per pointing integration time:
    710 
    711 \begin{equation}
    712 P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     711thanks to the  increase in per pointing integration time:
     712
     713\begin{equation}
     714P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4  \hspace{2mm} .
    713715\label{eq:pnoiseNbeam}
    714716\end{equation}
    715 
     717%
    716718This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
    717719identical receivers with a  total collection area $\sim D^2$. Such an array could be made for example
    718 of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.   
     720of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as a $q \times q$ square.   
    719721
    720722For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
     
    723725$k_{\perp}^{max}$:
    724726\begin{equation}
    725 k_{\perp}^{max}  \lesssim  \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
     727k_{\perp}^{max}  \lesssim  \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}} \hspace{3mm} .
    726728\label{kperpmax}
    727729\end{equation}   
    728 
     730%
    729731Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
    730732as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
     
    732734The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
    733735year. The maximum comoving wave number $k^{max}$  is also shown as a function
    734 of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
    735 to take into account the radial component of $\vec{k}$ and the increase of
    736 the instrument noise level with $k_{\perp}$, we have taken the effective $k_{ max} $
    737 as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{eq. \ref{kperpmax}}:
    738 \begin{equation}
    739 k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
     736of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent.
     737To take the radial component of $\vec{k}$ and the increase of
     738the instrument noise level with $k_{\perp}$ into account, we have taken the effective $k_{ max} $
     739as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{Eq. \ref{kperpmax}}:
     740\begin{equation}
     741k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}  \hspace{3mm} .
    740742\end{equation}
    741743
     
    748750}
    749751\vspace*{-40mm}
    750 \caption{Top: minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
    751 as a function of redshift (top), for a one year survey of a quarter of the sky. Bottom:
    752 maximum $k$ value for 21 cm LSS power spectrum measurement by  a 100 meter diameter
     752\caption{Top: minimal noise level for a 100-beam instrument with \mbox{$\Tsys=50 \mathrm{K}$}
     753as a function of redshift (top), for a one-year survey of a quarter of the sky. Bottom:
     754maximum $k$ value for 21 cm LSS power spectrum measurement by  a 100-meter diameter
    753755primary antenna. }
    754756\label{pnkmaxfz}
     
    760762We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
    761763response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
    762 sensitivities for different instrument configurations, albeit the noise realization for a real instrument would not be
     764sensitivities for different instrument configurations, although the noise realization for a real instrument would not be
    763765isotropic.
    764766\begin{itemize}
    765 \item We start by a 3D Fourier coefficient grid, with the two first coordinates being the transverse angular wave modes,
    766 and the third being the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
     767\item We start by a 3D Fourier coefficient grid, with the two first coordinates the transverse angular wave modes,
     768and the third the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
    767769we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section  \ref{instrumnoise},
    768770the grid cell size and dimensions have been chosen to represent a box in the universe 
    769771\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
    770772with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
    771 This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
     773This corresponds to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
    772774the small angular extent, we have neglected the curvature of redshift shells.
    773775\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
     
    775777using equation (\ref{eq:uvkxky}), and the
    776778angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
    777 The noise variance is taken proportional to $P_{noise}$ :
    778 \begin{equation}
    779 \sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
     779The noise variance is taken proportional to $P_{noise}$
     780\begin{equation}
     781\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
    780782\end{equation}
    781 \item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
    782 complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
     783\item An FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
     784complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as
    783785\begin{equation}
    784786\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 >  \hspace{2mm}  \mathrm{for} \hspace{2mm}
    785   \sqrt{k_x^2+k_y^2+k_z^2} = k
     787  \sqrt{k_x^2+k_y^2+k_z^2} = k  \hspace{2mm} .
    786788\end{equation}
    787789Noise samples corresponding to small instrument response, typically less than 1\% of the
    788 maximum instrument response are ignored when calculating  $\tilde{P}_{noise}(k)$.
    789 However, we require to have a significant fraction, typically 20\% to 50\% of all possible modes
     790maximum instrument response, are ignored when calculating  $\tilde{P}_{noise}(k)$.
     791However, we require a significant fraction, typically 20\% to 50\% of all possible modes
    790792$(k_x,k_y,k_z)$ measured for a given $k$ value.
    791793\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
     
    802804
    803805It should be noted that it is possible to obtain a  good approximation of the noise
    804 power spectrum shape, neglecting the redshift or frequency dependence of the
     806power spectrum shape by neglecting the redshift or frequency dependence of the
    805807instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
    806808using a fixed  instrument response ${\cal R}(\uv,\lambda(z_0))$ and
    807 a constant radial distance $\dang(z_0)*(1+z_0)$.
     809a constant radial distance $\dang(z_0)\times(1+z_0)$:
    808810\begin{equation}
    809811\tilde{P}_{noise}(k) = < |  {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
     
    821823\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
    822824a square $11 \times 11$ configuration ($q=11$). This array covers an area of
    823 $55 \times 55 \, \mathrm{m^2}$
     825$55 \times 55 \, \mathrm{m^2}$ \, .
    824826\item [{\bf b} :] An array of $n=128  \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
    825 in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
     827in eight rows, each with 16 dishes. These 128 dishes are spread over an area
    826828$80 \times 80  \, \mathrm{m^2}$. The array layout for this configuration is
    827829shown in figure \ref{figconfbc}.
    828830\item [{\bf c} :] An array of $n=129  \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
    829831 over an area $80 \times 80  \, \mathrm{m^2}$. This configuration has in
    830 particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
    831 four array corners. This array layout is also shown figure \ref{figconfbc}.
    832 \item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
     832particular four subarrays of packed 16 dishes ($4\times4$), located in the
     833four array corners. This array layout is also shown in figure \ref{figconfbc}.
     834\item [{\bf d} :] A single-dish instrument, with diameter $D=75 \, \mathrm{m}$,
    833835equipped with a 100 beam focal plane receiver array.
    834836\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
    835837a square $20 \times 20$ configuration ($q=20$). This array covers an area of
    836838$100 \times 100 \, \mathrm{m^2}$
    837 \item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
     839\item[{\bf f} :] A packed array of four cylindrical reflectors, each 85 meter long and 12 meter
    838840wide. The focal line of each cylinder is equipped with 100 receivers, each
    839841$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
    840842This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
    841 a total of $400$ receivers per polarisation, as in the (e) configuration.
    842 We have computed the noise power spectrum for {\em perfect}
     843a total of $400$ receivers per polarization, as in the (e) configuration.
     844We computed the noise power spectrum for {\em perfect}
    843845cylinders, where all receiver pair correlations are used (fp), or for
    844 a non perfect instrument, where only correlations between receivers
     846an imperfect instrument, where only correlations between receivers
    845847from different cylinders are used.
    846 \item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
     848\item[{\bf g} :] A packed array of eight cylindrical reflectors, each 102 meters long and 12 meters
    847849wide. The focal line of each cylinder is equipped with 120 receivers, each
    848850$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
    849851This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
    850 a total of 960  receivers per polarisation. As for the (f) configuration, 
     852a total of 960  receivers per polarization. As for the (f) configuration, 
    851853we have computed the noise power spectrum for {\em perfect}
    852854cylinders, where all receiver pair correlations are used (gp), or for
    853 a non perfect instrument, where only correlations between receivers
     855an imperfect instrument, where only correlations between receivers
    854856from different cylinders are used.
    855857\end{itemize}
     
    868870\end{figure}
    869871
    870 We have used simple triangular shaped dish response in the $(\uv)$ plane.
    871 However, we have introduced a filling factor or illumination efficiency
     872We used simple triangular shaped dish response in the $(\uv)$ plane;
     873however, we did introduce a filling factor or illumination efficiency
    872874$\eta$, relating the effective dish diameter $D_{ill}$ to the
    873875mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
     
    878880\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
    879881\end{eqnarray}
    880 For the multi-dish configuration studied here, we have taken the illumination efficiency factor
     882For the multidish configuration studied here, we have taken the illumination efficiency factor
    881883{\bf $\eta = 0.9$}.
    882884
    883 For the receivers along the focal line of cylinders, we have assumed that the
     885For the receivers along the focal line of cylinders, we assumed that the
    884886individual receiver response in the $(\uv)$ plane corresponds to a
    885 rectangular shaped antenna. The illumination efficiency factor has been taken
     887rectangular antenna. The illumination efficiency factor was taken
    886888equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
    887 along the cylinder length. {\changemark  We have used double triangular shaped
     889along the cylinder length. {\changemark  We used a double triangular
    888890response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
    889891\begin{equation}
    890892 {\cal L}_\Box(\uv,\lambda)  =
    891893\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
    892 \bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
     894\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )  
    893895\end{equation}
    894896}
    895 It should be noted that the small angle approximation
     897
     898\noindent It should be noted that the small angle approximation
    896899used here for the expression of visibilities is not valid for the receivers along
    897900the cylinder axis. However, some preliminary numerical checks indicate that
    898 the results obtained here for the noise spectral power density  would not change significantly.
    899 The instrument responses shown here correspond to fixed pointing toward the zenith, which
     901the results for the noise spectral power density  would not change significantly.
     902The instrument responses shown here correspond to a fixed pointing toward the zenith, which
    900903is the case for a transit type telescope.
    901904
    902905Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
    903906for the four configurations (a,b,c,d) with $\sim 100$ receivers per
    904 polarisation.
    905 
    906 {\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we have
     907polarization.
     908{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we
    907909computed the 3D noise power spectrum for each of the eight instrument configurations presented
    908910here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
     
    910912The resulting noise spectral power densities are shown in figure
    911913\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
    912 is due to the fact that we have ignored all auto-correlation measurements. 
     914is due to our having ignored all auto-correlation measurements. 
    913915It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
    914916should have enough sensitivity to map LSS in 21 cm at redshift z=1.
     
