Ignore:
Timestamp:
Dec 16, 2009, 12:14:47 PM (15 years ago)
Author:
garnier
Message:

CVS update

Location:
trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex
Files:
20 added
4 edited

Legend:

Unmodified
Added
Removed
  • trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/hadrons.tex

    r1211 r1222  
    785785
    786786
     787\subsection{ICRU 73-based energy loss model}
     788The ICRU 73 \cite{hlei.ICRU73} report contains stopping power tables
     789for ions with atomic numbers 3--18 and 26, covering a range of different
     790elemental and compound target materials. The stopping powers derive from
     791calculations with the PASS code \cite{hlei.sigm02}, which implements the
     792binary stopping theory described in \cite{hlei.sigm02,hlei.sigm00}.  Tables
     793in ICRU 73 extend over an energy range up to 1 GeV/nucleon. All stopping
     794powers were incorporated into Geant4 and are available through a
     795parameterisation model ({\tt G4IonParametrisedLossModel}). For a few
     796materials revised stopping powers were included (water, water vapor, nylon type
     7976 and 6/6 from P. Sigmund et al \cite{hlei.sigm09a} and copper from P. Sigmund
     798\cite{hlei.sigm09b}), which replace the corresponding tables of the original
     799ICRU 73 report.
     800
     801To account for secondary electron production above $T_{c}$, the continuous
     802energy loss per unit path length is calculated according to
     803\begin{equation}
     804\label{hlei.rstp}
     805\frac{dE}{dx}\bigg|_{T<T_C} = \bigg(\frac{dE}{dx}\bigg)_{ICRU73} -
     806\bigg(\frac{dE}{dx}\bigg)_{\delta}
     807\end{equation}
     808where $(dE/dx)_{ICRU73}$ refers to stopping powers obtained by interpolating
     809ICRU 73 tables and $(dE/dx)_{\delta}$ is the mean energy transferred to
     810$\delta$-electrons per path length given by
     811\begin{equation}
     812\bigg(\frac{dE}{dx}\bigg)_{\delta} = \sum_{i} n_{at,i} \int_{T_c}^{T_{max}}
     813\frac{d\sigma_i(T)}{dT} T dT
     814\label{}
     815\end{equation}
     816where the index $i$ runs over all elements composing the material, $n_{at,i}$
     817is the number of atoms of the element $i$ per volume, $T_{max}$ is the maximum
     818energy transferable to an electron according to formula (\ref{hlei.a1}) and
     819$d\sigma_i/dT$ specifies the differential cross section per atom for producing
     820an $\delta$-electron following equation (\ref{hlei.bbb}).
     821
     822For compound targets not considered in the ICRU 73 report, the first term on
     823the rightern side in equation (\ref{hlei.rstp}) is computed by applying Bragg's
     824additivity rule \cite{hlei.ICRU49} if tables for all elemental components are
     825available in ICRU 73.
     826
     827
     828
    787829\subsection{Status of this document}
    788830
     
    79383519.01.2002 Minor corrections (mma) \\
    79483613.05.2002 Minor corrections (V.Ivanchenko) \\
    795 28.08.2002 Minor corrections (V.Ivanchenko)
     83728.08.2002 Minor corrections (V.Ivanchenko) \\
     83811.12.2009 Modified by A. Lechner to add ICRU 73 section
    796839
    797840\begin{latexonly}
     
    862905\bibitem{hlei.Gryzinski1} M. Gryzinski, Phys. Rev. A 135 (1965) 305.
    863906\bibitem{hlei.Gryzinski2} M. Gryzinski, Phys. Rev. A 138 (1965) 322.
     907\bibitem{hlei.ICRU73}
     908Stopping of Ions Heavier Than Helium,
     909ICRU Report 73, Oxford University Press (2005).
     910\bibitem{hlei.sigm02}
     911P.~Sigmund and A.~Schinner,
     912Nucl. Instr. Meth. in Phys. Res. B 195 (2002) 64.
     913\bibitem{hlei.sigm00}
     914P.~Sigmund and A.~Schinner,
     915Eur. Phys. J. D 12  (2000) 425.
     916\bibitem{hlei.sigm09a}
     917P.~Sigmund, A.~Schinner and H.~Paul,
     918Errata and Addenda for ICRU Report 73, Stopping of Ions Heavier
     919than Helium (2009).
     920\bibitem{hlei.sigm09b}
     921Personal communication with P.~Sigmund (2009).
    864922\end{thebibliography}
    865923
     
    932990\item M. Gryzinski, Phys. Rev. A 135 (1965) 305.
    933991\item M. Gryzinski, Phys. Rev. A 138 (1965) 322.
     992\item
     993Stopping of Ions Heavier Than Helium,
     994ICRU Report 73, Oxford University Press (2005).
     995\item
     996P.~Sigmund and A.~Schinner,
     997Nucl. Instr. Meth. in Phys. Res. B 195 (2002) 64.
     998\item
     999P.~Sigmund and A.~Schinner,
     1000Eur. Phys. J. D 12  (2000) 425.
     1001\item
     1002P.~Sigmund, A.~Schinner and H.~Paul,
     1003Errata and Addenda for ICRU Report 73, Stopping of Ions Heavier than Helium (2009).
     1004\item
     1005Personal communication with P.~Sigmund (2009).
     1006
    9341007\end{enumerate}
    9351008
  • trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/miscellaneous/setcuts.tex

    r1211 r1222  
    1818one geometry is valid also for the other geometries.
    1919
    20 The value of cut is defined only for electrons, positrons and gamma.
     20The value of cut is defined for electrons, positrons, gamma and protons.
    2121At the beginning of initialization of Geant4 physics the conversion from unique
    2222{\it cut in range} to cuts in kinetic energy for each {\it G4MaterialCutsCouple}
     
