source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4069

Last change on this file since 4069 was 4069, checked in by ansari, 13 years ago

dernières corrections (proofreading) du papier avant publication par A&A, 26 Mars 2012, 27/04/2012

File size: 107.4 KB
RevLine 
[3949]1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
[4014]14% \documentclass[referee]{aa} % for a referee version
[3949]15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
[4049]20\documentclass[structabstract]{aa} % version standard, utilise pour ce papier
[3949]21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
[4049]30%% \usepackage{natbib} Probleme - pas tente de le resoudre (Reza, Jan 2012)
31%% \bibpunct{(}{)}{;}{a}{}{,} % to follow the A&A style
32
[4013]33%% Commande pour les references
[4014]34\newcommand{\citep}[1]{(\cite{#1})}
[4013]35%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
36
37%% Definitions diverses
[3949]38\newcommand{\HI}{$\mathrm{H_I}$ }
39\newcommand{\kb}{k_B} % Constante de Boltzmann
40\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
41\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
42\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
43\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
44\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
45
46\newcommand{\dlum}{d_L}
47\newcommand{\dang}{d_A}
48\newcommand{\hub}{ h_{70} }
[4013]49\newcommand{\hubb}{ h_{100} } % h_100
[3949]50
[4011]51\newcommand{\etaHI}{ n_{\tiny HI} }
[3949]52\newcommand{\fHI}{ f_{H_I}(z)}
[4013]53\newcommand{\gHI}{ f_{H_I}}
54\newcommand{\gHIz}{ f_{H_I}(z)}
[3949]55
56\newcommand{\vis}{{\cal V}_{12} }
57
58\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
59
[4013]60\newcommand{\lgd}{\mathrm{log_{10}}}
[3949]61
[4013]62%% Definition fonction de transfer
[4014]63\newcommand{\TrF}{\mathbf{T}}
[4030]64%% Definition (u,v) , ...
65\def\uv{\mathrm{u,v}}
66\def\uvu{\mathrm{u}}
67\def\uvv{\mathrm{v}}
68\def\dudv{\mathrm{d u d v}}
[4013]69
[4030]70% Commande pour marquer les changements du papiers pour le referee
[4043]71% \def\changemark{\bf }
72\def\changemark{}
[4045]73% \def\changemarkb{\bf }
74\def\changemarkb{}
[4013]75
[4043]76
[4011]77%%% Definition pour la section sur les param DE par C.Y
78\def\Mpc{\mathrm{Mpc}}
79\def\hMpcm{\,h \,\Mpc^{-1}}
80\def\hmMpc{\,h^{-1}\Mpc}
81\def\kperp{k_\perp}
82\def\kpar{k_\parallel}
83\def\koperp{k_{BAO\perp }}
84\def\kopar{k_{BAO\parallel}}
85
[3949]86%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87\usepackage{txfonts}
88%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89%
90\begin{document}
91%
92 \title{21 cm observation of LSS at z $\sim$ 1 }
93
94 \subtitle{Instrument sensitivity and foreground subtraction}
95
96 \author{
97 R. Ansari
98 \inst{1} \inst{2}
99 \and
[4043]100 J.E. Campagne \inst{2}
[3949]101 \and
[4043]102 P.Colom \inst{3}
[3949]103 \and
104 J.M. Le Goff \inst{4}
105 \and
106 C. Magneville \inst{4}
107 \and
108 J.M. Martin \inst{5}
109 \and
[4043]110 M. Moniez \inst{2}
[3949]111 \and
112 J.Rich \inst{4}
113 \and
114 C.Y\`eche \inst{4}
115 }
116
117 \institute{
[4043]118 Universit\'e Paris-Sud, LAL, UMR 8607, CNRS/IN2P3, F-91405 Orsay, France
[3949]119 \email{ansari@lal.in2p3.fr}
120 \and
[4043]121 CNRS/IN2P3, Laboratoire de l'Acc\'el\'erateur Lin\'eaire (LAL)
[3949]122 B.P. 34, 91898 Orsay Cedex, France
[4043]123 \and
124 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
[3949]125 % \thanks{The university of heaven temporarily does not
126 % accept e-mails}
127 \and
128 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
129 \and
130 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
[4043]131 }
[3949]132
[4049]133 \date{Received August 5, 2011; accepted December 22, 2011}
[3949]134
135% \abstract{}{}{}{}{}
136% 5 {} token are mandatory
137
138 \abstract
139 % context heading (optional)
140 % {} leave it empty if necessary
[4049]141 { Large scale structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
142cm emission. Such a 3D matter distribution map can be used to test the cosmological model and to constrain the dark energy
143properties or its equation of state. A novel approach, called intensity mapping, can be used to map the \HI distribution,
144using radio interferometers with a large instantaneous field of view and waveband.}
[3949]145 % aims heading (mandatory)
[4049]146 {We study the sensitivity of different radio interferometer configurations, or multi-beam
[4050]147instruments for observing LSS and baryon acoustic oscillations (BAO) in 21 cm, and we
148discuss the problem of foreground removal. }
[3949]149 % methods heading (mandatory)
[4049]150 { For each configuration, we determined instrument response by computing the $(\uv)$ or Fourier angular frequency
[4043]151plane coverage using visibilities. The $(\uv)$ plane response determines the noise power spectrum,
[4049]152hence the instrument sensitivity for LSS P(k) measurement. We also describe a simple foreground subtraction method
153of separating LSS 21 cm signal from the foreground due to the galactic synchrotron and radio source emission. }
[3949]154 % results heading (mandatory)
[4049]155 { We have computed the noise power spectrum for different instrument configurations, as well as the extracted
156 LSS power spectrum, after separating the 21cm-LSS signal from the foregrounds. We have also obtained
157 the uncertainties on the dark energy parameters for an optimized 21 cm BAO survey.}
[3949]158 % conclusions heading (optional), leave it empty if necessary
[4011]159 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
[4043]160 \mbox{$\sim 10000 \, \mathrm{m^2}$} will be able to detect BAO signal at redshift z $\sim 1$ and will be
[4011]161 competitive with optical surveys. }
[3949]162
[4014]163 \keywords{ large-scale structure of Universe --
164 dark energy -- Instrumentation: interferometers --
165 Radio lines; galaxies -- Radio continuum: general }
[3949]166
167 \maketitle
168%
169%________________________________________________________________
170% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
171% Toutes les figures sont provisoires }
172
173\section{Introduction}
174
175% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
[4049]176The study of the statistical properties of large scale structures (LSS) in the Universe and of their evolution
177with redshift is one of the major tools in observational cosmology. These structures are usually mapped through
178optical observation of galaxies that are used as tracers of the underlying matter distribution.
179An alternative and elegant approach for mapping the matter distribution, which uses neutral atomic hydrogen
180(\HI) as a tracer with intensity mapping, has been proposed in recent years (\cite{peterson.06}; \cite{chang.08}).
181Mapping the matter distribution using \HI 21 cm emission as a tracer has been extensively discussed in the literature
182(\cite{furlanetto.06}; \cite{tegmark.09}) and is being used in projects such as LOFAR \citep{rottgering.06} or
183MWA \citep{bowman.07} to observe reionization at redshifts z $\sim$ 10.
[3949]184
[4049]185Evidence of the acceleration in the expansion of the universe has
186accumulated over the last twelve years, thanks to the observation of
[4050]187distant supernovae and cosmic microwave background (CMB) anisotropies and to detailed analysis of the LSS.
[4049]188A cosmological constant ($\Lambda$) or new cosmological
189energy density called {\em dark energy} has been advocated as the origin of this acceleration.
190dark energy is considered as one of the most intriguing puzzles in physics and cosmology.
[3949]191% Constraining the properties of this new cosmic fluid, more precisely
192% its equation of state is central to current cosmological researches.
193Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
[4049]194more precisely its equation of state: the Hubble diagram, or the luminosity distance as a function
[3949]195of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
[4049]196and baryon acoustic oscillations (BAO).
[3949]197
198BAO are features imprinted in the distribution of galaxies, due to the frozen
[4049]199sound waves that were present in the photon-baryon plasma prior to recombination
[4043]200at \mbox{$z \sim 1100$}.
[4013]201This scale can be considered as a standard ruler with a comoving
[4049]202length of \mbox{$\sim 150 \, \mathrm{Mpc}$}, and
203these features have been first observed in the CMB anisotropies
204and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}; \cite{larson.11}).
[3949]205The BAO modulation has been subsequently observed in the distribution of galaxies
206at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
[4049]207(\cite{eisenstein.05}; \cite{percival.07}; \cite{percival.10}), 2dGFRS \cite{cole.05},
208as well as WiggleZ \citep{blake.11} optical galaxy surveys.
[3949]209
[4049]210Ongoing {\changemarkb surveys, such as BOSS} \citep{eisenstein.11} or future surveys,
211{\changemarkb such as LSST} \citep{lsst.science},
212plan to measure the BAO scale precisely in the redshift range
[4013]213$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
[4049]214or 3D mapping of Lyman $\alpha$ absorption lines toward distant quasars
215(\cite{baolya}; \cite{baolya2}).
216Radio observation of the 21 cm emission of neutral hydrogen is % ?ENG? appears as
217a very promising technique for mapping matter distribution up to redshift $z \sim 3$,
218and it complements optical surveys, especially in the optical redshift desert range
[4014]219$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
[3949]220
[4069]221In section 2, we discuss the intensity mapping and its potential for measuring the
[3949]222\HI mass distribution power spectrum. The method used in this paper to characterize
223a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
[4049]224We also show the results for the 3D noise power spectrum for several instrument configurations.
225The contribution of foreground emissions due to both the galactic synchrotron and radio sources
226is described in section 4, as is a simple component separation method. The performance of this
[4011]227method using two different sky models is also presented in section 4.
[4049]228The constraints that can be obtained on the dark energy parameters and DETF figure
[4011]229of merit for typical 21 cm intensity mapping survey are discussed in section 5.
[3949]230
231
232%__________________________________________________________________
233
234\section{Intensity mapping and \HI power spectrum}
235
236% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
237
238\subsection{21 cm intensity mapping}
239%%%
[4049]240Most of the cosmological information in the LSS is located on large scales
241($ \gtrsim 1 \mathrm{deg}$), while the interpretation on the smallest scales
242might suffer from the uncertainties on the nonlinear clustering effects.
[3949]243The BAO features in particular are at the degree angular scale on the sky
244and thus can be resolved easily with a rather modest size radio instrument
[4013]245(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
[4043]246can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
247or along the longitudinal (line of sight or redshift $k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
[3949]248the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
[4011]249BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
[3949]250longitudinal BAO clustering, which is a challenge for photometric optical surveys.
251
[4049]252To obtain a measurement of the LSS power spectrum with small enough statistical
[3949]253uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
[4049]254typically a few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
[4013]255obtained when comparing the distance or Hubble parameter measurements with
256DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
[3949]257Radio instruments intended for BAO surveys must thus have large instantaneous field
[4013]258of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
259to explore large redshift domains.
[3949]260
[4049]261Although the application of 21 cm radio survey to cosmology, in particular LSS mapping, has been
262discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}; \cite{abdalla.05}),
263the method envisaged has mostly been through the detection of galaxies as \HI compact sources.
[3949]264However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
[4049]265The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarizations
[3976]266of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
[3949]267\begin{equation}
[4011]268S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
[3949]269\end{equation}
[4049]270where $t_{int}$ is the total integration time and $\delta \nu$ the detection frequency band. In Table
271\ref{slims21} (left) we computed the sensitivity for six different sets of instrument effective area and system
[3949]272temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
[4049]273The width of this frequency band is well adapted to detecting an \HI source with an intrinsic velocity
274dispersion of a few 100 km/s.
[4030]275These detection limits should be compared with the expected 21 cm brightness
[4049]276$S_{21}$ of compact sources, which can be computed using the expression below (e.g. \cite{binney.98}):
[3949]277\begin{equation}
278 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
[4013]279\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
[3949]280\end{equation}
[4049]281 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ the luminosity distance, and $\sigma_v$
282the source velocity dispersion.