    922924\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
    923925at 710 MHz (redshift $z=1$) for four configurations.
    924 (a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
     926(a) 121 $D_{dish}=$ 5-meter diameter dishes arranged in a compact, square array
    925927of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
    926 (c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams.
     928(c) 129 dishes arranged as shown in figure \ref{figconfbc}, (d) single D=75 meter diameter, with 100 beams.
    927929The common color scale (1 \ldots 80) is shown on the right. }
    928930\label{figuvcovabcd}
     
    939941\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
    940942and the noise power spectrum for several interferometer configurations
    941  ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
     943 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400, and 960 receivers. The noise power spectrum has been
    942944computed for all configurations assuming a survey of a quarter of the sky over one year,
    943945with a system temperature $\Tsys = 50 \mathrm{K}$. }
     
    946948
    947949
    948 \section{ Foregrounds and Component separation }
     950\section{ Foregrounds and component separation }
    949951\label{foregroundcompsep}
    950 Reaching the required sensitivities is not the only difficulty of observing the large
    951 scale structures in 21 cm. Indeed, the synchrotron emission of the
    952 Milky Way and the extra galactic radio sources are a thousand times brighter than the
     952Reaching the required sensitivities is not the only difficulty of observing the
     953LSS in 21 cm. Indeed, the synchrotron emission of the
     954Milky Way and the extragalactic radio sources are a thousand times brighter than the
    953955emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
    954 using Intensity Mapping, without identifying the \HI point sources is the main challenge
     956using intensity mapping, without identifying the \HI point sources is the main challenge
    955957for this novel observation method. Although this task might seem impossible at first,
    956958it has been suggested that the smooth frequency dependence of the synchrotron
     
    958960emissions. {\changemark Discussion of contribution of different sources
    959961of radio foregrounds for measurement of reionization through redshifted 21 cm,
    960 as well foreground subtraction using their smooth frequency dependence can
    961 be found in (\cite{shaver.99}, \cite{matteo.02},\cite{oh.03}).}
    962 However, any real radio instrument has a beam shape which changes with
    963 frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
    964 technique. The effect of frequency dependent beam shape is some time referred to as {\em
    965 mode mixing}.  {\changemark The effect of the frequency dependent beam shape on foreground subtraction
     962as well as foreground subtraction using their smooth frequency dependence, can
     963be found in (\cite{shaver.99}; \cite{matteo.02};\cite{oh.03}).}
     964However, any real radio instrument has a beam shape that changes with
     965frequency, and this instrumental effect significantly increases the difficulty and complexity of this component separation
     966technique. The effect of frequency dependent beam shape is sometimes referred to as {\em
     967mode mixing},  {\changemark and its impact on foreground subtraction
    966968has been discussed for example in \cite{morales.06}.}
    967969
    968970In this section, we present a short description of the foreground emissions and
    969 the simple models we have used for computing the sky radio emissions in the GHz frequency
    970 range. We present also a simple component separation method to extract the LSS signal and
     971the simple models we used for computing the sky radio emissions in the GHz frequency
     972range. We also present a simple component-separation method to extract the LSS signal and
    971973its performance. {\changemark The analysis presented here follows a similar path to
    972 a detailed foreground subtraction study carried for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
    973 We compute in particular the effect of the instrument response on the recovered
     974a detailed foreground subtraction study carried out for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
     975We computed in particular, the effect of the instrument response on the recovered
    974976power spectrum. The results presented in this section concern the
    975977total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
     
    977979 
    978980\subsection{ Synchrotron and radio sources }
    979 We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
     981We modeled the radio sky in the form of three 3D maps (data cubes) of sky temperature
    980982brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
    981983and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
    982984$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and  covering 128 MHz in frequency. We have selected this particular area of the sky  in order to minimize
    983985the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
    984 used in the simulations are given in the table \ref{skycubechars}.
     986used in the simulations are given in the Table \ref{skycubechars}.
    985987\begin{table}
    986988\caption{
     
    10071009\end{tabular}
    10081010\end{center}
    1009 \tablefoot{ Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$ ;
     1011\tablefoot{ Cube size: $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$;
    10101012$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells }
    10111013\end{table}
    10121014%%%%
    10131015\par
    1014 Two different methods have been used to compute the sky temperature data cubes.
    1015 We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
    1016 maps of the emission temperature at different frequencies, from which we have
     1016Two different methods were used to compute the sky temperature data cubes.
     1017We used the global sky model (GSM) \citep{gsm.08} tools to generate full sky
     1018maps of the emission temperature at different frequencies, from which we
    10171019extracted the brightness temperature cube for the region defined above
    10181020(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
    1019 As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
     1021Because the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
    10201022difficult to have reliable results for the effect of point sources on the reconstructed
    10211023LSS power spectrum.
    10221024
    1023 We have thus made also a simple sky model using the Haslam Galactic synchrotron map
     1025We have thus also made a simple sky model using the Haslam Galactic synchrotron map
    10241026at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
    10251027catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
    1026 has been computed through the following steps:
     1028was computed through the following steps:
    10271029
    10281030\begin{enumerate}
    1029 \item The Galactic synchrotron emission is modeled as a power law with spatially
    1030 varying spectral index. We assign a power law index $\beta = -2.8  \pm 0.15$ to each sky direction.
    1031 $\beta$ has a gaussian distribution centered at -2.8 and with standard
     1031\item The Galactic synchrotron emission is modeled as a power law with a spatially
     1032varying spectral index. We assign a power law index $\beta = -2.8  \pm 0.15$ to each sky direction,
     1033where $\beta$ has a Gaussian distribution centered on -2.8 with a standard
    10321034deviation $\sigma_\beta = 0.15$. {\changemark The
    1033 diffuse radio background spectral index has been measured  for example by
    1034 \cite{platania.98} or \cite{rogers.08}.}
     1035diffuse radio background spectral index has been measured, for example, by
     1036\citep{platania.98} or \citep{rogers.08}.}
    10351037The synchrotron contribution to the sky temperature for each cell is then
    10361038obtained  through the formula:
     
    10391041\end{equation}
    10401042%%
    1041 \item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
     1043\item A 2D $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
    10421044by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
    10431045the sky cubes. The source brightness in Jansky is converted to temperature taking the
    10441046pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels). 
    10451047A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
    1046 map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
    1047 contribution of the radiosources to the sky temperature is computed as follows:
    1048 \begin{equation}
    1049  T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
     1048map. We have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
     1049contribution of the radiosources to the sky temperature is computed as:
     1050\begin{equation}
     1051 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}  
    10501052\end{equation}
    10511053%%
     
    10571059\end{enumerate}
    10581060
    1059  The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
    1060 $T_{lss}(\alpha, \delta, \nu)$  have been computed using the
    1061 SimLSS \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} }  software package:
     1061 The 21 cm temperature fluctuations due to neutral hydrogen in LSS
     1062$T_{lss}(\alpha, \delta, \nu)$ were computed using the
     1063SimLSS\footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} }  software package, where
    10621064%
    10631065complex normal Gaussian fields were first generated in Fourier space.
    10641066The amplitude of each mode was then multiplied by the square root
    10651067of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
    1066 \citep{eisenhu.98}. We have used the standard cosmological parameters,
     1068\citep{eisenhu.98}. We used the standard cosmological parameters,
    10671069 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
    10681070$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
    10691071An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
    10701072in the linear regime,
    1071 in a box of $3420 \times 1140 \times 716  \, \mathrm{Mpc^3}$ and evolved
     1073in a box of $3420 \times 1140 \times 716  \, \mathrm{Mpc^3}$, and evolved
    10721074to redshift $z=0.6$.
    10731075The size of the box is about 2500 $\mathrm{deg^2}$  in the transverse direction and
     