    4040the corresponding kinetic energy can be found out. If obtained $cut in energy$
    4141cannot be below
    42 the parameter $lowlimit$ (default $1 \; keV$).
     42the parameter $lowlimit$ (default $1 \; keV$) and above $highlimit$ (default $10 \; GeV$).
    4343If in specific application lower cut is required,
    4444then the allowed energy cut needs to be extended:\\
    4545\\
    4646{\it \footnotesize G4ProductionCutsTable::GetProductionCutsTable()$\to$SetEnergyRange(lowlimit,highlimit);}
    47 
     47or via UI commands
     48$$/cuts/setMinCutEnergy\;\; 100\;\; eV$$
     49$$/cuts/setMaxCutEnergy\;\; 100\;\; TeV$$
    4850In contrary to electrons, gammas has no range, so some approximation should
    4951be used for range to energy conversion.
     
    7375{\it highlimit}.
    7476
     77The cut for proton is introduced with Geant4 v9.3. The main goal
     78of this cut is to limit production of all recoil ions including protons
     79 in elastic scattering
     80processes. A simple linear conversion formula is used to compute energy threshold from the value
     81of cut in range, in particular, the cut in range $1~mm$ corresponds
     82to the production threshold $100 keV$.
     83
    7584The conversion from range to energy can be studied using {\it G4EmCalculator}
    7685class. This class allows access or recalculation of energy loss, ranges and
     
    9099   04.12.04 minor re-wording by D.H. Wright \\
    91100   18.05.07 rewritten by V. Ivanchenko \\
    92    11.12.08 minor revision by V. Ivanchenko \\
     101   11.12.08 minor revision by V. Ivanchenko, Geant4 v9.2 \\
     102   11.12.09 minor revision by V. Ivanchenko, Geant4 v9.3 \\
    93103
    94104\begin{latexonly}
  • trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/hion.tex

    r1211 r1222  
    244244\subsubsection{Nuclear Stopping}
    245245
    246 For scaled energies below $T_{lim} = 2 MeV$ the contribution of non-ionizing energy loss
    247 needs to be taken into account. The additional energy loss due to {\it nuclear stopping power}
    248 $\Delta T_N \Delta s$ is added the the energy loss. The process {\it G4ionIonisation}
    249 has a flag, which allows to switch on or off this correction. For that the method\\
    250 \\
    251 {\it G4ionIonisation::ActivateNuclearStopping(G4bool)}
    252 \\
    253 \\
    254 can be used. By default
    255 this correction is active and the ICRU'49 parameterisation \cite{hion.ICRU49} is used.
     246Nuclear stopping due to elastic ion-ion scattering since Geant4 v9.3
     247can be simulated with the continuous process
     248{\it G4NuclearStopping}. By default
     249this correction is active and the ICRU'49 parameterisation \cite{hion.ICRU49} is used,
     250which is implemented in the model class {\it G4ICRU49NuclearStoppingModel}. 
    256251
    257252
  • trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/msc.tex

    r1211 r1222  
    1515\item
    1616G4MuMultipleScattering.
    17 \item
    18 G4MultipleScattering;
    1917\end{itemize}
    2018For concrete simulation the {\it G4VMscModel} interface is used, which is an extension
     
    2220\begin{itemize}
    2321\item
    24 G4UrbanMscModel;
     22G4UrbanMscModel90 - Geant4 v9.0 applied to muons, hadrons and ions;
    2523\item
    26 G4UrbanMscModel2;
     24G4UrbanMscModel92 - Geant4 v9.2 (current default) applied for electron and positron;
    2725\item
    28 G4UrbanMscModel90;
     26G4UrbanMscModel93 - Geant4 v9.3 applied for electron and positron for Option2, Option3 and other EM Physics Lists;
    2927\item
    30 G4WentzelVIModel.
     28G4GoudsmitSaundersonModel - for electrons and positrons (beta-version);
     29\item
     30G4WentzelVIModel - for muons and hadrons, should be included in Physics Lists together with G4CoulombScattering process;
    3131\end{itemize}
    32 The last model is not yet in the production mode, so below we will concentrate
    33 on models developed by L.~Urban \cite{msc.urban}. Today default model for
    34 electrons and positrons is {\it G4UrbanMscModel2}, for hadrons - {\it G4UrbanMscModel90}.
     32The last models are not yet in the production mode, so below we will concentrate
     33on models developed by L.~Urban \cite{msc.urban}.
    3534
    3635\subsection{Introduction}
     
    811810 08.12.08  revised by L. Urb\'an, for Geant4 V9.2 \\
    812811 11.12.08  minor revision by V. Ivanchenko \\
     812 11.12.09  minor revision by V. Ivanchenko, for Geant4 v9.3 \\
    813813 
    814814\begin{latexonly}
Note: See TracChangeset for help on using the changeset viewer.