[4030]283{\changemark The 1 MHz bandwidth mentioned above is only used for computing the
[4031]284galaxy detection thresholds and does not determine the total bandwidth or frequency resolution
[4030]285of an intensity mapping survey.}
[4011]286% {\color{red} Faut-il developper le calcul en annexe ? }
[3949]287
[4049]288In Table \ref{slims21} (right), we show the 21 cm brightness for
[3949]289compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
[4049]290$200 \, \mathrm{km/s}$. The luminosity distance was computed for the standard
291WMAP \LCDM universe \citep{komatsu.11}. From $10^9$ to $10^{10} M_\odot$ of neutral gas mass
292is typical of large galaxies \citep{lah.09}. It is clear that detecting \HI sources at cosmological distances
[4043]293would require collecting area in the range of \mbox{$10^6 \, \mathrm{m^2}$}.
[3949]294
[4049]295Intensity mapping has been suggested as an alternative and economic method of mapping the
2963D distribution of neutral hydrogen by (\cite{chang.08}; \cite{ansari.08}; \citep{seo.10}).
[4043]297{\changemark There have also been attempts to detect the 21 cm LSS signal at GBT
[4031]298\citep{chang.10} and at GMRT \citep{ghosh.11}}.
[4049]299In this approach, a sky brightness map with angular resolution
300\mbox{$\sim 10-30 \, \mathrm{arc.min}$} is created for a %% ?ENG? was created ?
301wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$, or wavelength $\lambda$)
302would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to a hundred galaxies
[4013]303and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
[4049]304the observed frequency $\nu$ would be translated into the emission redshift $z$ through
305the well known relation
[3949]306\begin{eqnarray}
307 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
308\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
309\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
310 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
311\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
[4049]312\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m.}
[3949]313\end{eqnarray}
[4049]314The large-scale distribution of the neutral hydrogen, down to an angular scale of \mbox{$\sim 10 \, \mathrm{arc.min}$}
315can then be observed without detecting individual compact \HI sources, using the set of sky-brightness
316maps as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
[4011]317(radiation power/unit solid angle/unit surface/unit frequency)
[4043]318can be converted to brightness temperature using the Rayleigh-Jeans approximation of black body radiation law:
[4049]319$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} .$$
[3949]320
321%%%%%%%%
322\begin{table}
[4045]323\caption{21 cm source brightness and detection limits. }
[4043]324\label{slims21}
[3949]325\begin{center}
326\begin{tabular}{|c|c|c|}
327\hline
[3976]328$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
[3949]329\hline
3305000 & 50 & 66 \\
3315000 & 25 & 33 \\
[3976]332100 000 & 50 & 3.3 \\
333100 000 & 25 & 1.66 \\
[3949]334500 000 & 50 & 0.66 \\
335500 000 & 25 & 0.33 \\
336\hline
337\end{tabular}
338%%
339\hspace{3mm}
340%%
341\begin{tabular}{|c|c|c|}
342\hline
343$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
[4013]344\hline % dernier chiffre : sans le facteur (1+z)
3450.25 & 1235 & 175 \\ % 140
3460.50 & 2800 & 40 \\ % 27
3471.0 & 6600 & 9.6 \\ % 4.8
3481.5 & 10980 & 3.5 \\ % 1.74
3492.0 & 15710 & 2.5 \\ % 0.85
3502.5 & 20690 & 1.7 \\ % 0.49
[3949]351\hline
352\end{tabular}
353\end{center}
[4049]354\tablefoot{Left panel: sensitivity or source detection limit for 1-day integration time (86400 s) and 1-MHz
355frequency band. Right panel: 21 cm brightness for sources containing $10^{10} M_\odot$ of \HI at different redshifts.}
[3949]356\end{table}
357
358\subsection{ \HI power spectrum and BAO}
[4030]359In the absence of any foreground or background radiation
[4049]360{\changemark and assuming a high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
[4030]361the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
[4044]362the local \HI number density $\etaHI(\vec{\Theta},z)$ through the
[4049]363relation {\changemarkb (\cite{field.59}; \cite{zaldarriaga.04})}:
[3949]364\begin{equation}
365 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
366 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
367\end{equation}
[4014]368where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
[4049]369coefficient, $h$ the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
370constant, and $H(z)$ the Hubble parameter at the emission
[4044]371redshift.
[3949]372For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
[4049]373can be expressed as
[3949]374\begin{equation}
[4011]375H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
[4049]376\times 100 \, \, \mathrm{km/s/Mpc.}
[4011]377\label{eq:expHz}
[3949]378\end{equation}
[4049]379After introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
[4022]380neutral hydrogen number density and the corresponding 21 cm emission temperature
381can be written as a function of \HI relative density fluctuations:
[4011]382\begin{eqnarray}
[4013]383\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
384\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
385 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
[4011]386\end{eqnarray}
[4049]387where $\Omega_B$ and $\rho_{crit}$ are the present-day mean baryon cosmological
388and critical densities, respectively, $m_{H}$ the hydrogen atom mass, and
389$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ the \HI density fluctuations.
[3949]390
[4049]391The present-day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
392measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}
393$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B .$$
[4013]394The neutral hydrogen fraction is expected to increase with redshift, as gas is used
395in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
[4049]396indicates a factor 3 increase in the neutral hydrogen
[4011]397fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
[4049]398compared to its current value $\gHI(z=1.5) \sim 0.025$.
[4014]399The 21 cm brightness temperature and the corresponding power spectrum can be written as
[4069]400(\cite{madau.97}; \cite{zaldarriaga.04}; \cite{barkana.07})
[3949]401\begin{eqnarray}
[4011]402 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
[4013]403 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
[4011]404\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
[4049]405 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01} \, .
[4011]406\label{eq:tbar21z}
[3949]407\end{eqnarray}
408
[4049]409Table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
[3949]410standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
411linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
41221 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
413($\gHI=0.02$). The matter power spectrum has been computed using the
[4049]414\cite{eisenhu.98} parametrization. The correspondence with the angular scales is also
415shown for the standard WMAP \LCDM cosmology, according to the relation
[3949]416\begin{equation}
[4013]417\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
[4049]418\hspace{3mm} , \hspace{3mm}
419k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) } \hspace{5mm} ,
[3949]420\end{equation}
[4013]421where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
[4030]422{ \changemark The matter power spectrum $P(k)$ has been measured using
423galaxy surveys, for example by SDSS and 2dF at low redshift $z \lesssim 0.3$
[4049]424(\cite{cole.05}; \cite{tegmark.04}). The 21 cm brightness power spectra $P_{T_{21}}(k)$
[4031]425shown here are comparable to the power spectrum measured from the galaxy surveys,
426once the mean 21 cm temperature conversion factor $\left( \bar{T}_{21}(z) \right)^2$,
[4049]427redshift evolution, and different bias factors have been accounted for. }
[4013]428% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
429% for an instrument corresponds approximately to half of its angular resolution.
[4011]430% {\color{red} Faut-il developper completement le calcul en annexe ? }
[3949]431
432\begin{table}
[4045]433\caption{21 cm brightness temperature (mK) at different redshifts. }
[4043]434\label{tabcct21}
435% \begin{center}
[3949]436\begin{tabular}{|l|c|c|c|c|c|c|c|}
437\hline
438\hline
[4013]439 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
[3949]440\hline
[4013]441(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
[3949]442\hline
[4013]443(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
[3949]444\hline
445\hline
446\end{tabular}
[4043]447%\end{center}
[4045]448\tablefoot{ Mean 21 cm brightness temperature in mK for the
449standard \LCDM cosmology as a function of redshift:
450\tablefoottext{a}{Constant \HI mass fraction \mbox{$\gHIz=0.01$}}
451\tablefoottext{b}{Linearly increasing mass fraction \mbox{$\gHIz=0.008(1+z)$} }
452}
[3949]453\end{table}
454
455\begin{figure}
[4045]456\vspace*{-5mm}
[4011]457\hspace{-5mm}
458\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
459\vspace*{-10mm}
[3949]460\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
461neutral gas fraction $\gHI=2\%$}
462\label{figpk21}
463\end{figure}
464
465
466\section{interferometric observations and P(k) measurement sensitivity }
[4011]467\label{pkmessens}
[3949]468\subsection{Instrument response}
[4011]469\label{instrumresp}
[4049]470We briefly introduce here the principles of interferometric observations and the definition of
471quantities useful for our calculations. The interested reader may refer to \cite{radastron} for a detailed
[4011]472and complete presentation of observation methods and signal processing in radio astronomy.
[3949]473In astronomy we are usually interested in measuring the sky emission intensity,
[4011]474$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
[3949]475and interferometry in particular, receivers are sensitive to the sky emission complex
[4013]476amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
[4049]477length significantly smaller than the instrument resolution,
[3949]478\begin{eqnarray}
479& &
480I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
[4049]481& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta ' \, .}
[3949]482\end{eqnarray}
483A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
[4049]484its position $\vec{r}$ in a reference frame. The waveform complex amplitude $s$ measured by the receiver,
[3949]485for each frequency can be written as a function of the electromagnetic wave vector
[4049]486$\vec{k}_{EM}(\vec{\Theta}, \lambda) $:
[3949]487\begin{equation}
488s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
489\end{equation}
[4049]490We set the electromagnetic (EM) phase origin at the center of the coordinate frame, and
[4013]491the EM wave vector is related to the wavelength $\lambda$ through the usual equation
[3977]492$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
[3949]493corresponds to the receiver intensity response:
494\begin{equation}
[4049]495L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda) \, .
[3949]496\end{equation}
[4049]497The visibility signal of two receivers corresponds to the time-averaged correlation between
[3949]498signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
[4049]499visibility $\vis$ signal from two identical receivers, located at the positions $\vec{r_1}$ and
500$\vec{r_2}$, can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
[3949]501\begin{equation}
502\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
503e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
504\end{equation}
[4049]505This expression can be simplified if we consider receivers with a narrow field of view
[4013]506($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
[4049]507and coplanar with respect to their common axis.
508If we introduce two cartesian-like angular coordinates $(\alpha,\beta)$ centered on
[3949]509the common receivers axis, the visibilty would be written as the 2D Fourier transform
510of the product of the sky intensity and the receiver beam, for the angular frequency
[4030]511\mbox{$(\uv)_{12} = ( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
[3949]512\begin{equation}
513\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
514\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
515\end{equation}
516where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
[4049]517the receiver axis. The $x$ and $y$ axes in the receiver plane are taken parallel to the
[3949]518two $(\alpha, \beta)$ angular planes.
[4030]519Furthermore, we introduce the conjugate Fourier variables $(\uv)$ and the Fourier transforms
[3949]520of the sky intensity and the receiver beam:
521\begin{center}
522\begin{tabular}{ccc}
[4030]523$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(\uv)$ \\
524$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(\uv, \lambda)$ \\
[4049]525$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(\uv, \lambda)$ \, .\\
[3949]526\end{tabular}
527\end{center}
528
529The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
530wave number domain located around
[4043]531$(\uv)_{12}=( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
[4049]532given by the receiver-beam Fourier transform
[3949]533\begin{equation}
[4049]534\vis(\lambda) \simeq \iint \dudv \, \, {\cal I}(\uv, \lambda) \, {\cal L}(\uvu - \frac{\Delta x}{\lambda} , \uvv - \frac{\Delta y}{\lambda} , \lambda) \, .
[3949]535\end{equation}
536
[4049]537\noindent A single receiver instrument would measure the total power integrated in a spot centered on the
538origin in the $(\uv)$ or the angular wave-mode plane. The shape of the spot depends on the receiver
[3949]539beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
[4011]540size.
541
542The correlation signal from a pair of receivers would measure the integrated signal on a similar
[4049]543spot, located around the central angular wave-mode $(\uv)_{12}$, determined by the relative
[3949]544position of the two receivers (see figure \ref{figuvplane}).
545In an interferometer with multiple receivers, the area covered by different receiver pairs in the
[4049]546$(\uv)$ plane might overlap, and some pairs might measure the same area (same base lines).
547Several beams can be formed using different combinations of the correlations from a set of
[3949]548antenna pairs.
549
[4030]550An instrument can thus be characterized by its $(\uv)$ plane coverage or response
551${\cal R}(\uv,\lambda)$. For a single dish with a single receiver in the focal plane,
[3977]552the instrument response is simply the Fourier transform of the beam.
[4049]553For a single dish with multiple receivers, either as a focal plane array (FPA) or
[4013]554a multi-horn system, each beam (b) will have its own response
[4030]555${\cal R}_b(\uv,\lambda)$.