    10761078sky cube angular and frequency resolution defined above. 
    10771079{\changemarkb
    1078 We haven't taken into account the curvature of redshift shells when
     1080We did not take the curvature of redshift shells into account when
    10791081converting SimLSS euclidean coordinates to angles and frequency coordinates
    10801082of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
     
    10951097Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
    10961098temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
    1097 It should be noted that the standard deviation depends on the map resolution and the values given
    1098 in table \ref{sigtsky}  correspond to sky cubes computed here, with $\sim 3$ arc minute
    1099 angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
     1099It should be noted that the standard deviation depends on the map resolution, and the values given
     1100in Table \ref{sigtsky}  correspond to sky cubes computed here, with $\sim 3$ arc minute
     1101angular and 500 kHz frequency resolutions (see Table \ref{skycubechars}).
    11001102Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
    1101 with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
     1103with Haslam+NVSS map, smoothed with a 35 arcmin Gaussian beam.
    11021104Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
    11031105for Model-I/GSM and Model-II. There is good agreement between the two models, although
     
    11221124\end{table}
    11231125
    1124 we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
     1126We computed the power spectrum for the 21cm-LSS sky temperature cube, as well
    11251127as for the radio foreground temperature cubes obtained from the two
    1126 models. We have also computed the power spectrum on sky brightness temperature
    1127 cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
    1128 The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
    1129 The GSM model has more large scale power compared to our simple Haslam+NVSS model,
    1130 while it lacks power at higher spatial frequencies. The mode mixing due to
    1131 frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
    1132 case. It can also be seen that the radio foreground power spectrum is more than
    1133 $\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
    1134 to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
     1128models. We also computed the power spectrum on sky brightness temperature
     1129cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) Gaussian beam.
     1130The resulting computed power spectra are shown in figure \ref{pkgsmlss}.
     1131The GSM model has more large-scale power compared to our simple Haslam+NVSS model,
     1132while it lacks power at higher spatial frequencies. The mode mixing due to a
     1133frequency-dependent response will thus be stronger in Model-II (Haslam+NVSS)
     1134case. It can also be seen that the radio foreground's power spectrum is more than
     1135$\sim 10^6$ times higher than the 21 cm signal from LSS. This corresponds
     1136to the factor $\sim 10^3$ of the sky brightness temperature fluctuations (\mbox{$\sim$ K}),
    11351137compared to the mK LSS signal. 
    11361138
    1137 { \changemark Contrary to most similar studies, where it is assumed that bright sources
     1139{ \changemark In contrast to most similar studies, where it is assumed that bright sources
    11381140can be nearly perfectly subtracted, our aim was to compute also their
    11391141effect in the foreground subtraction process.
    1140 The GSM model lacks the angular resolution needed to compute
    1141 correctly the effect of bright compact sources for 21 cm LSS observations and
     1142The GSM model lacks the angular resolution needed to correctly compute
     1143the effect of bright compact sources for 21 cm LSS observations and
    11421144the mode mixing due to the frequency dependence of the instrumental response,
    11431145while Model-II provides a reasonable description of these compact sources. Our simulated
    11441146sky cubes have an angular resolution $3'\times3'$, well below the typical
    11451147$15'$ resolution of the instrument configuration considered here.
    1146 However, Model-II might lack spatial structures at large scales, above a degree,
     1148However, Model-II might lack spatial structures on large scales, above a degree,
    11471149compared to Model-I/GSM, and the frequency variations as a simple power law
    11481150might not be realistic enough. The differences for the two sky models can be seen
    11491151in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
    1150 a 25' beam has negligible effect of the GSM power spectrum, as it originally lacks
     1152a 25' beam has negligible effect on the GSM power spectrum, since it originally lacks
    11511153structures below 0.5 degree. By using
    1152 these two models, we have explored some of the systematic uncertainties
     1154these two models, we explored some of the systematic uncertainties
    11531155related to foreground subtraction.}
    11541156
     
    11581160increases at high k values (small scales). In practice, clean deconvolution is difficult to
    11591161implement for real data and the power spectra presented in this section are NOT corrected
    1160 for the instrumental response.  The observed structures have thus a scale dependent damping
    1161 according to the instrument response, while the instrument noise is flat (white noise or scale independent).
     1162for the instrumental response.  The observed structures thus have a scale-dependent damping
     1163according to the instrument response, while the instrument noise is flat (white noise or scale-independent).
    11621164
    11631165\begin{figure}
     
    11711173\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
    11721174The Model-II (Haslam+NVSS),
    1173 has been smoothed with a 35 arcmin gaussian beam. }
     1175has been smoothed with a 35 arcmin Gaussian beam. }
    11741176\label{compgsmhtemp}
    11751177\end{figure}
     
    11821184}
    11831185\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
    1184 The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
     1186The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) Gaussian beam.}
    11851187\label{compgsmmap}
    11861188\end{figure*}
     
    11981200The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
    11991201model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
    1200 as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam. This beam has
    1201 negligible effect on the GSM/Model-I power spectrum, as GSM has no structures below $\sim 0.5^\circ$.
     1202as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.
    12021203}
    12031204\label{pkgsmlss}
     
    12131214We have considered the simple case where  the instrument response is constant throughout the survey area, or independent
    12141215of the sky direction.
    1215 For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
     1216For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$:
    12161217\begin{enumerate}
    12171218\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
    1218 $$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k)$$
     1219$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k) \hspace{2mm} .$$
    12191220\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
    1220 $ {\cal R}(\uv,\lambda_k)  \lesssim 1$.
    1221 $$  {\cal T}_{sky}(\uv, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) $$
    1222 \item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
     1221$ {\cal R}(\uv,\lambda_k)  \lesssim 1$
     1222$$  {\cal T}_{sky}(\uv, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) \hspace{1mm} . $$
     1223\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map
    12231224without instrumental (electronic/$\Tsys$) white noise:
    12241225$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)   
    12251226\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
    1226 \item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
     1227\item Add white noise (Gaussian fluctuations) to the pixel map temperatures to obtain
    12271228the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
    12281229{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
    12291230dependent instrumental response has already been applied.}
    1230 We have also considered that the system temperature and thus the
    1231 additive white noise level was independent of the frequency or wavelength.   
     1231We also considered that the system temperature, and thus the
     1232additive white noise level, was independent of the frequency or wavelength.   
    12321233\end{enumerate}
    1233 The LSS signal extraction performance depends obviously on the white noise level.
     1234The LSS signal extraction performance obviously depends on the white noise level.
    12341235The results shown here correspond to the (a) instrument configuration, a packed array of
    12351236$11 \times 11 = 121$ dishes  (5 meter diameter), with a white noise level corresponding
     
    12371238cell. \\[1mm]
    12381239
    1239 The different steps of the simple component separation procedure that has been applied are
     1240The different steps in the simple component separation procedure that has been applied are
    12401241briefly described here.
    12411242\begin{enumerate}
    12421243\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
    12431244beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
    1244 corresponds to a smearing or degradation of the angular resolution.
     1245corresponds to a smearing or degradation of the angular resolution
    12451246\begin{eqnarray*}
    12461247 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\ 
    12471248 {\cal T}_{mes}^{bcor}(u, v, \lambda_k)  & = &
    12481249{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
    1249 {\cal T}_{mes}^{bcor}(u, v, \lambda_k)  & \rightarrow & \mathrm{2D-FFT} \rightarrow  T_{mes}^{bcor}(\alpha,\delta,\lambda)
     1250{\cal T}_{mes}^{bcor}(u, v, \lambda_k)  & \rightarrow & \mathrm{2D-FFT} \rightarrow  T_{mes}^{bcor}(\alpha,\delta,\lambda) \hspace{2mm} .
    12501251\end{eqnarray*}
    12511252{\changemark
     
    12551256attempt to represent imperfect knowledge of the instrument response.
    12561257We recall that this is the normalized instrument response,
    1257 ${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$  has also a numerical upper bound $\sim 100$. }
     1258${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$
     1259also has a numerical upper bound $\sim 100$. }
    12581260\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
    1259  is fitted to the beam-corrected brightness temperature. The parameters have been obtained
     1261 is fitted to the beam-corrected brightness temperature. The parameters were obtained
    12601262using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
    12611263We show here the results for a pure power law (P1), as well as a modified power law (P2):
     