[3977]556For an interferometer, we can compute a raw instrument response
[4049]557${\cal R}_{raw}(\uv,\lambda)$, which corresponds to $(\uv)$ plane coverage by all
[3977]558receiver pairs with uniform weighting.
559Obviously, different weighting schemes can be used, changing
[4049]560the effective beam shape, hence the response ${\cal R}_{w}(\uv,\lambda)$
561and the noise behavior. If the same Fourier angular frequency mode is measured
[4011]562by several receiver pairs, the raw instrument response might then be larger
[4049]563that unity. This non-normalized instrument response is used to compute the projected
[4011]564noise power spectrum in the following section (\ref{instrumnoise}).
[4049]565We can also define a normalized instrument response, ${\cal R}_{norm}(\uv,\lambda) \lesssim 1$ as
[4011]566\begin{equation}
[4049]567{\cal R}_{norm}(\uv,\lambda) = {\cal R}(\uv,\lambda) / \mathrm{Max_{(\uv)}} \left[ {\cal R}(\uv,\lambda) \right] \, .
[4011]568\end{equation}
[4049]569This normalized instrument response is the basic ingredient for computing the effective
570instrument beam, in particular in section \ref{recsec}.
[3977]571
[4049]572{\changemark Detection of the reionization at 21 cm has been an active field
573in the last decade, and different groups have built
574instruments to detect a reionization signal around 100 MHz: LOFAR
575\citep{rottgering.06}, MWA (\cite{bowman.07}; \cite{lonsdale.09}), and PAPER \citep{parsons.10}.
[4030]576Several authors have studied the instrumental noise
[4049]577and statistical uncertainties when measuring the reionization signal power spectrum, and
[4030]578the methods presented here to compute the instrument response
579and sensitivities are similar to the ones developed in these publications
[4049]580(\cite{morales.04}; \cite{bowman.06}; \cite{mcquinn.06}). }
[4030]581
[3949]582\begin{figure}
583% \vspace*{-2mm}
584\centering
585\mbox{
586\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
587}
588\vspace*{-15mm}
[4030]589\caption{Schematic view of the $(\uv)$ plane coverage by interferometric measurement.}
[3949]590\label{figuvplane}
591\end{figure}
592
[4030]593\subsection{Noise power spectrum computation}
[4011]594\label{instrumnoise}
[4049]595We consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
[4013]596bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
[3949]597$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
[4049]598$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term also
599corresponds to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
[3976]600noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
[4049]601corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
602The noise's spectral density, in the angular frequency plane (per unit area of angular frequency
[4043]603\mbox{$\delta \uvu \times \delta \uvv$}), corresponding to a visibility
[4049]604measurement from a pair of receivers can be written as
[4011]605\begin{eqnarray}
606P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
607P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
[4049]608\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \, .
[4011]609\label{eq:pnoisepairD}
610\end{eqnarray}
611
[4049]612We can characterize the sky temperature measurement with a radio instrument by the noise's
[4030]613spectral power density in the angular frequencies plane $P_{noise}(\uv)$ in units of $\mathrm{Kelvin^2}$
614per unit area of angular frequencies $\delta \uvu \times \delta \uvv$.
[4011]615For an interferometer made of identical receiver elements, several ($n$) receiver pairs
[4030]616might have the same baseline. The noise power density in the corresponding $(\uv)$ plane area
[4013]617is then reduced by a factor $1/n$. More generally, we can write the instrument noise
[4049]618spectral power density using the instrument response defined in section \ref{instrumresp} as
[4011]619\begin{equation}
[4049]620P_{noise}(\uv) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(\uv,\lambda) } \hspace{4mm} .
[4030]621\label{eq:pnoiseuv}
[4011]622\end{equation}
[3949]623
[4049]624When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
[4011]625$P(k)$ is computed, angles are translated into comoving transverse distances,
[4043]626and frequencies or wavelengths into comoving radial distance, using the following relations
[4049]627{\changemarkb (e.g. chap. 13 of \cite{cosmo.peebles}; \cite{cosmo.rich})} :
[4030]628{ \changemark
[3949]629\begin{eqnarray}
[4069]630\alpha , \beta & \rightarrow & \ell_\perp = \ell_x, \ell_y = (1+z) \, \dang(z) \, \alpha,\beta \\
[4030]631\uv & \rightarrow & k_\perp = k_x, k_y = 2 \pi \frac{ \uvu , \uvv }{ (1+z) \, \dang(z) } \label{eq:uvkxky} \\
[3949]632\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
633 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
[4030]634% \delta \uvu , \delta \uvv & \rightarrow & \delta k_\perp = 2 \pi \frac{ \delta \uvu \, , \, \delta \uvv }{ (1+z) \, \dang(z) } \\
[4043]635\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \delta k_z =
6362 \pi \, \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
[3949]637 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
638\end{eqnarray}
[4030]639}
640{ \changemark
641A brightness measurement at a point $(\uv,\lambda)$, covering
642the 3D spot $(\delta \uvu, \delta \uvv, \delta \nu)$, would correspond
[4049]643to a cosmological power spectrum measurement at a transverse wave mode $(k_x,k_y)$
[4030]644defined by the equation \ref{eq:uvkxky}, measured at a redshift given by the observation frequency.
[4049]645The measurement noise spectral density given by the Eq. \ref{eq:pnoisepairD} can then be
[4030]646translated into a 3D noise power spectrum, per unit of spatial frequencies
[4043]647$ \delta k_x \times \delta k_y \times \delta k_z / 8 \pi^3 $ (units: $ \mathrm{K^2 \times Mpc^3}$) :
[3949]648
[4030]649\begin{eqnarray}
650(\uv , \lambda) & \rightarrow & k_x(\uvu),k_y(\uvv), z(\lambda) \\
651P_{noise}(k_x,k_y, z) & = & P_{noise}(\uv)
652 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
[4032]653 & = & \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \right)
[4030]654 \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
655\label{eq:pnoisekxkz}
656\end{eqnarray}
657
[4032]658It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
659anymore on the individual measurement bandwidth.
[4030]660In the following paragraph, we will first consider an ideal instrument
661with uniform $(\uv)$ coverage
[4049]662in order to establish the general noise power spectrum behavior for cosmological 21 cm surveys.
[4030]663The numerical method used to compute the 3D noise power spectrum is then presented in section
664\ref{pnoisemeth}.
665}
666
667\subsubsection{Uniform $(\uv)$ coverage}
[4043]668{ \changemarkb We consider here an instrument with uniform $(\uv)$ plane coverage (${\cal R}(\uv)=1$),
669and measurements at regularly spaced frequencies centered on a central frequency $\nu_0$ or redshift $z(\nu_0)$.
[4049]670The noise's spectral power density from equation (\ref{eq:pnoisekxkz}) would then be
671constant, independent of $(k_x, k_y, \ell_\parallel(\nu))$. Such a noise power spectrum thus corresponds
[4043]672to a 3D white noise, with a uniform noise spectral density:}
[3949]673\begin{equation}
[4069]674P_{noise}(k_\perp, \ell_\parallel(\nu) ) = P_{noise} = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
[4011]675\label{ctepnoisek}
[3949]676\end{equation}
[4049]677%
678where $P_{noise}$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
[4013]679$t_{int}$ is the integration time expressed in second,
680$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
[3949]681 $H(z)$ in $\mathrm{km/s/Mpc}$.
[4011]682
[4043]683The statistical uncertainties of matter or \HI distribution power spectrum estimate decreases
[4049]684with the number of observed Fourier modes, a number that is proportional to the volume of the universe
685being observed (sample variance). As the observed volume is proportional to the
[4011]686surveyed solid angle, we consider the survey of a fixed
[4043]687fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a given
[4011]688total observation time $t_{obs}$.
[4049]689A single-dish instrument with diameter $D$ would have an instantaneous field of view
[4011]690$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
[4013]691a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
[4043]692Each sky direction or patch of size $\Omega_{FOV}$ will be observed during an integration
[4011]693time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
694for the integration time, we can compute a simple expression
[4049]695for the noise spectral power density by a single-dish instrument of diameter $D$:
[4011]696\begin{equation}
[4049]697P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
[4011]698\end{equation}
[3949]699
[4049]700It is important to note that any real instrument does not have a flat
[4032]701response in the $(\uv)$ plane, and the observations provide no information above
[4043]702a certain maximum angular frequency $\uvu_{max},\uvv_{max}$.
[4011]703One has to take into account either a damping of the observed sky power
[4049]704spectrum or an increase in the noise spectral density if
705the observed power spectrum is corrected for damping. The white-noise
[3949]706expressions given below should thus be considered as a lower limit or floor of the
707instrument noise spectral density.
[4011]708
[4049]709For a single-dish instrument of diameter $D$ equipped with a multi-feed or
710phase-array receiver system, with $N$ independent beams on sky,
[4011]711the noise spectral density decreases by a factor $N$,
[4049]712thanks to the increase in per pointing integration time:
[4011]713
[3949]714\begin{equation}
[4049]715P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
[4011]716\label{eq:pnoiseNbeam}
[3949]717\end{equation}
[4049]718%
[4013]719This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
[4011]720identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
[4049]721of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as a $q \times q$ square.
[4011]722
[3949]723For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
[4030]724observations provide information up to $\uvu_{max},\uvv_{max} \lesssim D / \lambda $. This value of
725$\uvu_{max},\uvv_{max}$ would be mapped to a maximum transverse cosmological wave number
726$k_{\perp}^{max}$:
[4011]727\begin{equation}
[4049]728k_{\perp}^{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}} \hspace{3mm} .
[4011]729\label{kperpmax}
730\end{equation}
[4049]731%
[4011]732Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
733as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
734beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
735The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
[4030]736year. The maximum comoving wave number $k^{max}$ is also shown as a function
[4049]737of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent.
738To take the radial component of $\vec{k}$ and the increase of
739the instrument noise level with $k_{\perp}$ into account, we have taken the effective $k_{ max} $
740as half of the maximum transverse $k_{\perp} ^{max}$ of \mbox{Eq. \ref{kperpmax}}:
[3949]741\begin{equation}
[4049]742k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}} \hspace{3mm} .
[3949]743\end{equation}
744
745\begin{figure}
[3977]746\vspace*{-25mm}
[3949]747\centering
748\mbox{
749\hspace*{-10mm}
[3977]750\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
[3949]751}
[3977]752\vspace*{-40mm}
[4049]753\caption{Top: minimal noise level for a 100-beam instrument with \mbox{$\Tsys=50 \mathrm{K}$}
754as a function of redshift (top), for a one-year survey of a quarter of the sky. Bottom:
755maximum $k$ value for 21 cm LSS power spectrum measurement by a 100-meter diameter
[4032]756primary antenna. }
[3949]757\label{pnkmaxfz}
758\end{figure}
[4030]759
760\subsubsection{3D noise power spectrum computation}
761\label{pnoisemeth}
762{ \changemark
763We describe here the numerical method used to compute the 3D noise power spectrum, for a given instrument
764response, as presented in section \ref{instrumnoise}. The noise power spectrum is a good indicator to compare
[4049]765sensitivities for different instrument configurations, although the noise realization for a real instrument would not be
[4030]766isotropic.
767\begin{itemize}
[4049]768\item We start by a 3D Fourier coefficient grid, with the two first coordinates the transverse angular wave modes,
769and the third the frequency $(k_x,k_y,\nu)$. The grid is positioned at the mean redshift $z_0$ for which
[4030]770we want to compute $P_{noise}(k)$. For the results at redshift \mbox{$z_0=1$} discussed in section \ref{instrumnoise},
771the grid cell size and dimensions have been chosen to represent a box in the universe
[4043]772\mbox{$\sim 1500 \times 1500 \times 750 \, \mathrm{Mpc^3}$},
773with \mbox{$3\times3\times3 \, \mathrm{Mpc^3}$} cells.
[4049]774This corresponds to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
[4030]775the small angular extent, we have neglected the curvature of redshift shells.
[4032]776\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
777The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
778using equation (\ref{eq:uvkxky}), and the
[4031]779angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
[4049]780The noise variance is taken proportional to $P_{noise}$
[4030]781\begin{equation}
[4049]782\sigma_{re}^2=\sigma_{im}^2 \propto \frac{1}{{\cal R}_{raw}(\uv,\lambda)} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 \hspace{2mm} .