    12641266P2 & :  & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
    12651267\end{eqnarray*}
    1266 where $b$ is the power law index and  $T_0 = 10^a$ is the brightness temperature at the
     1268where $b$ is the power law index and  $T_0 = 10^a$ the brightness temperature at the
    12671269reference frequency $\nu_0$.
    12681270
    1269 {\changemark Interferometers have poor response at small $(\uv)$ corresponding to baselines
    1270 smaller than interferometer element size. The zero spacing baseline, the $(\uv)=(0,0)$ mode,  represents
    1271 the mean temperature for a given frequency plane and can not be measured with interferometers.
    1272 We have used a simple trick to make the power law fitting procedure applicable:
    1273 we have set the mean value of the temperature for
     1271{\changemark Interferometers have a poor response at small $(\uv)$ corresponding to baselines
     1272smaller than interferometer element size. The zero-spacing baseline, the $(\uv)=(0,0)$ mode,  represents
     1273the mean temperature for a given frequency plane and cannot be measured with interferometers.
     1274We used a simple trick to make the power-law fitting procedure applicable,
     1275by setting the mean value of the temperature for
    12741276each frequency plane according to a power law with an index close to the synchrotron index
    1275 ($\beta\sim-2.8$) and we have checked that the results are not too sensitive to the
     1277($\beta\sim-2.8$). And we checked that the results are not too sensitive to the
    12761278arbitrarily fixed mean temperature power law parameters. }
    12771279
     
    12831285for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
    1284128621 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
    1285 gaussian frequency independent beam is shown in orange (solid line),
    1286 and the extracted power spectrum, after beam {\em correction}
    1287 and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
     1287Gaussian frequency independent beam is shown, as well as
     1288the extracted power spectrum, after beam {\em correction}
     1289and foreground separation with second order polynomial fit (P2).
    12881290We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
    1289 or with the first order polynomial fit (P1).
     1291or with the first-order polynomial fit (P1).
    12901292
    12911293Figure \ref{extlssmap} shows a comparison of  the original 21 cm brightness temperature map at 884 MHz
    1292 with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
     1294with the recovered 21 cm map, after subtracting the radio continuum component. It can be seen that structures
    12931295present in the original map have been correctly recovered, although the amplitude of the temperature
    12941296fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
    1295 {\changemark This is mostly due to the damping of the large scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
     1297{\changemark This is mostly due to the damping of the large-scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
    12961298due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
    12971299
    1298 We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
    1299 presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
     1300We have shown that it should be possible to measure the red-shifted 21 cm emission fluctuations in the
     1301presence of the strong radio continuum signal, provided that the latter has a smooth frequency dependence.
    13001302However, a rather  precise knowledge of the instrument beam and the beam {\em correction}
    1301 or smearing procedure described here  are key ingredient for recovering the 21 cm LSS power spectrum.
    1302 It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
     1303or smearing procedure described here  are key ingredients for recovering the 21 cm LSS power spectrum.
     1304It is also important to note that, while it is enough to correct the beam to the lowest resolution instrument beam
    13031305($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
    1304 has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
     1306has to be applied ($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for Model-II to reduce
    13051307significantly the ripples from bright radio sources.
    13061308We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
    1307 with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
     1309with a frequency-dependent Gaussian beam shape. The mode mixing effect is greatly reduced for
    13081310such a smooth beam, compared to the more complex instrument response
    13091311${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
     
    13221324Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
    13231325corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
    1324 signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
     1326signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency-independent Gaussian beam. }
    13251327\label{extlsspk}
    13261328\end{figure*}
     
    13361338\vspace*{-25mm}
    13371339\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
    1338 with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom),  for the instrument configuration (a), $11\times11$ packed array interferometer.
    1339 Notice the difference between the temperature color scales (mK)  for the top and bottom maps. }
     1340with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom),  for the instrument configuration (a), $11\times11$ packed array interferometer. }
    13401341\label{extlssmap}
    13411342\end{figure*}
     
    13461347 compared to the original $P_{21}(k)$ due to  the instrument response and the component separation procedure.
    13471348{\changemarkb
    1348 We remind that we have neglected the curvature of redshift or frequency shells
     1349We recall that we have neglected the curvature of redshift or frequency shells
    13491350in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
    1350 The results presented here and our conclusions are thus restricted to wave mode range
     1351The results presented here and our conclusions are thus restricted to the wave-mode range
    13511352$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
    13521353}
    1353 We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
     1354We expect damping on small scales, or large $k$, due to the finite instrument size, but also on large scales, small $k$,
    13541355if total power measurements (auto-correlations) are not used in the case of interferometers.
    13551356The sky reconstruction and the component separation introduce additional filtering and distortions.
    13561357The real transverse plane transfer function might even be anisotropic.
    13571358
    1358 However, in the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
     1359However, within the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
    13591360recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
    1360 {\changemarkb , similar to the one defined by \cite{bowman.09} , equation (23):}
    1361 \begin{equation}
    1362 \TrF(k) = P_{21}^{rec}(k) / P_{21}(k)
     1361{\changemarkb , similar to the one defined by \cite{bowman.09}, equation (23):}
     1362\begin{equation}
     1363\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) \hspace{3mm} .
    13631364\end{equation}
    13641365
    13651366Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
    1366 separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed 
     1367separation performed here, around $z \sim 0.6$, for the instrumental setup (a),
     1368a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed 
    13671369$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
    13681370The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
     
    13701372target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
    13711373small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$). 
    1372 The red curve shows the transfer function for the GSM foreground model (Model-I) and  the $11\times11$ filled array
    1373 interferometer (setup (a)), while the dashed red curve represents the transfer function for a D=55 meter
     1374The transfer function for the GSM foreground model (Model-I) and  the $11\times11$ filled array
     1375interferometer (setup (a)) is represented, as well as the transfer function for a D=55 meter
    13741376diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
    1375 array is also shown (orange curve). The recovered power spectrum suffers also significant damping at large
    1376 scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $, mostly due to the filtering of radial or
     1377array is also shown. The recovered power spectrum also suffers significant damping on large
     1378scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}$, mostly due to the filtering of radial or
    13771379longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
    1378 by the component separation algorithm. We have been able to remove the ripples on the reconstructed
     1380by the component separation algorithm. We were able to remove the ripples on the reconstructed
    13791381power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
    13801382target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
    1381 obtained for Model-II at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
     1383obtained for Model-II on small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
    13821384
    13831385 It should be stressed that the simulations presented in this section were
    1384 focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
    1385 $0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
    1386 
     1386focused on the study of the radio foreground effects and have been carried
     1387intentionally with a very low instrumental noise level of
     1388$0.25$ mK per pixel, corresponding to several years of continuous
     1389observations ($\sim 10$ hours per $3' \times 3'$ pixel).
     1390%
    13871391This transfer function is well represented by the analytical form:
    13881392\begin{equation}
    1389 \TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B}  } \times \exp \left( - \frac{k}{k_C} \right)
     1393\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B}  } \times \exp \left( - \frac{k}{k_C} \right)  \hspace{1mm} .
    13901394\label{eq:tfanalytique}
    13911395\end{equation}
    13921396
    1393 We have performed  simulation of observations and radio foreground subtraction using
     1397We simulated observations and radio foreground subtraction using
    13941398the procedure described here for different redshifts and instrument configurations, in particular
    13951399for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
    13961400increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
    1397 becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
     1401becomes difficult for higher redshifts, in particular for $z \gtrsim 2$.
    13981402
    13991403We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
    14001404for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
    1401 for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
    1402 and the corresponding transfer functions are shown on  figure \ref{tfpkz0525}.
     1405for redshift $z=2, 2.5$. The value of the parameters are grouped in Table \ref{tab:paramtfk},
     1406and the corresponding transfer functions are shown in Fig. \ref{tfpkz0525}.
    14031407
    14041408\begin{table}[hbt]
     
    14171421\end{tabular}
    14181422\end{center}
    1419 \tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$  (eq. \ref{eq:tfanalytique})
     1423\tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$  (Eq. \ref{eq:tfanalytique})
    14201424at different redshifts and for instrumental setup (e), $20\times20$ packed array interferometer,
    14211425are given in $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$. }
     
    14301434}
    14311435% \vspace*{-30mm}
    1432 \caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$.  for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of a frequency independent
    1433 gaussian beam of $\sim 30'$ is shown in black.
     1436\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial
     143721 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$
     1438for the instrument configuration (a), $11\times11$ packed array interferometer.
     1439The effect of a frequency-independent Gaussian beam of $\sim 30'$ is shown in black.
    14341440The transfer function $\TrF(k)$  for the instrument configuration (a), $11\times11$ packed array interferometer,
    14351441for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
     
    14751481
    14761482The impact of the various telescope configurations on the sensitivity for 21 cm
    1477 power spectrum measurement has been discussed in section \ref{pkmessens}.
    1478 Fig. \ref{figpnoisea2g} shows the noise power spectra, and allows us to rank visually the configurations
    1479 in terms of instrument noise contribution to P(k) measurement.
     1483power spectrum measurement has been discussed in Sec. \ref{pkmessens}.
     1484Figure \ref{figpnoisea2g} shows the noise power spectra and allows us to visually rank
     1485the configurations in terms of instrument noise contribution to P(k) measurement.
    14801486The differences in $P_{noise}$ will translate into differing precisions
    14811487in the reconstruction of the BAO peak positions and in
    1482 the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
    1483 that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
    1484 has also an effect on the measured 21 cm power spectrum.
     1488the estimation of cosmological parameters. In addition, we have seen (Sect. \ref{recsec})
     1489that subtraction of continuum radio emissions, Galactic synchrotron, and radio sources
     1490also has an effect on the measured 21 cm power spectrum.
    14851491In this paragraph, we present our method and the results for the precisions on the estimation
    1486 of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
     1492of dark energy parameters through a radio survey of the redshifted 21 cm emission of LSS,
    14871493with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
    14881494dishes, arranged into a filled $20 \times 20$ array.
     
    14911497\subsection{BAO peak precision}
    14921498
    1493 In order to estimate the precision with which BAO peak positions can be
     1499To estimate the precision with which BAO peak positions can be
    14941500measured, we  used a method similar to the one established in
    14951501\citep{blake.03} and \citep{glazebrook.05}.
    1496 
    1497 
    1498 
     1502%
    14991503To this end, we  generated reconstructed power spectra $P^{rec}(k)$ for
    1500  slices of Universe with a quarter-sky coverage and a redshift depth,
     1504 slices of the  Universe with a quarter-sky coverage and a redshift depth,
    15011505 $\Delta z=0.5$ for  $0.25<z<2.75$.
    15021506The peaks in the generated spectra were then determined by a
     
    15041508generated peak positions.
    15051509The reconstructed power spectrum used in the simulation is 
    1506 the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
    1507 damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
    1508 and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
     1510the sum of the expected \HI signal term, corresponding to Eqs. \ref{eq:pk21z} and \ref{eq:tbar21z},
     1511damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , Table \ref{tab:paramtfk})
     1512and a white noise component $P_{noise}$ calculated according to the Eq. \ref{eq:pnoiseNbeam},
    15091513established in section \ref{instrumnoise} with $N=400$:
    15101514\begin{equation}
     
    15121516\end{equation}
    15131517where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift. 
    1514 The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
     1518The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula
    15151519%\begin{equation}
    15161520\begin{eqnarray}
     
    15261530\end{eqnarray}
    15271531%\end{equation}
    1528 where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
     1532where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$, and $\tau$
    15291533are adjusted to the  formula presented in
    1530 \citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
    1531 envelop curve of the HI power spectrum without baryonic oscillations.
     1534\citep{eisenhu.98}, and $P_{ref}(\kperp,\kpar)$ is the
     1535envelope curve of the HI power spectrum without baryonic oscillations.
    15321536The parameters $\koperp$ and $\kopar$
    15331537are the inverses of the oscillation periods in k-space.
    1534 The following values have been used for these
     1538The following values were used for these
    15351539parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
    1536 $\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
    1537 
    1538 Each simulation is performed for a given set of parameters 
    1539 which are: the system temperature,$\Tsys$, an observation time,
    1540 $t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
    1541 Then,  each simulated  power spectrum  is fitted with a two dimensional
    1542 normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
     1540$\alpha=1.4$, and $\koperp=\kopar=0.060 \, \hMpcm$.
     1541
     1542Each simulation is performed for a given set of parameters:
     1543the system temperature $\Tsys$, an observation time
     1544$t_{obs}$, an average redshift, and a redshift depth $\Delta z=0.5$.
     1545Then,  each simulated  power spectrum  is fitted with a 2D
     1546normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$, which is
    15431547the sum of the signal power spectrum damped by the transfer function and the
    15441548noise power spectrum  multiplied by a
    15451549linear term,  $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
    1546 corresponds to the approximate position of the linear/non-linear transition.
     1550corresponds to the approximate position of the linear/nonlinear transition.
    15471551This limit is established on the basis of the criterion discussed in 
    15481552\citep{blake.03}.
    1549 In practice, we used for the redshifts
    1550 $z=0.5,\,\, 1.0$ and  $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
    1551 and $0.23 \hMpcm$.
     1553In practice, we used $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$,
     1554and $0.23 \hMpcm$ for the redshifts $z=0.5,\,\, 1.0$, and  $1.5$, respectively.
    15521555 
    1553 Figure \ref{fig:fitOscill} shows the result of the fit for
    1554 one of these simulations.
    1555 Figure \ref{fig:McV2} histograms the recovered values of  $\koperp$ and $\kopar$
     1556Figure \ref{fig:fitOscill} shows the result of the fit for one of these simulations.
     1557Figure \ref{fig:McV2} histogram show the recovered values of  $\koperp$ and $\kopar$
    15561558for 100 simulations.
    15571559The widths of the two distributions give an estimate
     
    15591561
    15601562In addition, in the fitting procedure, both the parameters modeling the
    1561 signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
    1562 spectrum $(a_0,a_1)$ are floated to take into account the possible
     1563signal $A$, $\tau$, $\alpha$, and the parameter correcting the noise power
     1564spectrum $(a_0,a_1)$ are floated to take the possible
    15631565ignorance  of the signal shape and the uncertainties in the
    1564 computation of the noise power spectrum.
    1565 In this way, we can correct possible imperfections and the
     1566computation of the noise power spectrum into account.
     1567In this way, we can correct possible imperfections, and the
    15661568systematic uncertainties are directly propagated to statistical errors
    15671569on the relevant parameters  $\koperp$ and $\kopar$. By subtracting the
    15681570fitted noise contribution to each simulation, the baryonic oscillations
    1569 are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
     1571are clearly observed, for instance, in Fig.~\ref{fig:AverPk}.
    15701572
    15711573 
     
    15911593\includegraphics[width=9.0cm]{Figs/McV2.pdf}
    15921594\caption{ Distributions of the reconstructed
    1593 wavelength  $\koperp$ and $\kopar$
    1594 respectively, perpendicular and parallel to the line of sight
     1595wavelength  $\koperp$ and $\kopar$ perpendicular and parallel,
     1596respectively, to the line of sight
    15951597for simulations as in Fig. \ref{fig:fitOscill}.
    15961598The fit by a Gaussian of the distribution (solid line) gives the
    1597 width of the distribution  which represents the statistical error
     1599width of the distribution,  which represents the statistical error
    15981600expected on these parameters.}
    15991601\label{fig:McV2}
     
    16081610of the packed cylinder array $b$.
    16091611The simulations are performed for the following conditions: a system
    1610 temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
     1612temperature $T_{sys}=50$K, an observation time $T_{obs}=1$ year,
    16111613a solid angle of $1 \pi sr$,
    1612 an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
     1614an average redshift $z=1.5$, and a redshift depth $\Delta z=0.5$.
    16131615The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
    1614 corresponding to the power spectrum without baryonic oscillations
     1616corresponding to the power spectrum without baryonic oscillations,
    16151617and the background estimated by a fit is subtracted. The errors are
    1616 the RMS of the 100 distributions for each $k$ bin and the dots are
     1618the RMS of the 100 distributions for each $k$ bin, and the dots are
    16171619the mean of the distribution for each $k$ bin. }
    16181620\label{fig:AverPk}
     
    16301632\item {\it Simulation without electronics noise}: the statistical errors on the power
    16311633spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
    1632  $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
    1633 The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
     1634the $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
     1635The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as
    16341636\begin{equation}
    16351637V  =  \frac{c}{H(z)} \Delta z  \times (1+z)^2 \dang^2  \Omega_{tot} \hspace{10mm}
    1636 N_{\delta k}  =  \frac{ V }{4 \pi^2} k^2 \delta k
     1638N_{\delta k}  =  \frac{ V }{4 \pi^2} k^2 \delta k \hspace{3mm} .
    16371639\end{equation}   
    16381640\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
    1639 \ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for a $N=400$ dish interferometer
     1641\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for an $N=400$ dish interferometer
    16401642with $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
    1641 \item {\it Noise with transfer function}: we take into account the interferometer response and radio foreground
     1643\item {\it Noise with transfer function}: we consider the interferometer response and radio foreground
    16421644subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
    16431645well as the instrument noise $P_{noise}$.
     