[4030]783\end{equation}
[4049]784\item An FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
785complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as
[4030]786\begin{equation}
[4032]787\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 > \hspace{2mm} \mathrm{for} \hspace{2mm}
[4049]788 \sqrt{k_x^2+k_y^2+k_z^2} = k \hspace{2mm} .
[4030]789\end{equation}
790Noise samples corresponding to small instrument response, typically less than 1\% of the
[4049]791maximum instrument response, are ignored when calculating $\tilde{P}_{noise}(k)$.
792However, we require a significant fraction, typically 20\% to 50\% of all possible modes
[4030]793$(k_x,k_y,k_z)$ measured for a given $k$ value.
[4031]794\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
795from random generations. The averaged computed noise power spectrum is normalized using
[4043]796equation \ref{eq:pnoisekxkz} and the instrument and survey parameters:
797{\changemarkb system temperature $\Tsys= 50 \mathrm{K}$,
798individual receiver size $D^2$ or $D_x D_y$ and the integration time $t_{int}$.
799This last parameter is obtained through the relation
800$t_{int} = t_{obs} \Omega_{FOV} / \Omega_{tot}$ using the total survey duration
[4044]801$t_{obs}=1 \mathrm{year}$, the instantaneous field of view
802$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and the total sky coverage
803$\Omega_{tot} = \pi$ srad. }
[4030]804\end{itemize}
[3949]805
[4031]806It should be noted that it is possible to obtain a good approximation of the noise
[4049]807power spectrum shape by neglecting the redshift or frequency dependence of the
[4030]808instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
[4032]809using a fixed instrument response ${\cal R}(\uv,\lambda(z_0))$ and
[4049]810a constant radial distance $\dang(z_0)\times(1+z_0)$:
[4030]811\begin{equation}
[4032]812\tilde{P}_{noise}(k) = < | {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
[4030]813\end{equation}
[4032]814The approximate power spectrum obtained through this simplified and much faster
[4030]815method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
816configurations.
817}
[3949]818
819\subsection{Instrument configurations and noise power spectrum}
[4011]820\label{instrumnoise}
[4030]821We have numerically computed the instrument response ${\cal R}(\uv,\lambda)$
822with uniform weights in the $(\uv)$ plane for several instrument configurations:
[3949]823\begin{itemize}
[4011]824\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
[3949]825a square $11 \times 11$ configuration ($q=11$). This array covers an area of
[4049]826$55 \times 55 \, \mathrm{m^2}$ \, .
[4011]827\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
[4049]828in eight rows, each with 16 dishes. These 128 dishes are spread over an area
[4011]829$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
[4013]830shown in figure \ref{figconfbc}.
[4011]831\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
[3949]832 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
[4049]833particular four subarrays of packed 16 dishes ($4\times4$), located in the
834four array corners. This array layout is also shown in figure \ref{figconfbc}.
835\item [{\bf d} :] A single-dish instrument, with diameter $D=75 \, \mathrm{m}$,
[4011]836equipped with a 100 beam focal plane receiver array.
837\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
[3949]838a square $20 \times 20$ configuration ($q=20$). This array covers an area of
839$100 \times 100 \, \mathrm{m^2}$
[4049]840\item[{\bf f} :] A packed array of four cylindrical reflectors, each 85 meter long and 12 meter
[4011]841wide. The focal line of each cylinder is equipped with 100 receivers, each
842$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
[3949]843This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
[4049]844a total of $400$ receivers per polarization, as in the (e) configuration.
845We computed the noise power spectrum for {\em perfect}
[3949]846cylinders, where all receiver pair correlations are used (fp), or for
[4049]847an imperfect instrument, where only correlations between receivers
[3949]848from different cylinders are used.
[4049]849\item[{\bf g} :] A packed array of eight cylindrical reflectors, each 102 meters long and 12 meters
[4011]850wide. The focal line of each cylinder is equipped with 120 receivers, each
851$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
[3949]852This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
[4049]853a total of 960 receivers per polarization. As for the (f) configuration,
[3949]854we have computed the noise power spectrum for {\em perfect}
855cylinders, where all receiver pair correlations are used (gp), or for
[4049]856an imperfect instrument, where only correlations between receivers
[3949]857from different cylinders are used.
858\end{itemize}
[4011]859
[3949]860\begin{figure}
861\centering
862\vspace*{-15mm}
863\mbox{
864\hspace*{-10mm}
865\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
866}
867\vspace*{-15mm}
868\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
869diameter dishes. }
[4013]870\label{figconfbc}
[3949]871\end{figure}
872
[4049]873We used simple triangular shaped dish response in the $(\uv)$ plane;
874however, we did introduce a filling factor or illumination efficiency
[3949]875$\eta$, relating the effective dish diameter $D_{ill}$ to the
[4032]876mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
[4013]877as $\eta^2$ or $\eta_x \eta_y$.
[3949]878\begin{eqnarray}
[4032]879{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2}) \\
[3949]880 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
881\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
882\end{eqnarray}
[4049]883For the multidish configuration studied here, we have taken the illumination efficiency factor
[3949]884{\bf $\eta = 0.9$}.
885
[4049]886For the receivers along the focal line of cylinders, we assumed that the
[4043]887individual receiver response in the $(\uv)$ plane corresponds to a
[4049]888rectangular antenna. The illumination efficiency factor was taken
[3949]889equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
[4049]890along the cylinder length. {\changemark We used a double triangular
[4031]891response function in the $(\uv)$ plane for each of the receiver elements along the cylinder:
[4030]892\begin{equation}
893 {\cal L}_\Box(\uv,\lambda) =
894\bigwedge_{[\pm \eta_x D_x / \lambda]} (\uvu ) \times
[4049]895\bigwedge_{[\pm \eta_y D_y / \lambda ]} (\uvv )
[4030]896\end{equation}
897}
[4049]898
899\noindent It should be noted that the small angle approximation
[3949]900used here for the expression of visibilities is not valid for the receivers along
901the cylinder axis. However, some preliminary numerical checks indicate that
[4049]902the results for the noise spectral power density would not change significantly.
903The instrument responses shown here correspond to a fixed pointing toward the zenith, which
[4011]904is the case for a transit type telescope.
905
[4032]906Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
[3977]907for the four configurations (a,b,c,d) with $\sim 100$ receivers per
[4049]908polarization.
909{\changemark Using the numerical method sketched in section \ref{pnoisemeth}, we
[4031]910computed the 3D noise power spectrum for each of the eight instrument configurations presented
[4030]911here, with a system noise temperature $\Tsys = 50 \mathrm{K}$, for a one year survey
912of a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$ at a mean redshift $z_0=1, \nu_0=710 \mathrm{MHz}$.}
913The resulting noise spectral power densities are shown in figure
[3949]914\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
[4049]915is due to our having ignored all auto-correlation measurements.
[3977]916It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
[3949]917should have enough sensitivity to map LSS in 21 cm at redshift z=1.
918
919\begin{figure*}
920\centering
921\mbox{
[4030]922% \hspace*{-10mm}
923\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
[3949]924}
[4043]925\caption{Raw instrument response ${\cal R}_{raw}(\uv,\lambda)$ or the $(\uv)$ plane coverage
[4032]926at 710 MHz (redshift $z=1$) for four configurations.
[4049]927(a) 121 $D_{dish}=$ 5-meter diameter dishes arranged in a compact, square array
[4043]928of $11 \times 11$, (b) 128 dishes arranged in 8 rows of 16 dishes each (fig. \ref{figconfbc}),
[4049]929(c) 129 dishes arranged as shown in figure \ref{figconfbc}, (d) single D=75 meter diameter, with 100 beams.
[4030]930The common color scale (1 \ldots 80) is shown on the right. }
[3949]931\label{figuvcovabcd}
932\end{figure*}
933
934\begin{figure*}
[4030]935\vspace*{-10mm}
[3949]936\centering
937\mbox{
[4030]938% \hspace*{-5mm}
939\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
[3949]940}
[4030]941\vspace*{-20mm}
[4032]942\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
943and the noise power spectrum for several interferometer configurations
[4049]944 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400, and 960 receivers. The noise power spectrum has been
[4031]945computed for all configurations assuming a survey of a quarter of the sky over one year,
946with a system temperature $\Tsys = 50 \mathrm{K}$. }
[3949]947\label{figpnoisea2g}
948\end{figure*}
949
950
[4049]951\section{ Foregrounds and component separation }
[4011]952\label{foregroundcompsep}
[4049]953Reaching the required sensitivities is not the only difficulty of observing the
954LSS in 21 cm. Indeed, the synchrotron emission of the
955Milky Way and the extragalactic radio sources are a thousand times brighter than the
[3976]956emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
[4049]957using intensity mapping, without identifying the \HI point sources is the main challenge
[3976]958for this novel observation method. Although this task might seem impossible at first,
959it has been suggested that the smooth frequency dependence of the synchrotron
960emissions can be used to separate the faint LSS signal from the Galactic and radio source
[4030]961emissions. {\changemark Discussion of contribution of different sources
[4031]962of radio foregrounds for measurement of reionization through redshifted 21 cm,
[4049]963as well as foreground subtraction using their smooth frequency dependence, can
964be found in (\cite{shaver.99}; \cite{matteo.02};\cite{oh.03}).}
965However, any real radio instrument has a beam shape that changes with
966frequency, and this instrumental effect significantly increases the difficulty and complexity of this component separation
967technique. The effect of frequency dependent beam shape is sometimes referred to as {\em
968mode mixing}, {\changemark and its impact on foreground subtraction
[4031]969has been discussed for example in \cite{morales.06}.}
[3949]970
[3976]971In this section, we present a short description of the foreground emissions and
[4049]972the simple models we used for computing the sky radio emissions in the GHz frequency
973range. We also present a simple component-separation method to extract the LSS signal and
[4032]974its performance. {\changemark The analysis presented here follows a similar path to
[4049]975a detailed foreground subtraction study carried out for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
976We computed in particular, the effect of the instrument response on the recovered
[4011]977power spectrum. The results presented in this section concern the
[3976]978total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
979corresponding to the central frequency $\nu \sim 884$ MHz.
980
[3949]981\subsection{ Synchrotron and radio sources }
[4069]982We modeled the radio sky in the form of 3D maps (data cubes) of sky temperature
[3976]983brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
984and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
[4014]985$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
[4013]986the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
[4049]987used in the simulations are given in the Table \ref{skycubechars}.
[4011]988\begin{table}
[4043]989\caption{
[4045]990Sky cube characteristics for the simulations described in this paper. }
[4043]991\label{skycubechars}
[3976]992\begin{center}
993\begin{tabular}{|c|c|c|}
994\hline
995 & range & center \\
996\hline
997Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
998Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
999Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
1000Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
1001Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
1002\hline
1003\hline
1004& resolution & N-cells \\
1005\hline
1006Right ascension & 3 arcmin & 1800 \\
1007Declination & 3 arcmin & 600 \\
1008Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
1009\hline
[4045]1010\end{tabular}
[4011]1011\end{center}
[4049]1012\tablefoot{ Cube size: $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$;
[4045]1013$1800 \times 600 \times 256 \simeq 123 \times 10^6$ cells }
[4011]1014\end{table}
1015%%%%
1016\par
[4049]1017Two different methods were used to compute the sky temperature data cubes.
1018We used the global sky model (GSM) \citep{gsm.08} tools to generate full sky
1019maps of the emission temperature at different frequencies, from which we
[3976]1020extracted the brightness temperature cube for the region defined above
1021(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
[4049]1022Because the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
[3976]1023difficult to have reliable results for the effect of point sources on the reconstructed
1024LSS power spectrum.
[3949]1025
[4049]1026We have thus also made a simple sky model using the Haslam Galactic synchrotron map
[4011]1027at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
1028catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
[4049]1029was computed through the following steps:
[3976]1030
1031\begin{enumerate}
[4049]1032\item The Galactic synchrotron emission is modeled as a power law with a spatially
1033varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction,
1034where $\beta$ has a Gaussian distribution centered on -2.8 with a standard
[4030]1035deviation $\sigma_\beta = 0.15$. {\changemark The
[4049]1036diffuse radio background spectral index has been measured, for example, by
1037\citep{platania.98} or \citep{rogers.08}.}
[3976]1038The synchrotron contribution to the sky temperature for each cell is then
1039obtained through the formula:
[4043]1040\begin{equation}
1041 T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta
1042\end{equation}
[3976]1043%%
[4049]1044\item A 2D $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
[3976]1045by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
[3977]1046the sky cubes. The source brightness in Jansky is converted to temperature taking the
[4043]1047pixel angular size into account ($ \sim 21 \mathrm{mK/mJy}$ at 1.4 GHz and $3' \times 3'$ pixels).
[3977]1048A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
[4049]1049map. We have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
1050contribution of the radiosources to the sky temperature is computed as:
[4043]1051\begin{equation}
[4049]1052 T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}}
[4043]1053\end{equation}
[3976]1054%%
1055\item The sky brightness temperature data cube is obtained through the sum of
1056the two contributions, Galactic synchrotron and resolved radio sources:
[4043]1057\begin{equation}
1058 T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu)
1059\end{equation}
[3976]1060\end{enumerate}
1061
[4049]1062 The 21 cm temperature fluctuations due to neutral hydrogen in LSS
1063$T_{lss}(\alpha, \delta, \nu)$ were computed using the
1064SimLSS\footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package, where
[4013]1065%
1066complex normal Gaussian fields were first generated in Fourier space.
1067The amplitude of each mode was then multiplied by the square root
1068of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
[4049]1069\citep{eisenhu.98}. We used the standard cosmological parameters,
[4030]1070 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.264$, $\Omega_b=0.045$,
1071$\Omega_\lambda=0.73$ and $w=-1$ \citep{komatsu.11}.
[4014]1072An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
[4013]1073in the linear regime,
[4049]1074in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$, and evolved
[4013]1075to redshift $z=0.6$.
1076The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
1077$\Delta z \simeq 0.23$ in the longitudinal direction.
1078The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
1079sky cube angular and frequency resolution defined above.
[4043]1080{\changemarkb
[4049]1081We did not take the curvature of redshift shells into account when
[4043]1082converting SimLSS euclidean coordinates to angles and frequency coordinates
[4044]1083of the sky cubes analyzed here. This approximate treatment causes distortions visible at large angles $\gtrsim 10^\circ$.
1084These angular scales correspond to small wave modes $k \lesssim 0.02 \mathrm{h \, Mpc^{-1}}$ and
[4043]1085 are excluded for results presented in this paper.
1086}
[4013]1087
[4043]1088The mass fluctuations have been converted into temperature using equation \ref{eq:tbar21z},
1089and a neutral hydrogen fraction \mbox{$0.008 \times (1+0.6)$}, leading to a mean temperature of
1090$0.13 \, \mathrm{mK}$.
1091The total sky brightness temperature is computed as the sum
[3976]1092of foregrounds and the LSS 21 cm emission:
[4043]1093\begin{equation}
1094 T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
1095T_{sky} = T_{gsm}+T_{lss}
1096\end{equation}
[3976]1097
1098Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
1099temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
[4049]1100It should be noted that the standard deviation depends on the map resolution, and the values given
1101in Table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
1102angular and 500 kHz frequency resolutions (see Table \ref{skycubechars}).
[3976]1103Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
[4049]1104with Haslam+NVSS map, smoothed with a 35 arcmin Gaussian beam.
[3976]1105Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
1106for Model-I/GSM and Model-II. There is good agreement between the two models, although
1107the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
1108
1109\begin{table}
[4045]1110\caption{Mean temperature and standard deviation for different sky cubes.}
[4043]1111\label{sigtsky}
[4011]1112\centering
[3976]1113\begin{tabular}{|c|c|c|}
1114\hline
1115 & mean (K) & std.dev (K) \\
1116\hline
1117Haslam & 2.17 & 0.6 \\
1118NVSS & 0.13 & 7.73 \\
1119Haslam+NVSS & 2.3 & 7.75 \\
1120(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
1121GSM & 2.1 & 0.8 \\
1122\hline
1123\end{tabular}
[4045]1124% \tablefoot{See table \ref{skycubechars} for sky cube resolution and size.}
[3976]1125\end{table}
1126
[4049]1127We computed the power spectrum for the 21cm-LSS sky temperature cube, as well
[4011]1128as for the radio foreground temperature cubes obtained from the two
[4049]1129models. We also computed the power spectrum on sky brightness temperature
1130cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) Gaussian beam.
1131The resulting computed power spectra are shown in figure \ref{pkgsmlss}.
1132The GSM model has more large-scale power compared to our simple Haslam+NVSS model,
1133while it lacks power at higher spatial frequencies. The mode mixing due to a
1134frequency-dependent response will thus be stronger in Model-II (Haslam+NVSS)
1135case. It can also be seen that the radio foreground's power spectrum is more than
1136$\sim 10^6$ times higher than the 21 cm signal from LSS. This corresponds
1137to the factor $\sim 10^3$ of the sky brightness temperature fluctuations (\mbox{$\sim$ K}),
[3976]1138compared to the mK LSS signal.
1139
[4049]1140{ \changemark In contrast to most similar studies, where it is assumed that bright sources
[4030]1141can be nearly perfectly subtracted, our aim was to compute also their
1142effect in the foreground subtraction process.
[4049]1143The GSM model lacks the angular resolution needed to correctly compute
1144the effect of bright compact sources for 21 cm LSS observations and
[4032]1145the mode mixing due to the frequency dependence of the instrumental response,
1146while Model-II provides a reasonable description of these compact sources. Our simulated
[4030]1147sky cubes have an angular resolution $3'\times3'$, well below the typical
1148$15'$ resolution of the instrument configuration considered here.
[4049]1149However, Model-II might lack spatial structures on large scales, above a degree,
[4030]1150compared to Model-I/GSM, and the frequency variations as a simple power law
1151might not be realistic enough. The differences for the two sky models can be seen
[4031]1152in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
[4049]1153a 25' beam has negligible effect on the GSM power spectrum, since it originally lacks
[4032]1154structures below 0.5 degree. By using
[4049]1155these two models, we explored some of the systematic uncertainties
[4030]1156related to foreground subtraction.}
1157
[3977]1158It should also be noted that in section 3, we presented the different instrument
[4013]1159configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
[3977]1160power spectrum is recovered unaffected in this case, while the noise power spectrum
1161increases at high k values (small scales). In practice, clean deconvolution is difficult to
1162implement for real data and the power spectra presented in this section are NOT corrected
[4049]1163for the instrumental response. The observed structures thus have a scale-dependent damping
1164according to the instrument response, while the instrument noise is flat (white noise or scale-independent).
[3977]1165
[3976]1166\begin{figure}
1167\centering
[3977]1168\vspace*{-10mm}
[3976]1169\mbox{
[3977]1170\hspace*{-20mm}
1171\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
[3976]1172}
[3977]1173\vspace*{-10mm}
[4032]1174\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
[3976]1175The Model-II (Haslam+NVSS),
[4049]1176has been smoothed with a 35 arcmin Gaussian beam. }
[3976]1177\label{compgsmhtemp}
1178\end{figure}
1179
1180\begin{figure*}
1181\centering
1182\mbox{
[4011]1183% \hspace*{-10mm}
[3977]1184\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
[3976]1185}
[4032]1186\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
[4049]1187The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) Gaussian beam.}
[3976]1188\label{compgsmmap}
1189\end{figure*}
1190
1191\begin{figure}
1192\centering
[4032]1193% \vspace*{-25mm}
[3976]1194\mbox{
[4032]1195\hspace*{-6mm}
1196\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
[3976]1197}
[4032]1198\vspace*{-5mm}
[4043]1199\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with \mbox{$\gHI\simeq1.3\%$} (red, orange)
[4032]1200with the radio foreground power spectrum.
[3976]1201The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1202model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
[4049]1203as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.
[4032]1204}
[3976]1205\label{pkgsmlss}
1206\end{figure}
1207
1208
1209
[3977]1210\subsection{ Instrument response and LSS signal extraction }
[4011]1211\label{recsec}
1212The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1213$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
[4031]1214${\cal R}(\uv,\lambda)$.
[4013]1215We have considered the simple case where the instrument response is constant throughout the survey area, or independent
[3977]1216of the sky direction.
[4049]1217For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$:
[3977]1218\begin{enumerate}
1219\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
[4049]1220$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(\uv, \lambda_k) \hspace{2mm} .$$
[4011]1221\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
[4049]1222$ {\cal R}(\uv,\lambda_k) \lesssim 1$
1223$$ {\cal T}_{sky}(\uv, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) \hspace{1mm} . $$
1224\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map
[3977]1225without instrumental (electronic/$\Tsys$) white noise:
[4031]1226$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda)
[3977]1227\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
[4049]1228\item Add white noise (Gaussian fluctuations) to the pixel map temperatures to obtain
[4011]1229the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
[4032]1230{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
1231dependent instrumental response has already been applied.}
[4049]1232We also considered that the system temperature, and thus the
1233additive white noise level, was independent of the frequency or wavelength.
[3977]1234\end{enumerate}
[4049]1235The LSS signal extraction performance obviously depends on the white noise level.
[3977]1236The results shown here correspond to the (a) instrument configuration, a packed array of
[4014]1237$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
[4011]1238to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
[4043]1239cell. \\[1mm]
[3949]1240
[4049]1241The different steps in the simple component separation procedure that has been applied are
[4043]1242briefly described here.
[3977]1243\begin{enumerate}
[4011]1244\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
[4031]1245beam effects through a convolution by a fiducial frequency independent beam ${\cal R}_f(\uv)$ This {\em correction}
[4049]1246corresponds to a smearing or degradation of the angular resolution
[4031]1247\begin{eqnarray*}
1248 {\cal T}_{mes}(u, v, \lambda_k) & \rightarrow & {\cal T}_{mes}^{bcor}(u, v, \lambda_k) \\
1249 {\cal T}_{mes}^{bcor}(u, v, \lambda_k) & = &
1250{\cal T}_{mes}(u, v, \lambda_k) \times \sqrt{ \frac{{\cal R}_f(\uv)}{{\cal R}(\uv,\lambda)} } \\
[4049]1251{\cal T}_{mes}^{bcor}(u, v, \lambda_k) & \rightarrow & \mathrm{2D-FFT} \rightarrow T_{mes}^{bcor}(\alpha,\delta,\lambda) \hspace{2mm} .
[4031]1252\end{eqnarray*}
1253{\changemark
1254The virtual target beam ${\cal R}_f(\uv)$ has a lower resolution than the worst real instrument beam,
[4032]1255i.e at the lowest observed frequency.
1256No correction has been applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
1257attempt to represent imperfect knowledge of the instrument response.
1258We recall that this is the normalized instrument response,
[4049]1259${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$
1260also has a numerical upper bound $\sim 100$. }
[4030]1261\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
[4049]1262 is fitted to the beam-corrected brightness temperature. The parameters were obtained
[4043]1263using a linear $\chi^2$ fit in the $\lgd ( T ) , \lgd (\nu)$ plane.
1264We show here the results for a pure power law (P1), as well as a modified power law (P2):
[3977]1265\begin{eqnarray*}
[4013]1266P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1267P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
[3977]1268\end{eqnarray*}
[4049]1269where $b$ is the power law index and $T_0 = 10^a$ the brightness temperature at the
[4030]1270reference frequency $\nu_0$.
1271
[4049]1272{\changemark Interferometers have a poor response at small $(\uv)$ corresponding to baselines
1273smaller than interferometer element size. The zero-spacing baseline, the $(\uv)=(0,0)$ mode, represents
1274the mean temperature for a given frequency plane and cannot be measured with interferometers.
1275We used a simple trick to make the power-law fitting procedure applicable,
1276by setting the mean value of the temperature for
[4031]1277each frequency plane according to a power law with an index close to the synchrotron index
[4049]1278($\beta\sim-2.8$). And we checked that the results are not too sensitive to the
[4031]1279arbitrarily fixed mean temperature power law parameters. }
[4030]1280
[3977]1281\item The difference between the beam-corrected sky temperature and the fitted power law
1282$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1283\end{enumerate}
1284
1285Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1286for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
[4011]128721 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
[4049]1288Gaussian frequency independent beam is shown, as well as
1289the extracted power spectrum, after beam {\em correction}
1290and foreground separation with second order polynomial fit (P2).
[3977]1291We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
[4049]1292or with the first-order polynomial fit (P1).