    16581660
    16591661Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
    1660 decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results.  Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
     1662decrease as a function of redshift for simulations without electronic noise because the volume
     1663of the universe probed is larger. Once we apply the electronics noise, each slice in redshift gives
     1664comparable results.  Finally, after applying the full reconstruction of the interferometer, the best
     1665accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of
     1666observation. We can optimize the survey by using a different observation time for each
     1667slice in redshift. Finally, for a 3-year survey we can split in five observation periods
     1668with durations that are three months, three months, six months, one year and one year
     1669for redshift 0.5, 1.0, 1.5, 2.0, and 2.5, respectively (Table  \ref{tab:ErrorOnK}, 4$^{\rm th}$ row).
    16611670
    16621671\begin{table*}[ht]
     
    16671676\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 &  \bf 1.5 & \bf 2.0 & \bf 2.5 \\
    16681677\hline\hline
    1669 \bf No Noise (a) & $\sigma(\koperp)/\koperp$  (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
     1678\bf No noise, pure cosmic variance & $\sigma(\koperp)/\koperp$  (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
    16701679 & $\sigma(\kopar)/\kopar$  (\%) & 3.0 & 1.3 & 0.9 &  0.8 & 0.8\\
    16711680 \hline
    1672  \bf  Noise without Transfer Function (b)  & $\sigma(\koperp)/\koperp$  (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
     1681 \bf  Noise without transfer function (a)  & $\sigma(\koperp)/\koperp$  (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
    16731682 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$  (\%) & 4.1 & 3.1  & 3.6 & 4.3 & 4.4\\
    16741683 \hline
    1675  \bf   Noise with Transfer Function  (c) & $\sigma(\koperp)/\koperp$  (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
     1684 \bf   Noise with transfer function (a) & $\sigma(\koperp)/\koperp$  (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
    16761685 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
    16771686 \hline
    1678  \bf  Optimized survey (d) & $\sigma(\koperp)/\koperp$  (\%)   & 3.0 & 2.5 & 2.3 &  2.0 &  2.7\\
     1687 \bf  Optimized survey (b) & $\sigma(\koperp)/\koperp$  (\%)   & 3.0 & 2.5 & 2.3 &  2.0 &  2.7\\
    16791688 (Observation time :  3 years)& $\sigma(\kopar)/\kopar$  (\%) & 4.8 & 4.0 & 4.1 &  3.6  & 4.3 \\
    16801689 \hline
     
    16831692\tablefoot{Relative errors on $\koperp$ and $\kopar$ measurements are given
    16841693as a function of the redshift $z$ for various simulation configurations: \\
    1685 \tablefoottext{a}{$1^{\rm st}$ row: simulations without noise with pure cosmic variance; } \\
    1686 \tablefoottext{b}{$2^{\rm nd}$ row: simulations with electronics noise for a telescope with dishes;  } \\
    1687 \tablefoottext{c}{$3^{\rm rd}$ row: simulations with the same electronics noise and with the transfer function; } \\
    1688 \tablefoottext{d}{$4^{\rm th}$ row: optimized survey with a total observation time of 3 years: 3 months, 3 months,
    1689 6 months, 1 year and 1 year respectively for \\ redshifts 0.5, 1.0, 1.5, 2.0 and 2.5.}
     1694\tablefoottext{a}{simulations with electronics noise, without ($2^{\rm nd}$ row) and with ($3^{\rm rd}$ row) the transfer function;  } \\
     1695\tablefoottext{b}{optimized survey, simulations with electronic noise and the transfer function}
    16901696}
    16911697\end{table*}%
     
    17261732sonic horizon.
    17271733The peaks in the angular spectrum are proportional to
    1728 $d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
     1734$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$, where
    17291735$a_s \sim 105  h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
    1730 $d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
     1736$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ the Hubble distance
    17311737(see Eq. \ref{eq:expHz}):
    17321738\begin{equation}
     
    17351741\label{eq:dTdH}
    17361742\end{equation}
    1737 The quantities $d_T$, $d_H$ and $a_s$ all depend on
     1743The quantities $d_T$, $d_H$, and $a_s$ all depend on
    17381744the cosmological parameters.
    17391745Figure \ref{fig:hubble} gives the angular and redshift intervals
     
    17501756
    17511757To estimate the sensitivity
    1752 to parameters describing dark energy equation of
     1758to parameters describing the dark energy equation of
    17531759state, we follow the procedure explained in
    17541760\citep{blake.03}. We can introduce the equation of
    1755 state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
     1761state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$, by
    17561762replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
    1757 (Eq. \ref{eq:dTdH}) by:
     1763(Eq. \ref{eq:dTdH}) by
    17581764\begin{equation}
    17591765\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3  \int_0^z   
     
    17631769respect to the critical density.
    17641770Using the relative errors on  $\koperp$ and  $\kopar$ given in
    1765 Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for 
     1771Table \ref{tab:ErrorOnK}, we can compute the Fisher matrix for 
    17661772five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
    17671773Then, the combination of this BAO Fisher
    1768 matrix with the Fisher matrix obtained for Planck mission, allows us to
     1774matrix with the Fisher matrix obtained for Planck mission allows us to
    17691775compute the errors on dark energy parameters.
    1770 {\changemark We have used the Planck Fisher matrix, computed for the
     1776{\changemark We used the Planck Fisher matrix, computed for the
    17711777Euclid proposal \citep{laureijs.09}, for the 8 parameters:
    17721778$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
     
    17761782
    17771783For an optimized project over a redshift range, $0.25<z<2.75$, with a total
    1778 observation time of 3 years, the packed 400-dish interferometer array has a
     1784observation time of three years, the packed 400-dish interferometer array has a
    17791785precision of  12\% on $w_0$ and 48\% on $w_a$.
    1780 The  Figure of Merit, the inverse of the area in the 95\% confidence level
    1781 contours  is 38.
     1786The  figure of merit (FOM), the inverse of the area in the 95\% confidence level
     1787contours, is 38.
    17821788Finally, Fig.~\ref{fig:Compw0wa}
    17831789shows a comparison of different BAO projects, with a set of priors on
    17841790$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
    1785 these parameters in early 2010's. {\changemark The confidence contour
    1786 level in the plane $(w_0,w_a)$  have been obtained by marginalizing
     1791these parameters in early 2010s. {\changemark The confidence contour
     1792level in the plane $(w_0,w_a)$  were obtained by marginalizing
    17871793over all the other parameters.} This BAO project based on \HI intensity
    17881794mapping is clearly competitive with the current generation of optical
    1789 surveys such as SDSS-III \citep{sdss3}.
     1795surveys such as SDSS-III \citep{eisenstein.11}.
    17901796
    17911797
     
    18021808
    18031809\section{Conclusions}
    1804 The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
    1805 approach to optical surveys to study the statistical properties of the large scale structures in the universe
    1806 up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
     1810The 3D mapping of redshifted 21 cm emission though {\it intensity mapping} is a novel and complementary
     1811approach to optical surveys for studying the statistical properties of the LSS in the universe
     1812up to redshifts $z \lesssim 3$. A radio instrument with a large instantaneous field of view
    18071813(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
    18081814to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
    1809 a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
     1815a nearly packed interferometer array with a few hundred receiver elements spread over an hectare or a hundred beam
    18101816focal plane array with a $\sim \hspace{-1.5mm} 100  \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
    1811 the 21 cm power spectrum. A method to compute the instrument response for interferometers 
    1812 has been developed and we have  computed the noise power spectrum for various telescope configurations.
    1813 The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
    1814 making the measurement of this latter signal a major scientific and technical challenge. We have also studied  the performance of a simple foreground subtraction method through realistic models of the sky
     1817the 21 cm power spectrum. A method of computing the instrument response for interferometers 
     1818was developed, and we  computed the noise power spectrum for various telescope configurations.
     1819The Galactic synchrotron and radio sources are a thousand times brighter than the redshifted 21 cm signal,
     1820making the measurement of the latter signal a major scientific and technical challenge.
     1821We also studied  the performance of a simple foreground subtraction method through realistic models of the sky
    18151822emissions in the GHz domain and simulation of interferometric observations.
    1816 We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
    1817 requires a very good knowledge of the instrument response. Our method has allowed us to define and
     1823We were able to show that the cosmological 21 cm signal from the LSS should be observable, but
     1824requires a very good knowledge of the instrument response. Our method allowed us to define and
    18181825compute the overall  {\it transfer function} or {\it response function} for the measurement of the 21 cm
    18191826power spectrum.
    1820 Finally, we have used the computed noise power spectrum and  $P(k)$
     1827Finally, we used the computed noise power spectrum and  $P(k)$
    18211828measurement response function to estimate
    1822 the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
     1829the precision on the determination of dark energy parameters, for a 21 cm BAO survey. This radio survey
    18231830could be carried using the current technology and would be competitive with the ongoing or planned
    18241831optical surveys for dark energy,  with a fraction of their cost.
     