[3977]1293
[4011]1294Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
[4049]1295with the recovered 21 cm map, after subtracting the radio continuum component. It can be seen that structures
[4011]1296present in the original map have been correctly recovered, although the amplitude of the temperature
[4031]1297fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
[4049]1298{\changemark This is mostly due to the damping of the large-scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
[4031]1299due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
[4011]1300
[4049]1301We have shown that it should be possible to measure the red-shifted 21 cm emission fluctuations in the
1302presence of the strong radio continuum signal, provided that the latter has a smooth frequency dependence.
[4011]1303However, a rather precise knowledge of the instrument beam and the beam {\em correction}
[4049]1304or smearing procedure described here are key ingredients for recovering the 21 cm LSS power spectrum.
1305It is also important to note that, while it is enough to correct the beam to the lowest resolution instrument beam
[4011]1306($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
[4049]1307has to be applied ($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for Model-II to reduce
[4011]1308significantly the ripples from bright radio sources.
1309We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
[4049]1310with a frequency-dependent Gaussian beam shape. The mode mixing effect is greatly reduced for
[4011]1311such a smooth beam, compared to the more complex instrument response
[4032]1312${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
[3977]1313
1314\begin{figure*}
1315\centering
[4032]1316% \vspace*{-25mm}
[3977]1317\mbox{
[4032]1318% \hspace*{-20mm}
1319\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
[3977]1320}
[4032]1321% \vspace*{-10mm}
[4011]1322\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
[4043]1323continuum radio emissions at $z \sim 0.6$, \mbox{$\gHI\simeq1.3\%$}, for the instrument configuration (a), $11\times11$
[4011]1324packed array interferometer.
[4032]1325Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
1326corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
[4049]1327signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency-independent Gaussian beam. }
[3977]1328\label{extlsspk}
1329\end{figure*}
1330
1331
1332\begin{figure*}
1333\centering
1334\vspace*{-20mm}
1335\mbox{
[4011]1336\hspace*{-25mm}
1337\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1338}
1339\vspace*{-25mm}
1340\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
[4049]1341with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer. }
[4011]1342\label{extlssmap}
1343\end{figure*}
1344
1345\subsection{$P_{21}(k)$ measurement transfer function}
1346\label{tfpkdef}
1347The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1348 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
[4043]1349{\changemarkb
[4049]1350We recall that we have neglected the curvature of redshift or frequency shells
[4043]1351in this numerical study, which affect our result at large angles $\gtrsim 10^\circ$.
[4049]1352The results presented here and our conclusions are thus restricted to the wave-mode range
[4043]1353$k \gtrsim 0.02 \mathrm{h \, Mpc^{-1}}$.
1354}
[4049]1355We expect damping on small scales, or large $k$, due to the finite instrument size, but also on large scales, small $k$,
[4011]1356if total power measurements (auto-correlations) are not used in the case of interferometers.
1357The sky reconstruction and the component separation introduce additional filtering and distortions.
1358The real transverse plane transfer function might even be anisotropic.
1359
[4049]1360However, within the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
[4043]1361recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$
[4049]1362{\changemarkb , similar to the one defined by \cite{bowman.09}, equation (23):}
[4011]1363\begin{equation}
[4049]1364\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) \hspace{3mm} .
[4011]1365\end{equation}
1366
1367Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
[4049]1368separation performed here, around $z \sim 0.6$, for the instrumental setup (a),
1369a filled array of 121 $D_{dish}=5$ m dishes. {\changemark This transfer function has been obtained after averaging the reconstructed
[4031]1370$ P_{21}^{rec}(k)$ for several realizations (50) of the LSS temperature field.
1371The black curve shows the ratio $\TrF(k)=P_{21}^{beam}(k)/P_{21}(k)$ of the computed to the original
1372power spectrum, if the original LSS temperature cube is smoothed by the frequency independent
1373target beam FWHM=30'. This black curve shows the damping effect due to the finite instrument size at
1374small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
[4049]1375The transfer function for the GSM foreground model (Model-I) and the $11\times11$ filled array
1376interferometer (setup (a)) is represented, as well as the transfer function for a D=55 meter
[4031]1377diameter dish. The transfer function for the Model-II/Haslam+NVSS and the setup (a) filled interferometer
[4049]1378array is also shown. The recovered power spectrum also suffers significant damping on large
1379scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}$, mostly due to the filtering of radial or
[4031]1380longitudinal Fourier modes along the frequency or redshift direction ($k_\parallel$)
[4049]1381by the component separation algorithm. We were able to remove the ripples on the reconstructed
[4043]1382power spectrum due to bright sources in the Model-II by applying a stronger beam correction, $\sim$36'
[4031]1383target beam resolution, compared to $\sim$30' for the GSM model. This explains the lower transfer function
[4049]1384obtained for Model-II on small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}$). }
[4031]1385
1386 It should be stressed that the simulations presented in this section were
[4049]1387focused on the study of the radio foreground effects and have been carried
1388intentionally with a very low instrumental noise level of
1389$0.25$ mK per pixel, corresponding to several years of continuous
1390observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1391%
[4013]1392This transfer function is well represented by the analytical form:
[4011]1393\begin{equation}
[4049]1394\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right) \hspace{1mm} .
[4011]1395\label{eq:tfanalytique}
1396\end{equation}
1397
[4049]1398We simulated observations and radio foreground subtraction using
[4011]1399the procedure described here for different redshifts and instrument configurations, in particular
1400for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1401increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
[4049]1402becomes difficult for higher redshifts, in particular for $z \gtrsim 2$.
[4011]1403
[4032]1404We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
[4011]1405for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
[4049]1406for redshift $z=2, 2.5$. The value of the parameters are grouped in Table \ref{tab:paramtfk},
1407and the corresponding transfer functions are shown in Fig. \ref{tfpkz0525}.
[4011]1408
1409\begin{table}[hbt]
[4045]1410\caption{Transfer function parameters.}
[4043]1411\label{tab:paramtfk}
[4013]1412\begin{center}
[4011]1413\begin{tabular}{|c|ccccc|}
1414\hline
1415\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1416\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1417\hline
[4044]1418$k_A \, (\mathrm{Mpc^{-1}})$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1419$k_B \, (\mathrm{Mpc^{-1}})$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1420$k_C \, (\mathrm{Mpc^{-1}})$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
[4011]1421\hline
1422\end{tabular}
[4013]1423\end{center}
[4049]1424\tablefoot{ The transfer function parameters, $(k_A,k_B,k_C)$ (Eq. \ref{eq:tfanalytique})
[4045]1425at different redshifts and for instrumental setup (e), $20\times20$ packed array interferometer,
1426are given in $\mathrm{Mpc^{-1}}$ unit, and not in $\mathrm{h \, Mpc^{-1}}$. }
[4011]1427\end{table}
1428
[4031]1429\begin{figure}
[4011]1430\centering
[4032]1431% \vspace*{-25mm}
[4011]1432\mbox{
[4032]1433% \hspace*{-10mm}
1434\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
[3977]1435}
[4032]1436% \vspace*{-30mm}
[4049]1437\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial
143821 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$
1439for the instrument configuration (a), $11\times11$ packed array interferometer.
1440The effect of a frequency-independent Gaussian beam of $\sim 30'$ is shown in black.
[4031]1441The transfer function $\TrF(k)$ for the instrument configuration (a), $11\times11$ packed array interferometer,
1442for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
1443for a D=55 meter diameter dish for the GSM model is also shown as the dashed red curve. }
[3977]1444\label{extlssratio}
[4031]1445\end{figure}
[3977]1446
[4011]1447
1448\begin{figure}
1449\centering
[4032]1450% \vspace*{-25mm}
[4011]1451\mbox{
[4032]1452% \hspace*{-10mm}
1453\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
[4011]1454}
[4032]1455%\vspace*{-30mm}
[4013]1456\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
[4011]1457$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1458\label{tfpkz0525}
1459\end{figure}
1460
1461
1462
1463%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1464%% \section{ BAO scale determination and constrain on dark energy parameters}
[3976]1465% {\color{red} \large \it CY ( + JR ) } \\[1mm]
[4011]1466%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1467%% and determine BAO scale as a function of redshifts.
1468%% Method:
1469%% \begin{itemize}
1470%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1471%% \item Compute / guess the instrument noise level for the same redshit values
1472%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1473%% \item Compute the DETF ellipse with different priors
1474%% \end{itemize}
1475
1476%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1477%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1478%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1479
1480\section{Sensitivity to cosmological parameters}
1481\label{cosmosec}
1482
1483The impact of the various telescope configurations on the sensitivity for 21 cm
[4049]1484power spectrum measurement has been discussed in Sec. \ref{pkmessens}.
1485Figure \ref{figpnoisea2g} shows the noise power spectra and allows us to visually rank
1486the configurations in terms of instrument noise contribution to P(k) measurement.
[4011]1487The differences in $P_{noise}$ will translate into differing precisions
1488in the reconstruction of the BAO peak positions and in
[4049]1489the estimation of cosmological parameters. In addition, we have seen (Sect. \ref{recsec})
1490that subtraction of continuum radio emissions, Galactic synchrotron, and radio sources
1491also has an effect on the measured 21 cm power spectrum.
[4011]1492In this paragraph, we present our method and the results for the precisions on the estimation
[4049]1493of dark energy parameters through a radio survey of the redshifted 21 cm emission of LSS,
[4011]1494with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1495dishes, arranged into a filled $20 \times 20$ array.
1496
1497
1498\subsection{BAO peak precision}
1499
[4049]1500To estimate the precision with which BAO peak positions can be
[4014]1501measured, we used a method similar to the one established in
1502\citep{blake.03} and \citep{glazebrook.05}.
[4049]1503%
[4011]1504To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
[4049]1505 slices of the Universe with a quarter-sky coverage and a redshift depth,
[4011]1506 $\Delta z=0.5$ for $0.25<z<2.75$.
1507The peaks in the generated spectra were then determined by a
1508fitting procedure and the reconstructed peak positions compared with the
1509generated peak positions.
1510The reconstructed power spectrum used in the simulation is
[4049]1511the sum of the expected \HI signal term, corresponding to Eqs. \ref{eq:pk21z} and \ref{eq:tbar21z},
1512damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , Table \ref{tab:paramtfk})
1513and a white noise component $P_{noise}$ calculated according to the Eq. \ref{eq:pnoiseNbeam},
[4011]1514established in section \ref{instrumnoise} with $N=400$:
1515\begin{equation}
[4013]1516 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
[4011]1517\end{equation}
[4013]1518where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
[4049]1519The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula
[4011]1520%\begin{equation}
1521\begin{eqnarray}
1522\label{eq:signal}
1523\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
15241\; +
1525\hspace*{40mm}
1526\nonumber
1527\\ \hspace*{20mm}
1528A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1529\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1530\frac{\kpar^2}{\kopar^2}}\;\right)
1531\end{eqnarray}
1532%\end{equation}
[4049]1533where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$, and $\tau$
[4011]1534are adjusted to the formula presented in
[4049]1535\citep{eisenhu.98}, and $P_{ref}(\kperp,\kpar)$ is the
1536envelope curve of the HI power spectrum without baryonic oscillations.
[4011]1537The parameters $\koperp$ and $\kopar$
1538are the inverses of the oscillation periods in k-space.
[4049]1539The following values were used for these
[4011]1540parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
[4049]1541$\alpha=1.4$, and $\koperp=\kopar=0.060 \, \hMpcm$.
[4011]1542
[4049]1543Each simulation is performed for a given set of parameters:
1544the system temperature $\Tsys$, an observation time
1545$t_{obs}$, an average redshift, and a redshift depth $\Delta z=0.5$.
1546Then, each simulated power spectrum is fitted with a 2D
1547normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$, which is
[4011]1548the sum of the signal power spectrum damped by the transfer function and the
1549noise power spectrum multiplied by a
1550linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
[4049]1551corresponds to the approximate position of the linear/nonlinear transition.
[4011]1552This limit is established on the basis of the criterion discussed in
1553\citep{blake.03}.
[4049]1554In practice, we used $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$,
1555and $0.23 \hMpcm$ for the redshifts $z=0.5,\,\, 1.0$, and $1.5$, respectively.
[4011]1556
[4049]1557Figure \ref{fig:fitOscill} shows the result of the fit for one of these simulations.
1558Figure \ref{fig:McV2} histogram show the recovered values of $\koperp$ and $\kopar$
[4011]1559for 100 simulations.
1560The widths of the two distributions give an estimate
[4013]1561of the statistical errors.
[4011]1562
1563In addition, in the fitting procedure, both the parameters modeling the
[4049]1564signal $A$, $\tau$, $\alpha$, and the parameter correcting the noise power
1565spectrum $(a_0,a_1)$ are floated to take the possible
[4011]1566ignorance of the signal shape and the uncertainties in the
[4049]1567computation of the noise power spectrum into account.
1568In this way, we can correct possible imperfections, and the
[4011]1569systematic uncertainties are directly propagated to statistical errors
1570on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1571fitted noise contribution to each simulation, the baryonic oscillations
[4049]1572are clearly observed, for instance, in Fig.~\ref{fig:AverPk}.
[4011]1573
1574
1575\begin{figure}[htbp]
1576\begin{center}
1577\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1578\caption{1D projection of the power spectrum for one simulation.
1579The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1580corresponding to the power spectrum without baryonic oscillations.
[4069]1581The dots represents one simulation for a "packed" array of dishes
[4011]1582with a system temperature,$T_{sys}=50$K, an observation time,
1583$T_{obs}=$ 1 year,
1584a solid angle of $1\pi sr$,
1585an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1586The solid line is the result of the fit to the data.}
1587\label{fig:fitOscill}
1588\end{center}
1589\end{figure}
1590
1591\begin{figure}[htbp]
1592\begin{center}
1593%\includegraphics[width=\textwidth]{McV2.eps}
1594\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1595\caption{ Distributions of the reconstructed
[4049]1596wavelength $\koperp$ and $\kopar$ perpendicular and parallel,
1597respectively, to the line of sight
[4011]1598for simulations as in Fig. \ref{fig:fitOscill}.
1599The fit by a Gaussian of the distribution (solid line) gives the
[4049]1600width of the distribution, which represents the statistical error
[4011]1601expected on these parameters.}
1602\label{fig:McV2}
1603\end{center}
1604\end{figure}
1605
1606
1607\begin{figure}[htbp]
1608\begin{center}
1609\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1610\caption{1D projection of the power spectrum averaged over 100 simulations
[4069]1611of the packed dish array.
[4011]1612The simulations are performed for the following conditions: a system
[4049]1613temperature $T_{sys}=50$K, an observation time $T_{obs}=1$ year,
[4011]1614a solid angle of $1 \pi sr$,
[4049]1615an average redshift $z=1.5$, and a redshift depth $\Delta z=0.5$.
[4011]1616The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
[4049]1617corresponding to the power spectrum without baryonic oscillations,
[4011]1618and the background estimated by a fit is subtracted. The errors are
[4049]1619the RMS of the 100 distributions for each $k$ bin, and the dots are
[4011]1620the mean of the distribution for each $k$ bin. }
1621\label{fig:AverPk}
1622\end{center}
1623\end{figure}
1624
1625
1626
1627
1628%\subsection{Results}
1629
1630In our comparison of the various configurations, we have considered
1631the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
[3977]1632\begin{itemize}
[4011]1633\item {\it Simulation without electronics noise}: the statistical errors on the power
1634spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
[4049]1635the $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1636The number of modes $N_{\delta k}$ in the wave number interval $\delta k$ can be written as
[4011]1637\begin{equation}
1638V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
[4049]1639N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k \hspace{3mm} .
[4011]1640\end{equation}
1641\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
[4049]1642\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for an $N=400$ dish interferometer
[4045]1643with $\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
[4049]1644\item {\it Noise with transfer function}: we consider the interferometer response and radio foreground
[4011]1645subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
[4043]1646well as the instrument noise $P_{noise}$.
[3977]1647\end{itemize}
[3949]1648
[4011]1649\begin{table}
[4045]1650\caption{Noise spectral power.}
[4043]1651\label{tab:pnoiselevel}
[4011]1652\begin{tabular}{|l|ccccc|}
1653\hline
1654z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1655\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1656\hline
1657$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1658\hline
1659\end{tabular}
1660\end{table}
[3977]1661
[4011]1662Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
[4049]1663decrease as a function of redshift for simulations without electronic noise because the volume
1664of the universe probed is larger. Once we apply the electronics noise, each slice in redshift gives
1665comparable results. Finally, after applying the full reconstruction of the interferometer, the best
1666accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of
1667observation. We can optimize the survey by using a different observation time for each
1668slice in redshift. Finally, for a 3-year survey we can split in five observation periods
1669with durations that are three months, three months, six months, one year and one year
1670for redshift 0.5, 1.0, 1.5, 2.0, and 2.5, respectively (Table \ref{tab:ErrorOnK}, 4$^{\rm th}$ row).
[3949]1671
[4011]1672\begin{table*}[ht]
[4045]1673\caption{Sensitivity on $\mathbf{k}_{BAO}$ measurement.}
[4043]1674\label{tab:ErrorOnK}
[4011]1675\begin{center}
1676\begin{tabular}{lc|c c c c c }
1677\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1678\hline\hline
[4049]1679\bf No noise, pure cosmic variance & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
[4011]1680 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1681 \hline
[4049]1682 \bf Noise without transfer function (a) & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
[4045]1683 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
[4011]1684 \hline
[4049]1685 \bf Noise with transfer function (a) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
[4045]1686 (3-months/redshift bin)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
[4011]1687 \hline
[4049]1688 \bf Optimized survey (b) & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
[4011]1689 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1690 \hline
1691\end{tabular}
1692\end{center}
[4045]1693\tablefoot{Relative errors on $\koperp$ and $\kopar$ measurements are given
1694as a function of the redshift $z$ for various simulation configurations: \\
[4049]1695\tablefoottext{a}{simulations with electronics noise, without ($2^{\rm nd}$ row) and with ($3^{\rm rd}$ row) the transfer function; } \\
1696\tablefoottext{b}{optimized survey, simulations with electronic noise and the transfer function}
[4045]1697}
[4011]1698\end{table*}%
[3949]1699
1700
1701
[4011]1702\subsection{Expected sensitivity on $w_0$ and $w_a$}
[3949]1703
[4011]1704\begin{figure}
1705\begin{center}
1706\includegraphics[width=8.5cm]{Figs/dist.pdf}
1707\caption{
1708The two ``Hubble diagrams'' for BAO experiments.
1709The four falling curves give the angular size of the acoustic horizon
1710(left scale) and the four
1711rising curves give the redshift interval of the acoustic horizon (right scale).
1712The solid lines are for
1713$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1714the dashed for
1715$(1,0,-1)$
1716the dotted for
1717$(0.27,0,-1)$, and
1718the dash-dotted for
1719$(0.27,0.73,-0.9)$,
1720The error bars on the solid curve correspond to the four-month run
1721(packed array)
1722of Table \ref{tab:ErrorOnK}.
1723 }
1724\label{fig:hubble}
1725\end{center}
1726\end{figure}
[3949]1727
1728
[4011]1729The observations give the \HI power spectrum in
1730angle-angle-redshift space rather than in real space.
1731The inverse of the peak positions in the observed power spectrum therefore
1732gives the angular and redshift intervals corresponding to the
1733sonic horizon.
1734The peaks in the angular spectrum are proportional to
[4049]1735$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$, where
[4011]1736$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
[4049]1737$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ the Hubble distance
[4011]1738(see Eq. \ref{eq:expHz}):
1739\begin{equation}
1740d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1741d_T = \int_0^z d_H(z) dz
1742\label{eq:dTdH}
1743\end{equation}
[4049]1744The quantities $d_T$, $d_H$, and $a_s$ all depend on
[4011]1745the cosmological parameters.
1746Figure \ref{fig:hubble} gives the angular and redshift intervals
1747as a function of redshift for four cosmological models.
1748The error bars on the lines for
1749$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1750correspond to the expected errors
1751on the peak positions
1752taken from Table \ref{tab:ErrorOnK}
1753for the four-month runs with the packed array.
1754We see that with these uncertainties, the data would be able to
1755measure $w$ at better than the 10\% level.
[3949]1756
1757
[4011]1758To estimate the sensitivity
[4049]1759to parameters describing the dark energy equation of
[4011]1760state, we follow the procedure explained in
1761\citep{blake.03}. We can introduce the equation of
[4049]1762state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$, by
[4011]1763replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
[4049]1764(Eq. \ref{eq:dTdH}) by
[4011]1765\begin{equation}
[4013]1766\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
[4011]1767\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1768\end{equation}
1769where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1770respect to the critical density.
1771Using the relative errors on $\koperp$ and $\kopar$ given in
[4049]1772Table \ref{tab:ErrorOnK}, we can compute the Fisher matrix for
[4011]1773five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1774Then, the combination of this BAO Fisher
[4049]1775matrix with the Fisher matrix obtained for Planck mission allows us to
[4011]1776compute the errors on dark energy parameters.
[4049]1777{\changemark We used the Planck Fisher matrix, computed for the
[4032]1778Euclid proposal \citep{laureijs.09}, for the 8 parameters:
[4011]1779$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1780$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
[4032]1781$\tau$ (optical depth to the last-scatter surface),
1782assuming a flat universe. }
[3949]1783
[4011]1784For an optimized project over a redshift range, $0.25<z<2.75$, with a total
[4049]1785observation time of three years, the packed 400-dish interferometer array has a
[4011]1786precision of 12\% on $w_0$ and 48\% on $w_a$.
[4049]1787The figure of merit (FOM), the inverse of the area in the 95\% confidence level
1788contours, is 38.
[4032]1789Finally, Fig.~\ref{fig:Compw0wa}
[4011]1790shows a comparison of different BAO projects, with a set of priors on
1791$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
[4049]1792these parameters in early 2010s. {\changemark The confidence contour
1793level in the plane $(w_0,w_a)$ were obtained by marginalizing
[4032]1794over all the other parameters.} This BAO project based on \HI intensity
[4011]1795mapping is clearly competitive with the current generation of optical
[4049]1796surveys such as SDSS-III \citep{eisenstein.11}.
[4011]1797
1798
1799\begin{figure}[htbp]
1800\begin{center}
1801\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1802\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
[4032]1803parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
1804for two BAO projects: SDSS-III (LRG) project
[4011]1805(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1806\label{fig:Compw0wa}
1807\end{center}
1808\end{figure}
1809
1810\section{Conclusions}
[4069]1811The 3D mapping of redshifted 21 cm emission through {\it intensity mapping} is a novel and complementary
[4049]1812approach to optical surveys for studying the statistical properties of the LSS in the universe
1813up to redshifts $z \lesssim 3$. A radio instrument with a large instantaneous field of view
[4011]1814(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1815to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
[4049]1816a nearly packed interferometer array with a few hundred receiver elements spread over an hectare or a hundred beam
[4014]1817focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
[4049]1818the 21 cm power spectrum. A method of computing the instrument response for interferometers
1819was developed, and we computed the noise power spectrum for various telescope configurations.
1820The Galactic synchrotron and radio sources are a thousand times brighter than the redshifted 21 cm signal,
1821making the measurement of the latter signal a major scientific and technical challenge.
1822We also studied the performance of a simple foreground subtraction method through realistic models of the sky
[4011]1823emissions in the GHz domain and simulation of interferometric observations.
[4049]1824We were able to show that the cosmological 21 cm signal from the LSS should be observable, but
1825requires a very good knowledge of the instrument response. Our method allowed us to define and
[4011]1826compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1827power spectrum.
[4049]1828Finally, we used the computed noise power spectrum and $P(k)$
[4011]1829measurement response function to estimate
[4049]1830the precision on the determination of dark energy parameters, for a 21 cm BAO survey. This radio survey
[4013]1831could be carried using the current technology and would be competitive with the ongoing or planned
[4011]1832optical surveys for dark energy, with a fraction of their cost.