    18331840%%%
    18341841%%%% LSST Science book
    1835 \bibitem[Abell et al. (2009)]{lsst.science}
    1836 {\it LSST Science book}, LSST Science Collaborations, Abell, P.A. {\it et al.} 2009, arXiv:0912.0201 
     1842\bibitem[Abell et al. 2009]{lsst.science}
     1843Abell, P.A. {\it et al.} {\it LSST Science book}, LSST Science Collaborations, {\it et al.} 2009, arXiv:0912.0201 
    18371844
    18381845%% reference SKA - BAO / DE en radio avec les sources
    1839 \bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S.  2005,  \mnras, 360,  27     
     1846\bibitem[Abdalla \& Rawlings 2005]{abdalla.05} Abdalla, F.B. \& Rawlings, S.  2005,  \mnras, 360,  27     
    18401847
    18411848% reference DETF - DE eq.state parameter figure of merit
    1842 \bibitem[Albrecht et al. (2006)]{DETF}  Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
     1849\bibitem[Albrecht et al. 2006]{DETF}  Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force), 2006, arXiv:astro-ph/0609591
    18431850
    18441851% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
    1845 \bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
    1846     V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
     1852\bibitem[Ansari et al. 2008]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
     1853    V. Ruhlmann-Kleider, \& C. Y\`eche, 2008 , arXiv:0807.3614
    18471854
    18481855%%   Temperature HI 21 cm (Valeur pour la reionisation)
    1849 \bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70,  627
     1856\bibitem[Barkana \& Loeb 2007]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70,  627
    18501857
    18511858%% Methode de generation/fit k_bao  (Section 5 - C. Yeche)
    1852 \bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
    1853 \bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \&  Blake, C. 2005 \apj, 631, 1
    1854 
    1855 % WiggleZ BAO observation
    1856 \bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B.  {\it et al.}  2011, \mnras,  (accepted, arXiv/1105.2862)
     1859\bibitem[Blake \& Glazebrook 2003]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
     1860\bibitem[Glazebrook \& Blake 2005]{glazebrook.05} Glazebrook, K. \&  Blake, C. 2005 \apj, 631, 1
     1861
     1862% WiggleZ BAO observation ( arXiv/1105.2862 )
     1863\bibitem[Blake et al. 2011]{blake.11} Blake, Davis, T., Poole, G.B.  {\it et al.}  2011, \mnras, 415, 2892-2909
    18571864
    18581865% Galactic astronomy, emission HI d'une galaxie
    1859 \bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
     1866\bibitem[Binney \& Merrifield 1998]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
    18601867% 21cm reionisation P(k) estimation and sensitivities
    1861 \bibitem[Bowman et al. (2006)]{bowman.06} Bowman, J.D.,  Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
     1868\bibitem[Bowman et al. 2006]{bowman.06} Bowman, J.D.,  Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20-26
    18621869% MWA description
    1863 \bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518 
     1870\bibitem[Bowman et al. 2007]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. {\it et al.} 2007, \aj, 133, 1505-1518 
    18641871
    18651872%% Soustraction avant plans ds MWA
    18661873\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199 
    18671874
    1868 %%%  SKA-Science
    1869 \bibitem[Carilli et al. (2004)]{ska.science}
    1870 {\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
    1871 New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
    1872 { \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
     1875%%%  SKA-Science Elsevier, December 2004   http://www.skatelescope.org/pages/page\_sciencegen.htm
     1876\bibitem[Carilli et al. 2004]{ska.science}
     1877{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings, 2004, New Astronomy Reviews, 48 
    18731878
    18741879%  Intensity mapping/HSHS
    1875 \bibitem[Chang et al. (2008)]{chang.08}  Chang, T.,  Pen, U.-L., Peterson, J.B. \&  McDonald, P., 2008, \prl, 100, 091303
     1880\bibitem[Chang et al. 2008]{chang.08}  Chang, T.,  Pen, U.-L., Peterson, J.B. \&  McDonald, P., 2008, \prl, 100, 091303
    18761881
    18771882% Mesure 21 cm avec le GBT (papier Nature )
    1878 \bibitem[Chang et al. (2010)]{chang.10}   Chang T-C, Pen U-L, Bandura K., Peterson  J.B., 2010, \nat, 466, 463-465
     1883\bibitem[Chang et al. 2010]{chang.10}   Chang T-C, Pen U-L, Bandura K., Peterson  J.B., 2010, \nat, 466, 463-465
    18791884
    18801885% 2dFRS BAO observation
    1881 \bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A.  {\it et al.} (the 2dFGRS Team) 2005,  \mnras, 362, 505
     1886\bibitem[Cole et al. 2005]{cole.05} Cole, S. Percival, W.J., Peacock, J.A.  {\it et al.} 2005,  \mnras, 362, 505
    18821887
    18831888% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
    1884 \bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
     1889\bibitem[Condon et al. 1998]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
    18851890Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
    18861891
    18871892% Effet des radio-sources sur le signal 21 cm reionisation
    1888 \bibitem[Di Matteo  et al. (2002)]{matteo.02}  Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
     1893\bibitem[Di Matteo  et al. 2002]{matteo.02}  Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576-580
    18891894
    18901895%  Parametrisation P(k)   - (astro-ph/9709112)
    1891 \bibitem[Eisenstein \& Hu  (1998)]{eisenhu.98}  Eisenstein D. \& Hu W. 1998, \apj 496, 605-614
     1896\bibitem[Eisenstein \& Hu  1998]{eisenhu.98}  Eisenstein D. \& Hu W. 1998, \apj, 496, 605-614
    18921897
    18931898% SDSS first BAO observation
    1894 \bibitem[Eisenstein et al. (2005)]{eisenstein.05}  Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005,  \apj, 633, 560
     1899\bibitem[Eisenstein et al. 2005]{eisenstein.05}  Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005,  \apj, 633, 560
    18951900
    18961901% SDSS-III description
    1897 \bibitem[Eisenstein et al. (2011)]{eisenstein.11}  Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
     1902\bibitem[Eisenstein et al. 2011]{eisenstein.11}  Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529 \\
     1903{ \tt http://www.sdss3.org/ }
    18981904
    18991905% Papier de Field sur la profondeur optique HI en 1959
    1900 \bibitem[Field (1959)]{field.59} Field G.B., 1959, \apj, 129, 155
     1906\bibitem[Field 1959]{field.59} Field G.B., 1959, \apj, 129, 155
    19011907%   21 cm emission for mapping matter distribution 
    1902 \bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \&  Briggs, F. 2006, \physrep, 433, 181-301
     1908\bibitem[Furlanetto et al. 2006]{furlanetto.06} Furlanetto, S., Peng Oh, S. \&  Briggs, F. 2006, \physrep, 433, 181-301
    19031909
    19041910% Mesure 21 cm a 610 MHz par GMRT
    1905 \bibitem[Ghosh et al. (2011)]{ghosh.11}  Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur  J. N., 2011, \mnras, 411, 2426-2438
     1911\bibitem[Ghosh et al. 2011]{ghosh.11}  Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur  J. N., 2011, \mnras, 411, 2426-2438
    19061912
    19071913
    19081914% Haslam 400 MHz synchrotron map
    1909 \bibitem[Haslam et al. (1982)]{haslam.82} Haslam  C. G. T.,  Salter C. J., Stoffel H., Wilson W. E., 1982,
    1910 Astron. \& Astrophys.  Supp.  Vol 47,  \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
     1915\bibitem[Haslam et al. 1982]{haslam.82} Haslam  C. G. T.,  Salter C. J., Stoffel H., Wilson W. E., 1982,
     1916Astron. \& Astrophys.  Supp.  Vol 47 %% {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
    19111917
    19121918
    19131919% Distribution des radio sources
    1914 \bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187 
     1920\bibitem[Jackson 2004]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187 
    19151921
    19161922% WMAP 7 years cosmological parameters
    1917 \bibitem[Komatsu et al. (2011)]{komatsu.11}   E. Komatsu, K. M. Smith, J. Dunkley {\it et al.}  2011, \apjs, 192, p. 18 \\
    1918 \mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
     1923\bibitem[Komatsu et al. 2011]{komatsu.11}   E. Komatsu, K. M. Smith, J. Dunkley {\it et al.}  2011, \apjs, 192, p. 18
     1924% \mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
    19191925
    19201926% HI mass in galaxies
    1921 \bibitem[Lah et al. (2009)]{lah.09}  Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.}  2009,  \mnras, 399, 1447
     1927\bibitem[Lah et al. 2009]{lah.09}  Philip Lah, Michael B. Pracy, Jayaram N. Chengalur {\it et al.}  2009,  \mnras, 399, 1447
    19221928% ( astro-ph/0907.1416)
    19231929
    19241930% Livre Astrophysical Formulae de Lang
    1925 \bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
     1931\bibitem[Lang 1999]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
    19261932
    19271933%  WMAP CMB 7 years power spectrum 2011
    19281934% \bibitem[Hinshaw et al. (2008)]{hinshaw.08}  Hinshaw, G., Weiland, J.L., Hill, R.S.  {\it et al.} 2008, arXiv:0803.0732)
    1929 \bibitem[Larson et al. (2011)]{larson.11}  Larson, D.,  {\it et al.}  (WMAP) 2011, \apjs, 192, 16
     1935\bibitem[Larson et al. 2011]{larson.11}  Larson, D.,  {\it et al.}  (WMAP) 2011, \apjs, 192, 16
    19301936
    19311937%% Description MWA
    1932 \bibitem[Lonsdale et al. (2009)]{lonsdale.09}  Lonsdale C.J., Cappallo R.J., Morales M.F.  {\it et al.}  2009, arXiv:0903.1828
     1938\bibitem[Lonsdale et al. 2009]{lonsdale.09}  Lonsdale C.J., Cappallo  R.J., Morales M.F.  {\it et al.}, 2009,
     1939IEEE Proceeding, 97, 1497-1506 (arXiv:0903.1828)
    19331940
    19341941% Planck Fischer matrix, computed for EUCLID
    1935 \bibitem[Laureijs (2009)]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
     1942\bibitem[Laureijs 2009]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
    19361943
    19371944% Temperature du 21 cm
    1938 \bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
     1945\bibitem[Madau et al. 1997]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
    19391946 
    19401947% Foret Ly alpha - 1
    1941 \bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S.  {\it et al.}  2006, \apjs, 163, 80
     1948\bibitem[McDonald et al. 2006]{baolya} McDonald P., Seljak, U. and Burles, S.  {\it et al.}  2006, \apjs, 163, 80
    19421949
    19431950% Foret Ly alpha - 2 , BAO from Ly-a
    1944 \bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J.  2007, Phys Rev D 76, 6, 063009
     1951\bibitem[McDonald \& Eisenstein 2007]{baolya2} McDonald P., Eisenstein, D.J.  2007, Phys Rev D 76, 6, 063009
    19451952
    19461953%  Boomerang 2000, Acoustic pics
    1947 \bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.}  2000, \apjl, 536,59
     1954\bibitem[Mauskopf et al. 2000]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.}  2000, \apjl, 536,59
    19481955
    19491956%% PNoise and cosmological parameters with reionization
    1950 \bibitem[McQuinn et al. (2006)]{mcquinn.06}  McQuinn M., Zahn O., Zaldarriaga M., Hernquist L.,  Furlanetto S.R.
    1951 2006, \apj 653, 815-834
     1957\bibitem[McQuinn et al. 2006]{mcquinn.06}  McQuinn M., Zahn O., Zaldarriaga M., Hernquist L.,  Furlanetto S.R.
     19582006, \apj, 653, 815-834
    19521959
    19531960%  Papier sur la mesure de sensibilite P(k)_reionisation
    1954 \bibitem[Morales \& Hewitt (2004)]{morales.04}  Morales M. \& Hewitt J., 2004, \apj, 615, 7-18 
     1961\bibitem[Morales \& Hewitt 2004]{morales.04}  Morales M. \& Hewitt J., 2004, \apj, 615, 7-18 
    19551962
    19561963%  Papier sur le traitement des observations radio / mode mixing
     