1833
1834% \begin{acknowledgements}
1835% \end{acknowledgements}
1836
[3949]1837\bibliographystyle{aa}
1838
1839\begin{thebibliography}{}
1840
1841%%%
[4043]1842%%%% LSST Science book
[4049]1843\bibitem[Abell et al. 2009]{lsst.science}
[4050]1844Abell, P.A. et al. 2009, LSST Science book, arXiv:0912.0201
[4043]1845
[4014]1846%% reference SKA - BAO / DE en radio avec les sources
[4049]1847\bibitem[Abdalla \& Rawlings 2005]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
[4014]1848
[4030]1849% reference DETF - DE eq.state parameter figure of merit
[4050]1850\bibitem[Albrecht et al. 2006]{DETF} Albrecht, A., Bernstein, G., Cahn, R. et al. 2006,
1851(Dark Energy Task Force) arXiv:astro-ph/0609591
[4014]1852
[4030]1853% Papier sensibilite/reconstruction CRT (cylindres) ansari et al 2008
[4049]1854\bibitem[Ansari et al. 2008]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1855 V. Ruhlmann-Kleider, \& C. Y\`eche, 2008 , arXiv:0807.3614
[3949]1856
[4014]1857%% Temperature HI 21 cm (Valeur pour la reionisation)
[4049]1858\bibitem[Barkana \& Loeb 2007]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
[4011]1859
[4014]1860%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
[4049]1861\bibitem[Blake \& Glazebrook 2003]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1862\bibitem[Glazebrook \& Blake 2005]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
[4011]1863
[4049]1864% WiggleZ BAO observation ( arXiv/1105.2862 )
[4050]1865\bibitem[Blake et al. 2011]{blake.11} Blake, Davis, T., Poole, G.B. et al. 2011, \mnras, 415, 2892
[4013]1866
[4011]1867% Galactic astronomy, emission HI d'une galaxie
[4050]1868\bibitem[Binney \& Merrifield 1998]{binney.98} Binney J. \& Merrifield M. 1998, Galactic Astronomy (Princeton University Press)
[4030]1869% 21cm reionisation P(k) estimation and sensitivities
[4050]1870\bibitem[Bowman et al. 2006]{bowman.06} Bowman, J.D., Morales, M.F., Hewitt, J.N. 2006, \apj, 638, 20
[3949]1871% MWA description
[4050]1872\bibitem[Bowman et al. 2007]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al. 2007, \aj, 133, 1505
[3949]1873
[4011]1874%% Soustraction avant plans ds MWA
[4050]1875\bibitem[Bowman et al. (2009)]{bowman.09} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183
[4011]1876
[4049]1877%%% SKA-Science Elsevier, December 2004 http://www.skatelescope.org/pages/page\_sciencegen.htm
1878\bibitem[Carilli et al. 2004]{ska.science}
[4050]1879Science with the Square Kilometre Array, eds: C. Carilli, S. Rawlings, 2004, New Astronomy Reviews, 48
[4043]1880
[3949]1881% Intensity mapping/HSHS
[4049]1882\bibitem[Chang et al. 2008]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P., 2008, \prl, 100, 091303
[3949]1883
[4031]1884% Mesure 21 cm avec le GBT (papier Nature )
[4050]1885\bibitem[Chang et al. 2010]{chang.10} Chang T-C, Pen U-L, Bandura K., Peterson J.B., 2010, \nat, 466, 463
[4031]1886
[3949]1887% 2dFRS BAO observation
[4050]1888\bibitem[Cole et al. 2005]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. et al. 2005, \mnras, 362, 505
[3949]1889
[3976]1890% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
[4049]1891\bibitem[Condon et al. 1998]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
[3976]1892Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1893
[4030]1894% Effet des radio-sources sur le signal 21 cm reionisation
[4050]1895\bibitem[Di Matteo et al. 2002]{matteo.02} Di Matteo, T., Perna R., Abel T., Rees M.J. 2002, \apj, 564, 576
[3949]1896
[4030]1897% Parametrisation P(k) - (astro-ph/9709112)
[4050]1898\bibitem[Eisenstein \& Hu 1998]{eisenhu.98} Eisenstein D. \& Hu W. 1998, \apj, 496, 605
[4030]1899
[3976]1900% SDSS first BAO observation
[4050]1901\bibitem[Eisenstein et al. 2005]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. et al. 2005, \apj, 633, 560
[3949]1902
[4011]1903% SDSS-III description
[4050]1904\bibitem[Eisenstein et al. 2011]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. et al. 2011, arXiv:1101.1529
1905% { \tt http://www.sdss3.org/ }
[4011]1906
[4043]1907% Papier de Field sur la profondeur optique HI en 1959
[4049]1908\bibitem[Field 1959]{field.59} Field G.B., 1959, \apj, 129, 155
[3949]1909% 21 cm emission for mapping matter distribution
[4050]1910\bibitem[Furlanetto et al. 2006]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181
[3949]1911
[4031]1912% Mesure 21 cm a 610 MHz par GMRT
[4050]1913\bibitem[Ghosh et al. 2011]{ghosh.11} Ghosh A., Bharadwaj S., Ali Sk. S., Chengalur J. N., 2011, \mnras, 411, 2426
[4031]1914
1915
[3976]1916% Haslam 400 MHz synchrotron map
[4049]1917\bibitem[Haslam et al. 1982]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1918Astron. \& Astrophys. Supp. Vol 47 %% {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
[3976]1919
[3949]1920
[4011]1921% Distribution des radio sources
[4049]1922\bibitem[Jackson 2004]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
[4011]1923
[4030]1924% WMAP 7 years cosmological parameters
[4050]1925\bibitem[Komatsu et al. 2011]{komatsu.11} E. Komatsu, K. M. Smith, J. Dunkley et al. 2011, \apjs, 192, 18
[4049]1926% \mbox{\tt http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm\_sz\_lens\_wmap7.cfm}
[4030]1927
[3949]1928% HI mass in galaxies
[4050]1929\bibitem[Lah et al. 2009]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras, 399, 1447
[4014]1930% ( astro-ph/0907.1416)
[3949]1931
[4013]1932% Livre Astrophysical Formulae de Lang
[4050]1933\bibitem[Lang 1999]{astroformul} Lang, K.R. 1999, Astrophysical Formulae (Springer, 3rd Edition)
[4013]1934
[4014]1935% WMAP CMB 7 years power spectrum 2011
1936% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
[4050]1937\bibitem[Larson et al. 2011]{larson.11} Larson, D. et al. 2011, (WMAP) \apjs, 192, 16
[4014]1938
[4030]1939%% Description MWA
[4050]1940\bibitem[Lonsdale et al. 2009]{lonsdale.09} Lonsdale C.J., Cappallo R.J., Morales M.F. et al. 2009,
1941IEEE Proceeding, 97, 1497 (arXiv:0903.1828)
[4011]1942
[4032]1943% Planck Fischer matrix, computed for EUCLID
[4049]1944\bibitem[Laureijs 2009]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
[4032]1945
[4014]1946% Temperature du 21 cm
[4050]1947\bibitem[Madau et al. 1997]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj, 475, 429
[4014]1948
[4011]1949% Foret Ly alpha - 1
[4050]1950\bibitem[McDonald et al. 2006]{baolya} McDonald P., Seljak, U. and Burles, S. et al. 2006, \apjs, 163, 80
[4011]1951
1952% Foret Ly alpha - 2 , BAO from Ly-a
[4049]1953\bibitem[McDonald \& Eisenstein 2007]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
[4011]1954
[3949]1955% Boomerang 2000, Acoustic pics
[4050]1956\bibitem[Mauskopf et al. 2000]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536, 59
[3949]1957
[4030]1958%% PNoise and cosmological parameters with reionization
[4049]1959\bibitem[McQuinn et al. 2006]{mcquinn.06} McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S.R.
[4050]19602006, \apj, 653, 815
[4030]1961
1962% Papier sur la mesure de sensibilite P(k)_reionisation
[4050]1963\bibitem[Morales \& Hewitt 2004]{morales.04} Morales M. \& Hewitt J., 2004, \apj, 615, 7
[4030]1964
[4011]1965% Papier sur le traitement des observations radio / mode mixing
[4050]1966\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767
[3976]1967
[4030]1968%% Foreground removal using smooth frequency dependence
[4049]1969\bibitem[Oh \& Mack 2003]{oh.03} Oh S.P. \& Mack K.J., 2003, \mnras, 346, 871-877
[4030]1970
[3976]1971% Global Sky Model Paper
[4050]1972\bibitem[Oliveira-Costa et al. 2008]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. et al. 2008,
1973\mnras, 388, 247
[3976]1974
[4049]1975%% Description+ resultats PAPER - arXiv:0904.2334
[4050]1976\bibitem[Parsons et al. 2010]{parsons.10} Parsons A.R.,Backer D.C.,Bradley R.F. et al. 2010, \aj, 139, 1468
[4030]1977
[4043]1978% Livre Cosmo de Peebles
[4050]1979\bibitem[Peebles 1993]{cosmo.peebles} Peebles, P.J.E., 1993, Principles of Physical Cosmology,
1980(Princeton University Press)
[4030]1981
[4014]1982% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
[4049]1983\bibitem[Peterson et al. 2006]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
[3949]1984
[4043]1985% Synchrotron index =-2.8 in the freq range 1.4-7.5 GHz
[4050]1986\bibitem[Platania et al. 1998]{platania.98} Platania P., Bensadoun M., Bersanelli M. et al. 1998, \apj, 505, 473
[4043]1987
[3949]1988% SDSS BAO 2007
[4050]1989\bibitem[Percival et al. 2007]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. et al. 2007, \apj, 657, 645
[3949]1990
[4011]1991% SDSS BAO 2010 - arXiv:0907.1660
[4050]1992\bibitem[Percival et al. 2010]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. et al. 2010, \mnras, 401, 2148
[4011]1993
[4043]1994% Livre Cosmo de Jim Rich
[4050]1995\bibitem[Rich 2001]{cosmo.rich} James Rich, 2001, Fundamentals of Cosmology (Springer)
[4043]1996
[4030]1997% Radio spectral index between 100-200 MHz
[4050]1998\bibitem[Rogers \& Bowman 2008]{rogers.08} Rogers, A.E.E. \& Bowman, J. D. 2008, \aj 136, 641
[4030]1999
[3949]2000%% LOFAR description
[4050]2001\bibitem[Rottering et al. 2006]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. et al. 2006, arXiv:astro-ph/0610596
[3949]2002%%%%
2003
[4011]2004%% SDSS-3
[4049]2005% \bibitem[SDSS-III 2008]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
[4011]2006
[4030]2007% Reionisation: Can the reionization epoch be detected as a global signature in the cosmic background?
[4050]2008\bibitem[Shaver et al. 1999]{shaver.99} Shaver P.A., Windhorst R. A., Madau P., de Bruyn A.G. \aap, 345, 380
[4030]2009
[3949]2010% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
2011
[4011]2012% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
[4050]2013\bibitem[Seo et al 2010]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al. 2010, \apj, 721, 164
[4011]2014
[4030]2015% Mesure P(k) par SDSS
[4050]2016\bibitem[Tegmark et al. 2004]{tegmark.04} Tegmark M., Blanton M.R, Strauss M.A. et al. 2004, \apj, 606, 702
[4030]2017
[4050]2018% FFT telescope % arXiv:0802.1710
2019\bibitem[Tegmark \& Zaldarriaga 2009]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, 083530
[3949]2020
[4011]2021% Thomson-Morane livre interferometry
[4050]2022\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, 2001, G.W, Interferometry and
2023Synthesis in Radio Astronomy (John Wiley \& sons, 2nd Edition)
[4011]2024
[3949]2025% Lyman-alpha, HI fraction
[4049]2026\bibitem[Wolf et al. 2005]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
[3949]2027
[4050]2028% BAO à 21 cm et reionisation % http://fr.arxiv.org/abs/0709.2955,
2029\bibitem[Wyithe et al. 2008]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195
[3949]2030
[4043]2031%% Papier fluctuations 21 cm par Zaldarriaga et al
[4050]2032\bibitem[Zaldarriaga et al. 2004]{zaldarriaga.04} Zaldarriaga, M., Furlanetto, S.R., Hernquist, L., 2004, \apj, 608, 622
[4043]2033
[3949]2034%% Today HI cosmological density
[4049]2035\bibitem[Zwaan et al. 2005]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
[3949]2036
2037\end{thebibliography}
2038
2039\end{document}
2040
2041%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2042% Examples for figures using graphicx
2043% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
2044% is available on a lot of LaTeX public servers or ctan mirrors.
2045% The file is : epslatex.pdf
2046%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2047
2048
2049\end{document}
Note: See TracBrowser for help on using the repository browser.