    19581965
    19591966%% Foreground removal using smooth frequency dependence
    1960 \bibitem[Oh \& Mack (2003)]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
     1967\bibitem[Oh \& Mack 2003]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
    19611968
    19621969%  Global Sky Model Paper
    1963 \bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M.  {\it et al.} 2008,
     1970\bibitem[Oliveira-Costa et al. 2008]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M.  {\it et al.} 2008,
    19641971\mnras, 388, 247-260
    19651972
    1966 %%  Description+ resultats PAPER
    1967 \bibitem[Parsons et al. (2009)]{parsons.09}  Parsons A.R.,Backer D.C.,Bradley  R.F. {\it et al.}  2009, arXiv:0904.2334
     1973%%  Description+ resultats PAPER - arXiv:0904.2334
     1974\bibitem[Parsons et al. 2010]{parsons.10}  Parsons A.R.,Backer D.C.,Bradley  R.F. {\it et al.}  2010,
     1975\aj, 2010,  139,  1468-1480
    19681976
    19691977% Livre Cosmo de Peebles
    1970 \bibitem[Peebles (1993)]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
    1971 Princeton University Press (1993)
     1978\bibitem[Peebles 1993]{cosmo.peebles} Peebles, P.J.E., {\it Principles of Physical Cosmology},
     1979Princeton University Press, 1993
    19721980
    19731981% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
    1974 \bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B.,  Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104 
     1982\bibitem[Peterson et al. 2006]{peterson.06} Peterson, J.B.,  Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104 
    19751983
    19761984% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
    1977 \bibitem[Platania et al. (1998)]{platania.98}   Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998,  \apj 505, 473-483
     1985\bibitem[Platania et al. 1998]{platania.98}   Platania P., Bensadoun M., Bersanelli M. {\it al.} 1998,  \apj, 505, 473-483
    19781986
    19791987% SDSS BAO 2007
    1980 \bibitem[Percival et al. (2007)]{percival.07}   Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
     1988\bibitem[Percival et al. 2007]{percival.07}   Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, 2007, \apj, 657, 645
    19811989
    19821990% SDSS BAO 2010  - arXiv:0907.1660
    1983 \bibitem[Percival et al. (2010)]{percival.10}   Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.},  2010, \mnras, 401, 2148-2168   
     1991\bibitem[Percival et al. 2010]{percival.10}   Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.},  2010, \mnras, 401, 2148-2168   
    19841992
    19851993% Livre Cosmo de Jim Rich
    1986 \bibitem[Rich (2001)]{cosmo.rich} James Rich,  {\it Fundamentals of Cosmology}, Springer (2001)
     1994\bibitem[Rich 2001]{cosmo.rich} James Rich,  {\it Fundamentals of Cosmology}, Springer, 2001
    19871995
    19881996% Radio spectral index between 100-200 MHz
    1989 \bibitem[Rogers \& Bowman (2008)]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
     1997\bibitem[Rogers \& Bowman 2008]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641-648
    19901998
    19911999%% LOFAR description
    1992 \bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.}  2006, arXiv:astro-ph/0610596
     2000\bibitem[Rottering et al. 2006]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.}  2006, arXiv:astro-ph/0610596
    19932001%%%%
    19942002
    19952003%% SDSS-3
    1996 \bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
     2004%  \bibitem[SDSS-III 2008]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
    19972005
    19982006% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
    1999 \bibitem[Shaver  et al. (1999))]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
     2007\bibitem[Shaver  et al. 1999]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380-390
    20002008
    20012009%  Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
    20022010
    20032011% Papier 21cm-BAO Fermilab  ( arXiv:0910.5007)
    2004 \bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al,  2010, \apj, 721, 164-173
     2012\bibitem[Seo et al 2010]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. {\it et al.}  2010, \apj, 721, 164-173
    20052013
    20062014% Mesure P(k) par SDSS
    2007 \bibitem[Tegmark et al.  (2004)]{tegmark.04}  Tegmark M., Blanton  M.R, Strauss M.A. et al. 2004, \apj, 606, 702-740
     2015\bibitem[Tegmark et al.  2004]{tegmark.04}  Tegmark M., Blanton  M.R, Strauss M.A. {\it et al.} 2004, \apj, 606, 702-740
    20082016
    20092017% FFT telescope
    2010 \bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
     2018\bibitem[Tegmark \& Zaldarriaga 2009]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
    20112019
    20122020%  Thomson-Morane livre interferometry
     
    20152023
    20162024% Lyman-alpha, HI fraction
    2017 \bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005  \araa, 43, 861
     2025\bibitem[Wolf et al. 2005]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005  \araa, 43, 861
    20182026
    20192027%  BAO à 21 cm et reionisation
    2020 \bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 %  http://fr.arxiv.org/abs/0709.2955,
     2028\bibitem[Wyithe et al. 2008]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 %  http://fr.arxiv.org/abs/0709.2955,
    20212029
    20222030%% Papier fluctuations 21 cm par Zaldarriaga et al
    2023 \bibitem[Zaldarriaga et al.(2004)]{zaldarriaga.04}  Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
     2031\bibitem[Zaldarriaga et al. 2004]{zaldarriaga.04}  Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004,
    20242032\apj, 608, 622-635
    20252033
    20262034%% Today HI cosmological density
    2027 \bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
     2035\bibitem[Zwaan et al. 2005]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
    20282036
    20292037\end{thebibliography}
Note: See TracChangeset for help on using the changeset viewer.